This document provides an overview of nature-inspired metaheuristic algorithms for optimization. It discusses the main components of metaheuristic algorithms, including intensification and diversification. It then reviews the history and development of several important metaheuristic algorithms from the 1960s to the 1990s, including genetic algorithms, evolutionary strategies, simulated annealing, ant colony optimization, particle swarm optimization, and differential evolution. The document aims to analyze why these algorithms work and provide a unified view of metaheuristics.