SlideShare a Scribd company logo
 
 
 
Barton 1 
Reid Barton 
Mrs. Messenger  
Advanced Science Research  
1 April 2016 
Perovskite Crystals: A Bright Future in Solar Technology 
Abstract 
Perovskite crystal based solar cells with efficiencies comparable to silicon have been                       
achieved in technical labs. However, the solar cell areas so far are too small for practical                               
applications, and there are still several avenues of experimentation to study the effects of                           
precursor solutions on the final perovskite crystals. The goal of this project was to create low                               
grade cells with greater surface area and investigate the formation of perovskite crystals through                           
a variety of precursor solutions and study their respective semiconductor properties. During this                         
project, cells were constructed with an output voltage of up to 520 millivolts, comparable to                             
traditional silicon solar cells. However the internal resistance of the cells was much too high to                               
produce any sort of usable current or measure any reliable total efficiency. Additionally, the                           
perovskite crystal solar cell was used successfully in improving the overall voltage of a silicon                             
and perovskite tandem cell. The studies showed that rudimentary perovskite crystals could be                         
fabricated at low cost with basic laboratory equipment that give an indication as to which                             
precursor chemicals and concentrations serve as best recipes for final semiconductor crystals.                       
Additionally, the studies show that perovskite semiconductor layers with band gaps of increasing                         
value could be applied to today’s silicon cells to improve overall efficiencies. 
 
 
 
Barton 2 
 
Introduction 
Energy is essential for daily life, but current energy production relies on non­renewable                         
resources such as oil and fossil fuels. These energy solutions are not only harmful to the                               
environment, they are limited in supply and will eventually be depleted. Unfortunately, current                         
renewable energy solutions are impractical or costly. The ratio of energy production to cost of                             
silicon solar cell is just not great enough to compete with fossil fuels (Agnihotri).  
However, in recent years perovskite crystal semiconductors have shown promise in                     
replacing silicon in solar cells. Perovskite crystals are semiconductors that follow the structure                         
ABX3, where A is an organic ion with a 1 + charge, B is a large cation, and X is a halide (Figure                                             
1). These crystals act similar to other semiconductors such as silicon, however, they are                           
advantageous because they can be constructed using a variety of chemical precursors so that the                             
semiconductor characteristics are altered. For example iodide ions can be replaced by bromide                         
ions so that the overall perovskite crystal will have a higher semiconductor band gap. In addition                               
to tunability, these crystals are easier to manufacture as they do not require vapor deposition                             
manufacturing processes as traditional solar cells do. Perovskite crystals can be created through                         
solution processing, an easier and cheaper method of layering (Jeon). Perovskite crystal solar                         
cells from top research institutions have attained efficiencies matching those of silicon­based                       
solar cells (Grinberg). Theoretically perovskite crystal solar cells could surpass the efficiencies                       
of silicon solar cells. Additionally, perovskite semiconducting crystals with higher band gaps                       
have been investigated for use in tandem with silicon cells to create higher efficiencies (Beal).   
 
 
 
 
 
Barton 3 
Figure 1: General Perovskite Structure 
 
Formamidinium lead halide perovskite crystals with a 2­to­1 molar ratio iodide to                       
chloride ions were used as a control. The cells were then modified by altering the composition of                                 
the precursor solutions in order to achieve higher voltages. For this research the molar ratio of                               
formamidinium chloride to lead (II) iodide within the precursor solutions were altered to achieve                           
crystal structures with variable concentrations of chloride and iodide ions.  
Changing the concentrations of the precursor components, and thus the overall                     
composition of the crystal will yield differing semiconductor band gaps. A band gap is the                             
amount of energy a photon of light must transfer to an electron to liberate an electron in the                                   
crystal. The more chloride, the higher the band gap. This means that when the cells are exposed                                 
to equal amounts of light the solar cells constructed with higher band gap semiconductors would                             
produce higher relative voltages.  
This research investigates a change in solar cell voltage as the chloride concentration is                           
increased within the perovskite crystal. 
 
 
 
Barton 4 
Materials and Methods   
Perovskite Precursor Solutions: 
To create perovskite precursor solutions, formamidinium acetate (Sigma Aldrich, Lot:                   
BCBN5709V) was first dissolved in 8.0 M HCl to create a two to one molar ratio of HCl to                                     
formamidinium acetate. This solution was then heated to 50°C with constant stirring and left for                             
ten minutes. Then heat the solution with a hot plate to 100°C and gently boil off the acetic acid                                     
and the majority of water. The product, formamidinium chloride (FACl), is purified with two                           
washes of Diethyl Ether (Flinn, Lot: 218041) and recrystallization in anhydrous ethanol (Flinn,                         
Lot: 109788). The product is then filtered and dried in a vacuum oven (GCA, model: Precision)                               
overnight at 60°C. This product is then dissolved with lead (II) iodide (Sigma Aldrich, Lot:                             
MKBV2644V) in Dimethylformamide (DMF, Sigma Aldrich, Lot: SHBD8947V) to achieve                   
solutions of 0.55 M for both solutes (Figure 2). For experimentation, the FACl concentration was                             
doubled and tripled. 
Figure 2: Perovskite Precursor  
Solutions of .55 M FACl and PbI​2 ​dissolved in DMF. 
 
