SlideShare a Scribd company logo
BΦ – Belgian Physical Society Magazine

FEATURED ARTICLE
ORGANIC SOLAR CELLS: THE EXCITING INTERPLAY OF
EXCITONS AND NANO-MORPHOLOGY
K. Vandewal, L. Goris, G. Krishna & J.V. Manca
Universiteit Hasselt, Instituut voor Materiaalonderzoek, Wetenschapspark 1,
B-3590 Diepenbeek
  

jean.manca@uhasselt.be  
  

  

Photovoltaic   energy   conversion   in   nanostructured   organic   donor:acceptor      bulk  
heterojunctions   is   a   very   promising   concept   towards   future   renewable   energy   generation.  
This  article  provides  a  brief  introduction  into  the  field  of  organic  ‘excitonic’  solar  cells.    
  

1.  Organic  electronics  
  
In   1990   researchers   from   the   Cavendish  
Laboratory  in  Cambridge  (UK)  discovered  that  
a  thin  layer  of  the  conjugated  polymer  Poly(p-­‐‑
phenylene   vinylene)   sandwiched   between   a  
hole-­‐‑injecting   electrode   (transparent   ITO)   and  
an  electron-­‐‑injecting  electrode  (e.g.  aluminium)  
yielded  light  emission  under  voltage  bias1.  The  
injected  electrons  and  holes  meet  in  the  bulk  of  
the  polymer  film  and  emit  light  as  the  result  of  
radiative   charge   carrier   recombination.   The  
discovery   of   electroluminescence   in   polymer  
films   was   rapidly   followed   by   a   wave   of  
breakthroughs   in   the   development   of      light  
emitting   diodes,   thin   film   transistors,   (bio-­‐‑)  
sensors   and   solar   cells   based   on   organic  
materials,   e.g.   conjugated   polymers   or   small  
organic  molecules.    
Conjugated   polymers   possess   a   delocalized   π-­‐‑
electron   system   along   the   polymer   backbone.  
In   general   they   are   constructed   from   aromatic  
units   and/or   multiple   bonds   alternating   with  
single   bonds.      The   overlap   of   adjacent   atomic  
pz-­‐‑orbitals   yields   lower   energy   bonding   (π)  
and  higher  energy  anti-­‐‑bonding  (π*)  molecular  

03/2010

orbitals.   The   difference   in   energy   between   the  
highest   occupied   molecular   orbital   (HOMO)  
and   lowest   unoccupied   molecular   orbital    
(LUMO)   –   as   in   inorganic   semiconductors  
termed  bandgap  (Eg)  –  is  typically  between  1-­‐‑4  
eV.    The  chemical  structures  of  some  the  most  
known   conjugated   polymers   is   shown   in  
Figure  1.    
  

  

Figure 1: Chemical structures of
several common conjugated polymers:
poly(acetylene)
(PA),
poly(aniline)
(PANI), poly(pyrole) (PPy), poly(pphenylene)
(PPP),
poly(pphenylenevinylene)
(PPV)
and
poly(thiophene) (PT).

  
Conjugated   polymers   combine   properties   of  
classical   macromolecules,   such   as   low   weight,  
- 28 -
BΦ – Belgian Physical Society Magazine

FEATURED ARTICLE
good   mechanical   behaviour   and   an   easy  
processing   with   (semi)-­‐‑conductor   properties  
arising  from  their  electronic  structure.    From  a  
technological   point   of   view,   these   polymers  
yield   a   potential   to   develop   a   large-­‐‑scale   and  
low   cost,   roll-­‐‑to-­‐‑roll   production   of   solid   state  
electro-­‐‑optical   devices   on   flexible   substrates  
using  wet-­‐‑solution  processing  techniques  such  
as   spincoating,   screenprinting   or   inktjet  
printing.    
  
The   scientific   community   has   explicitly  
acknowledged   the   importance   of   this   class   of  
materials  by  awarding  the  pioneers  in  this  field  
Alan   Heeger,   Alan   MacDiarmid   and   Hideki  
Shirakawa   with   the   year   2000   Nobel   Prize   for  
chemistry.   In   the   seventies,   they   observed   an  
increase   in   conductivity   by   several   orders   of  
magnitude  for  a  poly(acetylene)  film,  oxidized  
with  iodine  vapour2.  
  

