This document summarizes recent advances and applications of the cuckoo search algorithm, a nature-inspired metaheuristic optimization algorithm developed in 2009. Cuckoo search mimics the brood parasitism breeding behavior of some cuckoo species. It uses a combination of local and global search achieved through random walks and Levy flights to efficiently explore the search space. Studies show cuckoo search often finds optimal solutions faster than genetic algorithms and particle swarm optimization. The algorithm has been applied to diverse optimization problems and continues to be improved and extended to multi-objective optimization.