 
 
 
 
Barton 5 
Complete Device Construction: 
The solar cells were constructed on Fluorine doped Tin Oxide (FTO) glass (Sigma Aldrich,                             
Lot: MKBT8462V) as a conductive and transparent base. The glass was received as 10 mm                             
square sheets, and were cut to 2.5 mm by 3.3 mm using a craft glass scoring device. The glass                                     
was then washed in acetone (Flinn, Lot: 207227) and wiped down with KimWipes (Figure 3). 
The next layer to be deposited is the TiO​2​. An acidified solution of 0.2 M titanium                                 
isopropoxide (Sigma Aldrich, Lot: SHBG0908V) in anhydrous ethanol is used as the precursor                         
solution. First, a piece of Scotch tape is applied to 8 mm of the conductive side of a piece of FTO                                         
glass to create a roughly 25 mm square active area. Then, 50 µL of the titanium isopropoxide                                 
solution is pipetted to the surface of the glass, and the glass is spun at 2200 rpm in a centrifuge                                       
(San Jose Scientific, model: Mini­Fuge) for 30 seconds (Figure 4). The tape is then removed, and                               
the glass is placed on a hotplate. The hot plate is then turned on and set to 450°C to anneal the                                         
TiO​2​ layer.  
 
Figure 3: Cleaning FTO glass for use in solar cells 
 
The next layer consists of the perovskite semiconductor. This layer is deposited by first                           
reapplying the tape to the FTO/TiO​2 glass. Then, once the glass has been preheated to 100°C, it                                 
 
 
 
Barton 6 
is placed in the centrifuge and spun again at about 1000 rpm. 100 µL of perovskite precursor                                 
solution is pipetted onto the spinning glass. The glass is left to spin for another 30 seconds. The                                   
tape is removed from the glass, and the device is then transferred back to the hot plate and                                   
allowed to anneal at 170°C. 
   
Figure 4: Centrifuge and Adapter for spinning glass 
To complete the solar cell, graphite powder (Braun Chemicals) is sprinkled and spread                         
with a glass stir rod on a second piece of FTO glass and then the two pieces of glass are                                       
sandwiched together (Figure 5).  
 
Figure 5: Complete cells created from precursors of FACl to PbI​2​ ratios 1:1, 2:1, 3:1  
 
 
 
 
 
Barton 7 
To test the cells, I used a lamp with a 60 W light bulb and a multimeter (RSR, model:                                     
MAS830) to test the voltage and short circuit outputs of the solar cells. Additionally, the cells                               
were taken outside in the sun and tested against one another.  
Results 
Working perovskite crystal solar cells that reached voltages of up to 520 millivolts were                           
constructed. This is comparable to traditional silicon solar cells. However, the efficiency of the                           
perovskite solar cells was lower than silicon solar cells due to low current output. This is a result                                   
of high internal resistance in the cell, which will require further investigation.  
The cells which performed best had perovskite crystals formed from the precursor solution                           
with a two­to­one ratio of formamidinium chloride (FACl) to lead (II) iodide (Figure 6). The                             
cells constructed with a three­to­one precursor solution performed with the lowest voltages at on                           
average 29 mV in cloudy conditions and 63 mV in direct sun. The one­to­one precursor solution                               
based cells performed second best with averages of 89 mV and 193 mV in cloudy conditions and                                 
direct sunlight respectively. The cells with a two­to­one precursor solution performed optimally,                       
achieving average voltages of 315 mV and 385 mV under clouds and direct sunlight.  
 
Figure 6: Cell Voltage Averages  
Data was collected for the cells tested in (a) cloudy conditions  and (b) sunny conditions 
 
 
 
Barton 8 
The tandem cell showed that when combined, perovskite and silicon semiconductors                     
together can capture light more efficiently than either type by itself (Figure 7). The first bar from                                 
the left describes the voltage of the best perovskite cell produced. The second bar is a                               
commercial grade silicon based solar cell. The third bar depicts the cells in series when they are                                 
side by side, both absorbing sunlight. The final bar shows the result of placing the perovskite                               
over the silicon cell so that the silicon is only receiving light that has not been absorbed by the                                     
perovskite crystal. This shows that when the solar cells are working together in tandem, the                             
overall voltage is greater than either of the cells alone, suggesting potential for more efficient                             
cells.  
Figure 7: Perovskite­Silicon Tandem Cell   
Analysis and Conclusion 
One hypothesis for the 2:1 ratio FACl:PbI​2 ​generating the highest voltage is that the                           
higher concentration of chloride ions in the precursor solution leads to a higher concentration of                             
chloride ions in the final perovskite crystal. Because the chloride ions have a smaller ionic                             
radius, the band gap of the crystal, or the amount of energy a photon of light must have in order                                       
 
 
 
Barton 9 
to liberate an electron, is raised. This increase in energy is seen as an increase in the output                                   
voltage of the cell. However, when the molar ratio of the two precursors was greater, e.g.                               
three­to­one, the perovskite crystal could not properly form, resulting in the observed lower                         
voltages seen from cells formed from this precursor solution. A second hypothesis for this result                             
is that the organic halide compounds sublimate at similar temperatures to that of the cells being                               
annealed, and therefore must be in excess for a proper one­to­one ratio of lead halide to organic                                 
halide and successful formation of the perovskite crystal. This effect could describe the                         
one­to­one precursor solution as creating perovskite crystals with an excessive amount of lead                         
halides acting as inefficiency, thus its lower voltage. 
The band gap of a material is the amount of energy needed to liberate an electron, and                                 
thus create current. The higher band gap of the perovskite, along with the lower band gap silicon                                 
allows the cell to waste less energy from photons of higher wavelengths. This is because the                               
photons of higher wavelengths, and more energy, are able to excite an electron in the perovskite                               
with a higher band gap. The photons of lower energy will pass through the first layer, but will get                                     
absorbed by a second or third layer with a lower band gap. This means that capturing higher                                 
energy photons does not sacrifice capturing lower energy photons with a lower band gap, or                             
capturing lower wavelengths does not sacrifice the extra energy provided by photons of higher                           
wavelengths.   
Despite limited budget ($400) and a high school laboratory setting, I was able to perform                             
a variety of experiments involving the formation of perovskite crystals. My studies showed that                           
rudimentary perovskite crystals could be fabricated at low cost with basic laboratory equipment.                         
Although these cells do not compare to cells created in better equipped laboratories, their relative                             
 
 
 