2.  Organic  solar  cells  
  
As   compared   to   inorganic   materials   used   in  
solar   cells   nowadays   (e.g.   silicon),   typical  
organic   small   molecules   and   conjugated  
polymers   have   high   absorption   coefficients.   A  
100   nm   thick   device   of   such   a   material   is  
sufficient   to   absorb   virtually   all   the   light   with  
energy  higher  than  its  optical  gap.  Therefore  it  
is   no   surprise   that   already   in   the   beginning  
days   of   photovoltaic   research,   people   have  
attempted   to   prepare   devices   from   strongly  
absorbing   organic   materials3.   The   power  
efficiency   η   of   single   layer   organic   materials  
sandwiched   between   two   electrodes   however,  
is   disappointing   (η   <   1   %)4.   This   originates  
from   the   low   dielectric   constant   of   organic  
materials,   causing   the   optical   excitations   to  
consist   of   an   electron   and   hole   which   are   still  
mutually  attracting  –  termed  as  excitons-­‐‑,  with  
a   typical   binding   energy   of   0.5   eV5.   This  
binding   energy   is   much   too   large   for   the  
internal   fields   in   the   device   to   break   the  
excitons  within  their  ~1  ns  lifetime.  This  causes  

03/2010

organic   solar   cells   consisting   of   a   single  
organic   material   sandwiched   between   two  
electrodes   to   generate   low   photocurrents  
resulting  in  low  overall  performances.  
  
  

  

Figure   2-­‐‑a   :   Schematic   representation   of   architecture   of   bulk  
heterojunction  solar  cell.    

  
A   breakthrough   came   in   1985   when   Tang6  
presented   a   two   layer   organic   photovoltaic  
device  with  a  power  conversion  efficiency  η  of  
~1%.   In   such   bilayer   devices,   the   interface  
between   the   two   organic   layers   is   crucial   in  
determining   its   photovoltaic   properties.  
Excitons   created   in   either   of   the   two   material  
phases   are   dissociated   at   the   interface.   The  
material   in   which   the   electron   ends   up   after  
dissociation   is   named   the   electron   acceptor,  
accepting  the  electron  from  the  donor  material.  
Today,  the  bilayer  cell  concept  is  still  used  for  
devices   using   evaporated   organic   small  
molecules7.  
One   of   the   most   successful   and   most   studied  
electron   accepting   material   is   the   C60  
buckminsterfullerene.   The   discovery   of  
ultrafast   (~100   fs)   electron   transfer   between  
C60   and   conjugated   polymers8   stimulated  
interest   in   these   systems   for   photovoltaic  
applications.   In   bilayer   devices   comprising  
conjugated   polymers   and   C60,   however,   only  
excitons   created   within   their   diffusion   length  
from   the   interface,   can   contribute   to   the  
photovoltaic  effect.  For  conjugated  polymers,  a  
- 29 -
BΦ – Belgian Physical Society Magazine

FEATURED ARTICLE
typical   exciton   diffusion   length   of   ~5-­‐‑7   nm   is  
not   sufficient   to   absorb   a   large   fraction   of   the  
light,  in  such  a  bilayer  configuration9.  
  

of   research   on   organic   photovoltaics   therefore  
is   to   improve   device   efficiency   together   with  
device   stability,   while   keeping   the   cost   of   the  
technology  low.  

Figure 2-b : Transmission Electron Miscroscopy (TEM) micrograph of bulk morphology of MDMOPPV:PCBM (1:4 weight fraction) solar cell prepared from respectively toluene (left) and chlorobenzene
(right) solvents, yielding a clear difference in both morphology and in photovoltaic performance.

Today,   the   highest   efficiencies   reached   using  
this   approach   are   about   6   %   by   using   the  
polymer   PCDTBT   as   donor   material12.   The  
most   successful   soluble   acceptor   materials   up  
to  date  are  the  C60  derivative  PCBM  (depicted  
in   Figure   2)   and   the   C70   derivative   PC71BM.  
PCBM   is   a   weak   absorber   while   PC71BM  
contributes   to   sunlight   absorption   when   used  
in   polymer:fullerene   solar   cells.   Alternative  
electron   accepting   materials,   such   as   n-­‐‑type  
conjugated   polymers   and   inorganic   metal  
oxides   are   currently   under   investigation.   With  
inorganic   metal   oxides   so-­‐‑called   hybrid   Dye  
Sensitized   Solar   Cells   (DSSC)   are   being  
developed  (will  be  discussed  in  paragraph  4).  
  