Barton 10 
voltage outputs could be measured. These results give an indication as to which precursor                           
chemicals and concentrations serve as best recipes for final semiconductor crystals. Additionally,                       
my results show that perovskite semiconductor layers with band gaps of increasing value could                           
be applied to today’s silicon cells to improve overall efficiencies by capturing a greater range of                               
wavelengths produced by the sun with minimal losses. 
Further studies could include the use of other organic cations to tune the band gap of the                                 
perovskite. Additionally, studies could be performed to raise the band gap of the perovskites                           
through variable halide combinations to create a cell with several band gaps to capture solar                             
energy more efficiently. Finally, the replacement of lead with an ion such as tin would allow for                                 
safer, more environmentally friendly devices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Barton 11 
 
Works Cited 
 
Agnihotri, Gaurav. "Is Solar Energy Ready To Compete With Oil And Other Fossil Fuels? |  
OilPrice.com." OilPrice.com. OilPrice.com, 30 Apr. 2015. Web. 14 Apr. 2016. 
Beal, Rachel E., Daniel J. Slotcavage, Tomas Leijtens, Andrea R. Bowring, Rebecca A. Belisle, 
William H. Nguyen, George F. Burkhard, Eric T. Hoke, and Michael D. Mcgehee. 
"Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells." J. 
Phys. Chem. Lett. The Journal of Physical Chemistry Letters 7.5 (2016): 746­51. Web. 
Chen, Qi, Nicholas De Marco, Yang (Michael) Yang, Tze­Bin Song, Chun­Chao Chen,  
Hongxiang Zhao, Ziruo Hong, Huanping Zhou, and Yang Yang. "Under the Spotlight: 
The Organic–inorganic Hybrid Halide Perovskite for Optoelectronic Applications." ​Nano 
Today 10.3 (2015): 355­96. Web. 
Grinberg, Ilya, et al. "Perovskite Oxides For Visible­Light­Absorbing Ferroelectric And  
Photovoltaic Materials." ​Nature 503.7477 (2013): 509. ​Advanced Placement Source. 
Web. 12 Oct. 2015. 
Jeon, Nam Joong, et al. "Solvent Engineering For High­Performance Inorganic­Organic Hybrid  
Perovskite Solar Cells." ​Nature Materials 13.9 (2014): 897. ​Science Reference Center. 
Web. 12 Oct. 2015. 
Liu, Mingzhen, Michael B. Johnston, and Henry J. Snaith. "Efficient Planar Heterojunction 
Perovskite Solar Cells By Vapour Deposition."Nature 501.7467 (2013): 395. Advanced 
Placement Source. Web. 12 Oct. 2015. 
 
 
 
 
Barton 12 
Reflection 
I chose to do this project because I was interested in both physics and chemistry, and this 
projected incorporated the two. Additionally, the project has great humanitarian value and is still 
in a cutting edge phase which is exciting to be a part of. I achieved my goals and learned some 
interesting science along the way. My prediction was close to the actual results but there was 
somewhat of a surprise for which cell worked the best. This experiment has taught me that 
scientific studies consist of much more preparation and paperwork than anticipated. I would have 
liked to learn more about Fermi energy and how electrons flow within materials. It took a very 
long time to get a cell working, but patience was key to success. If I had to redo the project, I 
would try more precursor combinations and also investigate the high internal resistance of the 
cells. I would advise other students to pick a project that is challenging, but also manageable and 
one where practical data could be collected. I would study other chemical projects such as 
battery technology. I think this project was important because it taught me several practical lab 
skills in addition to teaching me to be disciplined in my preparation, records and overall 
independent motivation to complete the project on a timeline.  

More Related Content

What's hot

Progress in all inorganic perovskite solar cell
Progress in all inorganic perovskite solar cellProgress in all inorganic perovskite solar cell
Progress in all inorganic perovskite solar cell
Md Ataul Mamun
 
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Akinola Oyedele
 
Organic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellOrganic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar Cell
Rajan K. Singh
 
Perovskite solar cells
Perovskite solar cellsPerovskite solar cells
Perovskite solar cells
sudhinsukumaran
 
Perovskite Solar Cell
Perovskite Solar CellPerovskite Solar Cell
Perovskite Solar Cell
Himanshu Dixit
 
Perovskites solar cells
Perovskites solar cellsPerovskites solar cells
Perovskites solar cells
Koushik Kosanam
 
Perovskite solar cells
Perovskite solar cells Perovskite solar cells
Perovskite solar cells
kidist w.
 
Solar Power: THE PEROVSKITE
Solar Power: THE PEROVSKITESolar Power: THE PEROVSKITE
Solar Power: THE PEROVSKITE
Cyra Mae Soreda
 
Research proposal on organic-inorganic halide perovskite light harvesting mat...
Research proposal on organic-inorganic halide perovskite light harvesting mat...Research proposal on organic-inorganic halide perovskite light harvesting mat...
Research proposal on organic-inorganic halide perovskite light harvesting mat...
Rajan K. Singh
 
Perovskite
PerovskitePerovskite
Perovskite
Preeti Choudhary
 
Tandem solar cell slide share
Tandem solar cell slide shareTandem solar cell slide share
Tandem solar cell slide share
kamatlab
 
Organic photovoltaic cells : OPV
Organic photovoltaic cells : OPVOrganic photovoltaic cells : OPV
Organic photovoltaic cells : OPV
Malak Talbi
 
New Material:Perovskites presentation
New Material:Perovskites presentationNew Material:Perovskites presentation
New Material:Perovskites presentation
John Shiloba Pishikeni
 
Organic Solar Cells
Organic Solar CellsOrganic Solar Cells
Organic Solar Cells
Vishal Shrotriya
 
Developments in organic solar cells
Developments in organic solar cellsDevelopments in organic solar cells
Developments in organic solar cells
Akinola Oyedele
 
Generations of solar cells
Generations of solar cellsGenerations of solar cells
Generations of solar cells
MohanNaidu34
 
Organic Solar Cell
Organic Solar CellOrganic Solar Cell
Organic Solar Cell
Abhas Dash
 
Polymer Solar Cell
Polymer Solar CellPolymer Solar Cell
Polymer Solar Cell
Ravinder Kumar
 
Hetero junction and tandem solar cell.
Hetero junction and tandem solar cell.Hetero junction and tandem solar cell.
Hetero junction and tandem solar cell.
Anish Das
 
An introduction of perovskite solar cells
An introduction of perovskite solar cellsAn introduction of perovskite solar cells
An introduction of perovskite solar cells
alfachemistry
 

What's hot (20)

Progress in all inorganic perovskite solar cell
Progress in all inorganic perovskite solar cellProgress in all inorganic perovskite solar cell
Progress in all inorganic perovskite solar cell
 
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
 
Organic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellOrganic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar Cell
 
Perovskite solar cells
Perovskite solar cellsPerovskite solar cells
Perovskite solar cells
 
Perovskite Solar Cell
Perovskite Solar CellPerovskite Solar Cell
Perovskite Solar Cell
 
Perovskites solar cells
Perovskites solar cellsPerovskites solar cells
Perovskites solar cells
 
Perovskite solar cells
Perovskite solar cells Perovskite solar cells
Perovskite solar cells
 
Solar Power: THE PEROVSKITE
Solar Power: THE PEROVSKITESolar Power: THE PEROVSKITE
Solar Power: THE PEROVSKITE
 
Research proposal on organic-inorganic halide perovskite light harvesting mat...
Research proposal on organic-inorganic halide perovskite light harvesting mat...Research proposal on organic-inorganic halide perovskite light harvesting mat...
Research proposal on organic-inorganic halide perovskite light harvesting mat...
 
Perovskite
PerovskitePerovskite
Perovskite
 
Tandem solar cell slide share
Tandem solar cell slide shareTandem solar cell slide share
Tandem solar cell slide share
 
Organic photovoltaic cells : OPV
Organic photovoltaic cells : OPVOrganic photovoltaic cells : OPV
Organic photovoltaic cells : OPV
 
New Material:Perovskites presentation
New Material:Perovskites presentationNew Material:Perovskites presentation
New Material:Perovskites presentation
 
Organic Solar Cells
Organic Solar CellsOrganic Solar Cells
Organic Solar Cells
 
Developments in organic solar cells
Developments in organic solar cellsDevelopments in organic solar cells
Developments in organic solar cells
 
Generations of solar cells
Generations of solar cellsGenerations of solar cells
Generations of solar cells
 
Organic Solar Cell
Organic Solar CellOrganic Solar Cell
Organic Solar Cell
 
Polymer Solar Cell
Polymer Solar CellPolymer Solar Cell
Polymer Solar Cell
 
Hetero junction and tandem solar cell.
Hetero junction and tandem solar cell.Hetero junction and tandem solar cell.
Hetero junction and tandem solar cell.
 
An introduction of perovskite solar cells
An introduction of perovskite solar cellsAn introduction of perovskite solar cells
An introduction of perovskite solar cells
 

Viewers also liked

Particles sizes effect on the rheological properties of nickel doped
Particles sizes effect on the rheological properties of nickel dopedParticles sizes effect on the rheological properties of nickel doped
Particles sizes effect on the rheological properties of nickel doped
Alexander Decker
 
Effects of addition of BaTiO3 Nano particles on the conductivity of PVdF/PMMA...
Effects of addition of BaTiO3 Nano particles on the conductivity of PVdF/PMMA...Effects of addition of BaTiO3 Nano particles on the conductivity of PVdF/PMMA...
Effects of addition of BaTiO3 Nano particles on the conductivity of PVdF/PMMA...
International Journal of Engineering Inventions www.ijeijournal.com
 
Perovskite PV: Updating Our Views on Progress and Commercialization Timelines
Perovskite PV: Updating Our Views on Progress and Commercialization TimelinesPerovskite PV: Updating Our Views on Progress and Commercialization Timelines
Perovskite PV: Updating Our Views on Progress and Commercialization Timelines
n-tech Research
 
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
cdtpv
 
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of  la1 x srxmno3 perovskite nanoparticlesSynthesis and charaterization of  la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Mai Trần
 
SPINELS,INVERSE SPINELS AND PEROVSKITES
SPINELS,INVERSE SPINELS AND PEROVSKITESSPINELS,INVERSE SPINELS AND PEROVSKITES
SPINELS,INVERSE SPINELS AND PEROVSKITES
Shobana Subramaniam
 

Viewers also liked (6)

Particles sizes effect on the rheological properties of nickel doped
Particles sizes effect on the rheological properties of nickel dopedParticles sizes effect on the rheological properties of nickel doped
Particles sizes effect on the rheological properties of nickel doped
 
Effects of addition of BaTiO3 Nano particles on the conductivity of PVdF/PMMA...
Effects of addition of BaTiO3 Nano particles on the conductivity of PVdF/PMMA...Effects of addition of BaTiO3 Nano particles on the conductivity of PVdF/PMMA...
Effects of addition of BaTiO3 Nano particles on the conductivity of PVdF/PMMA...
 