Table   1-­‐‑1   summarizes   the   confirmed   power  
conversion   efficiencies   of   several   photovoltaic  
technologies13.   It   reveals   that,   as   compared   to  
the   other   technologies,   the   organic   solar   cells  
still  have  a  modest  efficiency.  One  of  the  goals  

03/2010

Photovoltaic technology

η (%)

Silicon (Si)
Mono-crystalline
Silicon (Si)
Multi-crystalline
Silicon (Si)
Amorphous
Gallium arsenide (GaAs)

25.0

Copper indium gallium
diselenide (CIGS)
Dye sensitized

19.4

Organic

20.4
9.5
26.1

10.4
5.2

Table  1-­‐‑1:  Confirmed  submodule  power  conversion  efficiencies  
(η)   measured   on   a   1   cm2   cell   surface,   under   the   standardized  
global   AM1.5   spectrum   (1000   W.m-­‐‑2)   at   25   °C   for   several  
photovoltaic  technologies13.  The  highest  efficiency  measured  
for  organic  solar  cells  is  5.2  %.  However  for  cells  smaller  than  
1  cm2,  efficiencies  higher  than  6  %  have  been  reported.12  

  
- 30 -
BΦ – Belgian Physical Society Magazine

FEATURED ARTICLE
3.  Working  principle  

  
In   the   past   years,   many   reviews   on   organic  
solar   cells   have   been   written   (see   ref.   14).      In  
most   of   them,   the   following   scheme   (Figure   3  
(a))   is   presented,   depicting   the   simplified  
mechanism   by   which   the   incident   photon   flux  
is   converted   into   an   electrical   current   in  
organic   donor/acceptor   based   devices.   It   has   4  
fundamental   steps.   While   the   efficiency   of   the  
exciton   creation   (step   1)   and   diffusion   (step   2)  
depend  strongly  on  sample  thickness  and  bulk  
heterojunction   morphology,   the   crucial   charge  
generation   mechanism   (step   3),   is   believed   to  
depend   on   the   energetic   interfacial   structure  
and   can   be   highly   efficient   in   some   well  
performing   BHJ   solar   cells.   However,   up   to  
now,   this   step   is   not   fully   understood   and  
under   vivid   discussion.   Once   the   electron   on  
the   acceptor   material   and   the   hole   on   the  
donor   material   have   escaped   each   other’s  

evidences  indicate  that  an  intermediate  charge-­‐‑
transfer   (CT)   state   exists   between   the   excitons  
created   upon   light   absorption   in   the   polymer  
and  the  long-­‐‑lived,  free  charge  carriers.  Highly  
sensitive   studies   of   the   absorption   spectra   of  
polymer:fullerene   blends   by   our   research  
group   in   Universiteit   Hasselt,   have   revealed  
the   presence   of   a   long   wavelength   absorption  
band  characteristic  for  a  weak  ground  state  CT  
complex   (CTC),   formed   by   the   interaction   of  
the  lowest  unoccupied  molecular  orbital  of  the  
fullerene   acceptor   LUMO(A)   with   the   highest  
occupied   molecular   orbital   of   the   polymer  
donor   HOMO(D)15–18.   Illumination   with  
wavelengths   in   this   CT   band   results   in   the  
direct   creation   of   bound   electron-­‐‑hole   pairs   or  
CT   excitons.   The   highly   sensitive   techniques  
used   by   our   group   to   study   these   low   signal  
sub-­‐‑band   gap   features   are   Photothermal  
Deflection   Spectroscopy   (PDS)15,16   and   Fourier  
Transform  
Photocurrent  
Spectroscopy  

Figure   3:   (a)   General   mechanism   for   photo-­‐‑energy   conversion   in   donor/acceptor   organic   solar   cells.   The   four   steps   are:   (1)  
Absorption  of  light,  creating  an  exciton  in  the  donor  (acceptor)  phase.  (2)  Diffusion  of  excitons  to  the  donor/acceptor  interface.  (3)  
Dissociation  of  excitons  yielding  charge  carriers.  (4)  Charge  transport  and  collection  at  the  electrodes.  (b)  A  scheme  of  the  energy  of  
relevant  pairs  of  electrons  and  holes:  the  donor  excitonic  state  (D*)  and  the  charge  transfer  state  (CT).  The  energy  of  a  free  electron  
on  the  acceptor  phase  and  a  free  hole  on  the  donor  phase  is  equal  to  the  difference  between  their  respective  molecular  orbital  energy  
levels.  

Coulomb  binding  energy,  they  are  transported  
to  the  collecting  electrodes  (step  4).  
  

Charge-­‐‑transfer  states  
  

As   far   as   the   exciton   dissociation   process   is  
concerned,   recent   theories   and   experimental  

03/2010

(FTPS)17,18.  It  has  been  demonstrated  that  FTPS  
allows   measuring   the   spectral   dependence   of  
the   absorption   coefficient   of   organic   thin   film  
material   systems   and   also   of   the   external  
quantum   efficiency   (EQE)   of   photovoltaic  
devices  with  high  resolution  (<  1  nm)  in  just  a  
matter   of   seconds.   FTPS   has   the   required  
- 31 -
BΦ – Belgian Physical Society Magazine

FEATURED ARTICLE
sensitivity  to  measure  the  low  signal  sub-­‐‑band  
gap   photocurrent   produced   by   the   direct  
creation   of   CT   excitons   upon   long   wavelength  
illumination  of  the  CTC’s.    
Radiative   decay   of   CT   excitons   is   sometimes  
observed  in  photoluminescence  measurements  
of   polymer:fullerene   blends16,19,20   and   can   be  
more   easily   detected   in   electroluminescence  
spectra   obtained   by   applying   a   forward  
voltage   over   polymer:fullerene   photovoltaic  
devices21.    
CT   excitons   play   a   major   role   in   the   operation  
of   polymer:fullerene   photovoltaic   devices.  
These  weakly  bound  electron-­‐‑hole  pairs  at  the  
polymer:fullerene   interface   are   mainly  
populated  via  a  photoinduced  electron  transfer  
after  excitation  of  polymer  or  fullerene.  Due  to  
the  low  oscillator  strength  of  polymer:fullerene  
CTCs  only  a  very  small  fraction  of  CT  excitons  
is   populated   by   direct   optical   excitation   of   the  
CTCs.   The   major   contribution   to   the  
photocurrent   originates   from   polymer   or  
fullerene  excitation.  However,  the  efficiency  of  
CT   exciton   formation   and   their   dissociation  
into   free   carriers   determines   the   photocurrent.  
Both   formation   and   dissociation   efficiencies  
depend   on   the   blend   morphology   and  
donor:acceptor  energetics.    
  

and   recombination   processes   in   the   active  
layer.   These   recombination   processes   can  
proceed  through  the  formation  of  a  CT  exciton  
with   subsequent   emission   of   low   energy  
photons,  
visible  
in  
sensitive  
electroluminescence   experiments.   In   order   to  
quantitatively   investigate   the   role   of   CTC  
formation  
on  
the  
photovoltage  
polymer:fullerene   photovoltaic   devices,   a  
reciprocity   relation   between   Voc   and   the  
photovoltaic  and  electroluminescent  actions  of  
a   generalized   solar   cell   is   used21-­‐‑23.   As  
predicted   by   the   reciprocity   relations,   a   linear  
correlation   between   Voc   and   the   spectral  
position  of  the  CT  band  is  observed  for  a  range  
of   polymer:fullerene   blends,   comprising  
different   donor   polymers.   The   energy   of   the  
CT   state   (ECT)   is   known   to   correlate   with   the  
difference   between   the   HOMO   energy   of   the  
polymer   donor   and   the   LUMO   energy   of   the  
fullerene   acceptor.   This   explains   the   widely  
observed,   but   partly   unexplained,   empirical  
linear   correlation   between   Voc   and   this  
energetic  difference24.  
  

4.    Challenges  
  

The  general  challenges  for  organic  based  solar  
cells   are   the   increase   of   both   performance   and  
lifetime.      From   a   technological   point   of   view,    
an   important   challenge   is   to   develop   cost  
efficient   large   area   production   techniques  
using  environmentally  friendly  solvents.  
  

  

Figure   4   –   Micrograph   of   ZnO   nanorods   as   highways   for  
electrons  in  hybrid  polymer:  ZnO  solar  cells.  