Perovskite PV: Updating Our Views on Progress and Commercialization Timelines
Perovskite PV: Updating Our Views on Progress and Commercialization TimelinesPerovskite PV: Updating Our Views on Progress and Commercialization Timelines
Perovskite PV: Updating Our Views on Progress and Commercialization Timelines
 
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
 
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of  la1 x srxmno3 perovskite nanoparticlesSynthesis and charaterization of  la1 x srxmno3 perovskite nanoparticles
Synthesis and charaterization of la1 x srxmno3 perovskite nanoparticles
 
SPINELS,INVERSE SPINELS AND PEROVSKITES
SPINELS,INVERSE SPINELS AND PEROVSKITESSPINELS,INVERSE SPINELS AND PEROVSKITES
SPINELS,INVERSE SPINELS AND PEROVSKITES
 

Similar to Perovskite Crystals: A Bright Future in Solar Technology

research in solar cell
research in solar cellresearch in solar cell
research in solar cell
Shahrbano Awan
 
Light induced degradation in crystalline silicon solar cells
Light induced degradation in crystalline silicon solar cellsLight induced degradation in crystalline silicon solar cells
Light induced degradation in crystalline silicon solar cells
Jay Ranvir
 
Glen Junor Senior Thesis
Glen Junor Senior ThesisGlen Junor Senior Thesis
Glen Junor Senior Thesis
Glen Junor
 
Cathode composition greatly
Cathode composition greatlyCathode composition greatly
Cathode composition greatly
Sujata Singh
 
Pb S Nanostructures.Work At Ii Sc
Pb S Nanostructures.Work At Ii ScPb S Nanostructures.Work At Ii Sc
Pb S Nanostructures.Work At Ii Sc
rbhargava123
 
Effect of porosity on ocv and westwater treatment efficiency of a clay partit...
Effect of porosity on ocv and westwater treatment efficiency of a clay partit...Effect of porosity on ocv and westwater treatment efficiency of a clay partit...
Effect of porosity on ocv and westwater treatment efficiency of a clay partit...
IAEME Publication
 
EFFECT OF POROSITY ON OCV AND WASTEWATER TREATMENT EFFICIENCY OF A CLAY PARTI...
EFFECT OF POROSITY ON OCV AND WASTEWATER TREATMENT EFFICIENCY OF A CLAY PARTI...EFFECT OF POROSITY ON OCV AND WASTEWATER TREATMENT EFFICIENCY OF A CLAY PARTI...
EFFECT OF POROSITY ON OCV AND WASTEWATER TREATMENT EFFICIENCY OF A CLAY PARTI...
IAEME Publication
 
24 ijaprr vol1-3-32-37nasir
24 ijaprr vol1-3-32-37nasir24 ijaprr vol1-3-32-37nasir
24 ijaprr vol1-3-32-37nasir
ijaprr_editor
 
Organic solar cells the exciting interplay of excitons and nano-morphology
Organic solar cells the exciting interplay of excitons and nano-morphologyOrganic solar cells the exciting interplay of excitons and nano-morphology
Organic solar cells the exciting interplay of excitons and nano-morphology
vvgk-thalluri
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic DeviceAnalysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
M. Faisal Halim
 
poster2
poster2poster2
Extended Abstract(PGIS Con)
Extended Abstract(PGIS Con)Extended Abstract(PGIS Con)
Extended Abstract(PGIS Con)
Aruni Bandara
 
Siemens Research Report
Siemens Research ReportSiemens Research Report
Siemens Research Report
Marc Bouchet
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor
 
B1070919
B1070919B1070919
B1070919
IJERD Editor
 
Nano tubes technology in solar
Nano tubes technology in solarNano tubes technology in solar
Nano tubes technology in solar
sriviswanadh gubba
 
Influence of Manganese doping on Structural, optical and ethanol sensing of S...
Influence of Manganese doping on Structural, optical and ethanol sensing of S...Influence of Manganese doping on Structural, optical and ethanol sensing of S...
Influence of Manganese doping on Structural, optical and ethanol sensing of S...
IRJET Journal
 
Paloma Poster 2015
Paloma Poster 2015Paloma Poster 2015
Paloma Poster 2015
Malek El-Aooiti
 
Impact of Gamma Irradiation on Structural and Dielectric Properties of CuI-PV...
Impact of Gamma Irradiation on Structural and Dielectric Properties of CuI-PV...Impact of Gamma Irradiation on Structural and Dielectric Properties of CuI-PV...
Impact of Gamma Irradiation on Structural and Dielectric Properties of CuI-PV...
iosrjce
 
CARBON-CUPROUS OXIDE COMPOSITE NANOPARTICLES ON GLASS TUBES FOR SOLAR HEAT CO...
CARBON-CUPROUS OXIDE COMPOSITE NANOPARTICLES ON GLASS TUBES FOR SOLAR HEAT CO...CARBON-CUPROUS OXIDE COMPOSITE NANOPARTICLES ON GLASS TUBES FOR SOLAR HEAT CO...
CARBON-CUPROUS OXIDE COMPOSITE NANOPARTICLES ON GLASS TUBES FOR SOLAR HEAT CO...
International Journal of Technical Research & Application
 

Similar to Perovskite Crystals: A Bright Future in Solar Technology (20)

research in solar cell
research in solar cellresearch in solar cell
research in solar cell
 
Light induced degradation in crystalline silicon solar cells
Light induced degradation in crystalline silicon solar cellsLight induced degradation in crystalline silicon solar cells
Light induced degradation in crystalline silicon solar cells
 
Glen Junor Senior Thesis
Glen Junor Senior ThesisGlen Junor Senior Thesis
Glen Junor Senior Thesis
 
Cathode composition greatly
Cathode composition greatlyCathode composition greatly
Cathode composition greatly
 
Pb S Nanostructures.Work At Ii Sc
Pb S Nanostructures.Work At Ii ScPb S Nanostructures.Work At Ii Sc
Pb S Nanostructures.Work At Ii Sc
 
Effect of porosity on ocv and westwater treatment efficiency of a clay partit...
Effect of porosity on ocv and westwater treatment efficiency of a clay partit...Effect of porosity on ocv and westwater treatment efficiency of a clay partit...
Effect of porosity on ocv and westwater treatment efficiency of a clay partit...
 
EFFECT OF POROSITY ON OCV AND WASTEWATER TREATMENT EFFICIENCY OF A CLAY PARTI...
EFFECT OF POROSITY ON OCV AND WASTEWATER TREATMENT EFFICIENCY OF A CLAY PARTI...EFFECT OF POROSITY ON OCV AND WASTEWATER TREATMENT EFFICIENCY OF A CLAY PARTI...
EFFECT OF POROSITY ON OCV AND WASTEWATER TREATMENT EFFICIENCY OF A CLAY PARTI...
 