  
Open  Circuit  Voltage    
  

Also   the   open-­‐‑circuit   voltage   Voc   of   the  
photovoltaic  cells  is  determined  by  the  spectral  
properties  of  the  CT  excitons,  again  being    
morphology   dependent.   Voc   is   determined   by  
the   balance   between   free   carrier   generation  

03/2010

Towards  ‘green’  organic  based  solar  cells  

  
Dye   sensitized   solar   cells   (DSSCs)   are  
considered  as  a  promising  low-­‐‑cost  alternative  
to   conventional   inorganic   semiconductor  
photovoltaic  
devices.  
DSSCs,  
using  
nanoporous   TiO2   electrodes,   ruthenium-­‐‑based  
complexes   dyes   and   liquid   electrolytes,   reach  
power   conversions   up   to   10%   under   AM   1.5  
(100  mW/cm2)  solar  illumination.  The  presence  
of   the   liquid   electrolytes   requires   special  
- 32 -
BΦ – Belgian Physical Society Magazine

FEATURED ARTICLE
attention   regarding   sealing,   stability   and  
multi-­‐‑cell   module   manufacturing.   As   an  
alternative  to  the  liquid  electrolyte,  conjugated  
polymers   and   in   particular   PTs   attract   much  
interest   because   of   their   –   higher   mentioned   -­‐‑  
good   processability,   low   cost   and   high   hole  
mobilities.   Other   advantages   of   PTs   are   the  
low   bandgap   and   high   absorption   coefficient,  
which   make   them   good   photosensitizers.  
Through   the   use   of   PTs,   light   absorption   and  
hole   transport   are   combined   in   one   single  
material.    
From   an   environmental   point   of   view,   an  
important   drawback   when   upscaling   the  
production   process   of   PT-­‐‑based   (e.g.   P3HT)  
solar  cells  is  the  need  for  toxic  organic  solvents  
such   as   chlorobenzene   or   chloroform.  
Therefore,  a  water-­‐‑soluble  PT  (P3SHT)  is  used  
to   allow   a   safe   and   environmentally   friendly  
processing.  By  using  an  aqueous  route  for  both  
the   dense   titania   hole-­‐‑blocking   layer   and   the  
nanoporous   TiO2   network   it   is   possible   to  
develop   fully   ‘green’   solid-­‐‑state   solar   cells   in  
which   photosensitizer,   electron   and   hole  
conductor   are   achieved   from   a   water-­‐‑based  
preparation  method.    
Recent  activities  include  the  controlled  growth  
of  nanocolumnar  ZnO25  -­‐‑  as  highways  for  
electrons  -­‐‑  which  is  studied  in  combination  
with  organic  semiconductors  for  photovoltaic  
applications.  

  
Interdisciplinarity  
  
The   field   of   organic   solar   cells   is   a   truly  
interdisciplinary   field   of   research   involving  
chemists,  physicists  and  engineers  working  on  
materials  
synthesis,  
device  
physics,  
characterization,   modeling,   device   technology  
and  reliability.    A  further  strengthening  of  this  
interdisciplinary  approach  is  the  only  road  for  
organic   based   or   nanostructured   solar   cells   to  
contribute   towards   an   intelligent   and  
sustainable  future.  

03/2010

  

Figure  5:  Interdisciplinary  approach  towards  novel  generation  
organic  based  solar  cells.  
  

References  
[1] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N.
Marks, K. Mackay, R.H. Friend, P.L. Burns and
[2] A.B. Holmes Nature 347 (1990) 539
[3] 2.
a) H. Shirakawa, E.J. Louis, A.G.
MacDiarmid, C.K. Chiang, A.J. Heeger, J.
Chem. Soc., Chem. Commun. (1977) 579. b)
C.K. Chiang, C.R. Fincher, Y.W. Park, A.J.
Heeger, H. Shirakawa, E.J. Louis, S.C. Gau,
A.G. MacDiarmid, Phys. Rev. Lett. (1977) 39,
1098.
[4] D. R. Kearns, M. Calvin, J. Chem. Phys. 29, 950
(1958)
[5] G. A. Chamberlain, Sol. Cells 8, 47 (1983)
[6] L. Sebastian, G. Weiser, Phys. Rev. Lett. 46, 1156
(1981)
[7] C. W. Tang, Appl. Phys. Lett. 48, 183 (1986)
[8] B. Rand, J. Genoe, P. Heremans, J. Poortmans,
Prog. Photovolt: Res. Appl. 15, 659 (2007)
[9] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl,
Science 258, 1474 (1992)
[10] J.J.M. Halls, K. Pichler, R. H. Friend, S. C. Moratti,
A. B. Holmes, Appl. Phys. Lett. 68, 3120 (1996)
[11] H. Hoppe, N. S. Sariciftci, J. Mater. Res. 19, 1924
(2004)
[12] T. Martens, J. D’Haen, T. Munters, Z. Beelen, L.
Goris, J. Manca, M. D’Olieslaeger, D. Vanderzande,
L. De Schepper, R. Andriessen, Synt. Met. 138, 243
(2003)
[13] S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.
S. Moon, D. Moses, M. Leclerc, K. Lee, A. J.
Heeger, Nature Phot. 3, 297 (2009)
[14] M. A. Green, K. Emery, Y. Hishikawa, W. Warta,
Prog. Photovolt: Res. Appl. 17, 320 (2009)
- 33 -
BΦ – Belgian Physical Society Magazine