24 ijaprr vol1-3-32-37nasir
24 ijaprr vol1-3-32-37nasir24 ijaprr vol1-3-32-37nasir
24 ijaprr vol1-3-32-37nasir
 
Organic solar cells the exciting interplay of excitons and nano-morphology
Organic solar cells the exciting interplay of excitons and nano-morphologyOrganic solar cells the exciting interplay of excitons and nano-morphology
Organic solar cells the exciting interplay of excitons and nano-morphology
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic DeviceAnalysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
 
poster2
poster2poster2
poster2
 
Extended Abstract(PGIS Con)
Extended Abstract(PGIS Con)Extended Abstract(PGIS Con)
Extended Abstract(PGIS Con)
 
Siemens Research Report
Siemens Research ReportSiemens Research Report
Siemens Research Report
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
B1070919
B1070919B1070919
B1070919
 
Nano tubes technology in solar
Nano tubes technology in solarNano tubes technology in solar
Nano tubes technology in solar
 
Influence of Manganese doping on Structural, optical and ethanol sensing of S...
Influence of Manganese doping on Structural, optical and ethanol sensing of S...Influence of Manganese doping on Structural, optical and ethanol sensing of S...
Influence of Manganese doping on Structural, optical and ethanol sensing of S...
 
Paloma Poster 2015
Paloma Poster 2015Paloma Poster 2015
Paloma Poster 2015
 
Impact of Gamma Irradiation on Structural and Dielectric Properties of CuI-PV...
Impact of Gamma Irradiation on Structural and Dielectric Properties of CuI-PV...Impact of Gamma Irradiation on Structural and Dielectric Properties of CuI-PV...
Impact of Gamma Irradiation on Structural and Dielectric Properties of CuI-PV...
 
CARBON-CUPROUS OXIDE COMPOSITE NANOPARTICLES ON GLASS TUBES FOR SOLAR HEAT CO...
CARBON-CUPROUS OXIDE COMPOSITE NANOPARTICLES ON GLASS TUBES FOR SOLAR HEAT CO...CARBON-CUPROUS OXIDE COMPOSITE NANOPARTICLES ON GLASS TUBES FOR SOLAR HEAT CO...
CARBON-CUPROUS OXIDE COMPOSITE NANOPARTICLES ON GLASS TUBES FOR SOLAR HEAT CO...
 

Recently uploaded

Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
gerogepatton
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
MIGUELANGEL966976
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
RadiNasr
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
wisnuprabawa3
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
rpskprasana
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
camseq
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
zubairahmad848137
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
nooriasukmaningtyas
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 

Recently uploaded (20)

Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 

Perovskite Crystals: A Bright Future in Solar Technology

  • 1.       Barton 1  Reid Barton  Mrs. Messenger   Advanced Science Research   1 April 2016  Perovskite Crystals: A Bright Future in Solar Technology  Abstract  Perovskite crystal based solar cells with efficiencies comparable to silicon have been                        achieved in technical labs. However, the solar cell areas so far are too small for practical                                applications, and there are still several avenues of experimentation to study the effects of                            precursor solutions on the final perovskite crystals. The goal of this project was to create low                                grade cells with greater surface area and investigate the formation of perovskite crystals through                            a variety of precursor solutions and study their respective semiconductor properties. During this                          project, cells were constructed with an output voltage of up to 520 millivolts, comparable to                              traditional silicon solar cells. However the internal resistance of the cells was much too high to                                produce any sort of usable current or measure any reliable total efficiency. Additionally, the                            perovskite crystal solar cell was used successfully in improving the overall voltage of a silicon                              and perovskite tandem cell. The studies showed that rudimentary perovskite crystals could be                          fabricated at low cost with basic laboratory equipment that give an indication as to which                              precursor chemicals and concentrations serve as best recipes for final semiconductor crystals.                        Additionally, the studies show that perovskite semiconductor layers with band gaps of increasing                          value could be applied to today’s silicon cells to improve overall efficiencies. 
  • 2.       Barton 2    Introduction  Energy is essential for daily life, but current energy production relies on non­renewable                          resources such as oil and fossil fuels. These energy solutions are not only harmful to the                                environment, they are limited in supply and will eventually be depleted. Unfortunately, current                          renewable energy solutions are impractical or costly. The ratio of energy production to cost of                              silicon solar cell is just not great enough to compete with fossil fuels (Agnihotri).   However, in recent years perovskite crystal semiconductors have shown promise in                      replacing silicon in solar cells. Perovskite crystals are semiconductors that follow the structure                          ABX3, where A is an organic ion with a 1 + charge, B is a large cation, and X is a halide (Figure                                              1). These crystals act similar to other semiconductors such as silicon, however, they are                            advantageous because they can be constructed using a variety of chemical precursors so that the                              semiconductor characteristics are altered. For example iodide ions can be replaced by bromide                          ions so that the overall perovskite crystal will have a higher semiconductor band gap. In addition                                to tunability, these crystals are easier to manufacture as they do not require vapor deposition                              manufacturing processes as traditional solar cells do. Perovskite crystals can be created through                          solution processing, an easier and cheaper method of layering (Jeon). Perovskite crystal solar                          cells from top research institutions have attained efficiencies matching those of silicon­based                        solar cells (Grinberg). Theoretically perovskite crystal solar cells could surpass the efficiencies                        of silicon solar cells. Additionally, perovskite semiconducting crystals with higher band gaps                        have been investigated for use in tandem with silicon cells to create higher efficiencies (Beal).       
  • 3.       Barton 3  Figure 1: General Perovskite Structure    Formamidinium lead halide perovskite crystals with a 2­to­1 molar ratio iodide to                        chloride ions were used as a control. The cells were then modified by altering the composition of                                  the precursor solutions in order to achieve higher voltages. For this research the molar ratio of                                formamidinium chloride to lead (II) iodide within the precursor solutions were altered to achieve                            crystal structures with variable concentrations of chloride and iodide ions.   Changing the concentrations of the precursor components, and thus the overall                      composition of the crystal will yield differing semiconductor band gaps. A band gap is the                              amount of energy a photon of light must transfer to an electron to liberate an electron in the                                    crystal. The more chloride, the higher the band gap. This means that when the cells are exposed                                  to equal amounts of light the solar cells constructed with higher band gap semiconductors would                              produce higher relative voltages.   This research investigates a change in solar cell voltage as the chloride concentration is                            increased within the perovskite crystal. 
  • 4.       Barton 4  Materials and Methods    Perovskite Precursor Solutions:  To create perovskite precursor solutions, formamidinium acetate (Sigma Aldrich, Lot:                    BCBN5709V) was first dissolved in 8.0 M HCl to create a two to one molar ratio of HCl to                                      formamidinium acetate. This solution was then heated to 50°C with constant stirring and left for                              ten minutes. Then heat the solution with a hot plate to 100°C and gently boil off the acetic acid                                      and the majority of water. The product, formamidinium chloride (FACl), is purified with two                            washes of Diethyl Ether (Flinn, Lot: 218041) and recrystallization in anhydrous ethanol (Flinn,                          Lot: 109788). The product is then filtered and dried in a vacuum oven (GCA, model: Precision)                                overnight at 60°C. This product is then dissolved with lead (II) iodide (Sigma Aldrich, Lot:                              MKBV2644V) in Dimethylformamide (DMF, Sigma Aldrich, Lot: SHBD8947V) to achieve                    solutions of 0.55 M for both solutes (Figure 2). For experimentation, the FACl concentration was                              doubled and tripled.  Figure 2: Perovskite Precursor   Solutions of .55 M FACl and PbI​2 ​dissolved in DMF.     
  • 5.       Barton 5  Complete Device Construction:  The solar cells were constructed on Fluorine doped Tin Oxide (FTO) glass (Sigma Aldrich,                              Lot: MKBT8462V) as a conductive and transparent base. The glass was received as 10 mm                              square sheets, and were cut to 2.5 mm by 3.3 mm using a craft glass scoring device. The glass                                      was then washed in acetone (Flinn, Lot: 207227) and wiped down with KimWipes (Figure 3).  The next layer to be deposited is the TiO​2​. An acidified solution of 0.2 M titanium                                  isopropoxide (Sigma Aldrich, Lot: SHBG0908V) in anhydrous ethanol is used as the precursor                          solution. First, a piece of Scotch tape is applied to 8 mm of the conductive side of a piece of FTO                                          glass to create a roughly 25 mm square active area. Then, 50 µL of the titanium isopropoxide                                  solution is pipetted to the surface of the glass, and the glass is spun at 2200 rpm in a centrifuge                                        (San Jose Scientific, model: Mini­Fuge) for 30 seconds (Figure 4). The tape is then removed, and                                the glass is placed on a hotplate. The hot plate is then turned on and set to 450°C to anneal the                                          TiO​2​ layer.     Figure 3: Cleaning FTO glass for use in solar cells    The next layer consists of the perovskite semiconductor. This layer is deposited by first                            reapplying the tape to the FTO/TiO​2 glass. Then, once the glass has been preheated to 100°C, it                                 
  • 6.       Barton 6  is placed in the centrifuge and spun again at about 1000 rpm. 100 µL of perovskite precursor                                  solution is pipetted onto the spinning glass. The glass is left to spin for another 30 seconds. The                                    tape is removed from the glass, and the device is then transferred back to the hot plate and                                    allowed to anneal at 170°C.      Figure 4: Centrifuge and Adapter for spinning glass  To complete the solar cell, graphite powder (Braun Chemicals) is sprinkled and spread                          with a glass stir rod on a second piece of FTO glass and then the two pieces of glass are                                        sandwiched together (Figure 5).     Figure 5: Complete cells created from precursors of FACl to PbI​2​ ratios 1:1, 2:1, 3:1      
  • 7.       Barton 7  To test the cells, I used a lamp with a 60 W light bulb and a multimeter (RSR, model:                                      MAS830) to test the voltage and short circuit outputs of the solar cells. Additionally, the cells                                were taken outside in the sun and tested against one another.   Results  Working perovskite crystal solar cells that reached voltages of up to 520 millivolts were                            constructed. This is comparable to traditional silicon solar cells. However, the efficiency of the                            perovskite solar cells was lower than silicon solar cells due to low current output. This is a result                                    of high internal resistance in the cell, which will require further investigation.   The cells which performed best had perovskite crystals formed from the precursor solution                            with a two­to­one ratio of formamidinium chloride (FACl) to lead (II) iodide (Figure 6). The                              cells constructed with a three­to­one precursor solution performed with the lowest voltages at on                            average 29 mV in cloudy conditions and 63 mV in direct sun. The one­to­one precursor solution                                based cells performed second best with averages of 89 mV and 193 mV in cloudy conditions and                                  direct sunlight respectively. The cells with a two­to­one precursor solution performed optimally,                        achieving average voltages of 315 mV and 385 mV under clouds and direct sunlight.     Figure 6: Cell Voltage Averages   Data was collected for the cells tested in (a) cloudy conditions  and (b) sunny conditions 
  • 8.       Barton 8  The tandem cell showed that when combined, perovskite and silicon semiconductors                      together can capture light more efficiently than either type by itself (Figure 7). The first bar from                                  the left describes the voltage of the best perovskite cell produced. The second bar is a                                commercial grade silicon based solar cell. The third bar depicts the cells in series when they are                                  side by side, both absorbing sunlight. The final bar shows the result of placing the perovskite                                over the silicon cell so that the silicon is only receiving light that has not been absorbed by the                                      perovskite crystal. This shows that when the solar cells are working together in tandem, the                              overall voltage is greater than either of the cells alone, suggesting potential for more efficient                              cells.   Figure 7: Perovskite­Silicon Tandem Cell    Analysis and Conclusion  One hypothesis for the 2:1 ratio FACl:PbI​2 ​generating the highest voltage is that the                            higher concentration of chloride ions in the precursor solution leads to a higher concentration of                              chloride ions in the final perovskite crystal. Because the chloride ions have a smaller ionic                              radius, the band gap of the crystal, or the amount of energy a photon of light must have in order                                       
  • 9.       Barton 9  to liberate an electron, is raised. This increase in energy is seen as an increase in the output                                    voltage of the cell. However, when the molar ratio of the two precursors was greater, e.g.                                three­to­one, the perovskite crystal could not properly form, resulting in the observed lower                          voltages seen from cells formed from this precursor solution. A second hypothesis for this result                              is that the organic halide compounds sublimate at similar temperatures to that of the cells being                                annealed, and therefore must be in excess for a proper one­to­one ratio of lead halide to organic                                  halide and successful formation of the perovskite crystal. This effect could describe the                          one­to­one precursor solution as creating perovskite crystals with an excessive amount of lead                          halides acting as inefficiency, thus its lower voltage.  The band gap of a material is the amount of energy needed to liberate an electron, and                                  thus create current. The higher band gap of the perovskite, along with the lower band gap silicon                                  allows the cell to waste less energy from photons of higher wavelengths. This is because the                                photons of higher wavelengths, and more energy, are able to excite an electron in the perovskite                                with a higher band gap. The photons of lower energy will pass through the first layer, but will get                                      absorbed by a second or third layer with a lower band gap. This means that capturing higher                                  energy photons does not sacrifice capturing lower energy photons with a lower band gap, or                              capturing lower wavelengths does not sacrifice the extra energy provided by photons of higher                            wavelengths.    Despite limited budget ($400) and a high school laboratory setting, I was able to perform                              a variety of experiments involving the formation of perovskite crystals. My studies showed that                            rudimentary perovskite crystals could be fabricated at low cost with basic laboratory equipment.                          Although these cells do not compare to cells created in better equipped laboratories, their relative                             
  • 10.       Barton 10  voltage outputs could be measured. These results give an indication as to which precursor                            chemicals and concentrations serve as best recipes for final semiconductor crystals. Additionally,                        my results show that perovskite semiconductor layers with band gaps of increasing value could                            be applied to today’s silicon cells to improve overall efficiencies by capturing a greater range of                                wavelengths produced by the sun with minimal losses.  Further studies could include the use of other organic cations to tune the band gap of the                                  perovskite. Additionally, studies could be performed to raise the band gap of the perovskites                            through variable halide combinations to create a cell with several band gaps to capture solar                              energy more efficiently. Finally, the replacement of lead with an ion such as tin would allow for                                  safer, more environmentally friendly devices.                         
  • 11.       Barton 11    Works Cited    Agnihotri, Gaurav. "Is Solar Energy Ready To Compete With Oil And Other Fossil Fuels? |   OilPrice.com." OilPrice.com. OilPrice.com, 30 Apr. 2015. Web. 14 Apr. 2016.  Beal, Rachel E., Daniel J. Slotcavage, Tomas Leijtens, Andrea R. Bowring, Rebecca A. Belisle,  William H. Nguyen, George F. Burkhard, Eric T. Hoke, and Michael D. Mcgehee.  "Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells." J.  Phys. Chem. Lett. The Journal of Physical Chemistry Letters 7.5 (2016): 746­51. Web.  Chen, Qi, Nicholas De Marco, Yang (Michael) Yang, Tze­Bin Song, Chun­Chao Chen,   Hongxiang Zhao, Ziruo Hong, Huanping Zhou, and Yang Yang. "Under the Spotlight:  The Organic–inorganic Hybrid Halide Perovskite for Optoelectronic Applications." ​Nano  Today 10.3 (2015): 355­96. Web.  Grinberg, Ilya, et al. "Perovskite Oxides For Visible­Light­Absorbing Ferroelectric And   Photovoltaic Materials." ​Nature 503.7477 (2013): 509. ​Advanced Placement Source.  Web. 12 Oct. 2015.  Jeon, Nam Joong, et al. "Solvent Engineering For High­Performance Inorganic­Organic Hybrid   Perovskite Solar Cells." ​Nature Materials 13.9 (2014): 897. ​Science Reference Center.  Web. 12 Oct. 2015.  Liu, Mingzhen, Michael B. Johnston, and Henry J. Snaith. "Efficient Planar Heterojunction  Perovskite Solar Cells By Vapour Deposition."Nature 501.7467 (2013): 395. Advanced  Placement Source. Web. 12 Oct. 2015.   
  • 12.       Barton 12  Reflection  I chose to do this project because I was interested in both physics and chemistry, and this  projected incorporated the two. Additionally, the project has great humanitarian value and is still  in a cutting edge phase which is exciting to be a part of. I achieved my goals and learned some  interesting science along the way. My prediction was close to the actual results but there was  somewhat of a surprise for which cell worked the best. This experiment has taught me that  scientific studies consist of much more preparation and paperwork than anticipated. I would have  liked to learn more about Fermi energy and how electrons flow within materials. It took a very  long time to get a cell working, but patience was key to success. If I had to redo the project, I  would try more precursor combinations and also investigate the high internal resistance of the  cells. I would advise other students to pick a project that is challenging, but also manageable and  one where practical data could be collected. I would study other chemical projects such as  battery technology. I think this project was important because it taught me several practical lab  skills in addition to teaching me to be disciplined in my preparation, records and overall  independent motivation to complete the project on a timeline.