FEATURED ARTICLE
[15] B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int.
Ed. 47, 58 (2008)
[16] L. Goris, K. Haenen,M. Nesladek, P.Wagner, D.
Vanderzande, L. De Schepper, J. D’Haen, L. Lutsen,
J. V. Manca, J. Mater. Sci. 2005, 40, 1413.
[17] J. J. Benson-Smith, L. Goris, K. Vandewal, K.
Haenen, J. V. Manca, D. Vanderzande, D. D. C.
Bradley, J. Nelson, Adv. Funct. Mater. 2007, 17,
451.
[18] L. Goris, A. Poruba, L. Hod’akova, M. Vanecek, K.
Haenen, M. Nesladek, P. Wagner, D. Vanderzande,
L. De Schepper, J. V. Manca, Appl. Phys. Lett.
2006, 88, 052113.
[19] K. Vandewal, L. Goris, I. Haeldermans, M.
Nesladek, K. Haenen, P. Wagner, J.V. Manca, Thin
Solid Films 2008, 516, 7135.
[20] M. A. Loi, S. Toffanin, M. Muccini, M. Forster, U.
Scherf, and M. Scharber, Adv. Funct. Mater. 2007,
17, 2111.
[21] D. Veldman, S. C. J. Meskers, and R. A. J. Janssen,
Adv. Funct. Mater. 2009, 19, 1939.
[22] K. Tvingstedt, K. Vandewal, A. Gadisa, F. Zhang, J.
V. Manca, and O. Inganas, J. Am. Chem. Soc. 2009,
131, 11819.
[23] K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas,
and J. V. Manca, Nature Mater. 2009, 8, 904.
[24] U. Rau, Phys. Rev. B 2007, 76, 085303.
[25] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk,
C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv.
Mater. 2006, 18, 789.
[26] PhD-work of Linny Baeten (2010), Universiteit
Hasselt (to be submitted)
  

  
  
  
  
  

  

03/2010

- 34 -

More Related Content

What's hot

Iaetsd dye sensitized solar cell
Iaetsd dye sensitized solar cellIaetsd dye sensitized solar cell
Iaetsd dye sensitized solar cell
Iaetsd Iaetsd
 
Models for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy resultsModels for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy results
bisquertGroup
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
Dileep V Raj
 
B.Tech Project
B.Tech ProjectB.Tech Project
B.Tech Project
Dharmveer kumar
 
Electron Injection Kinetics in Dye-Sensitized Solar Cells
Electron Injection Kinetics in Dye-Sensitized Solar CellsElectron Injection Kinetics in Dye-Sensitized Solar Cells
Electron Injection Kinetics in Dye-Sensitized Solar Cells
Chelsey Crosse
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
Ashish Singh
 
Dssc (Dye sensitized solar cell)
Dssc (Dye sensitized solar cell)Dssc (Dye sensitized solar cell)
Dssc (Dye sensitized solar cell)
Preeti Choudhary
 
The Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-ElectronicsThe Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-Electronics
cdtpv
 
Chemistry and physics of dssc ppt
Chemistry and physics of dssc pptChemistry and physics of dssc ppt
Chemistry and physics of dssc ppt
N.MANI KANDAN
 
Photosyntheis in a test tube-Dye sensitized solar cells (USPseminar)
Photosyntheis in a test tube-Dye sensitized solar cells (USPseminar)Photosyntheis in a test tube-Dye sensitized solar cells (USPseminar)
Photosyntheis in a test tube-Dye sensitized solar cells (USPseminar)
Atul Raturi
 
The Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar CellsThe Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar Cells
swissnex San Francisco
 
Introduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water SplittingIntroduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water Splitting
Anamika Banerjee
 
Seminar
SeminarSeminar
Seminar
BIKRAMROUT5
 
Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)
shashank chetty
 
DYE SENSITIZED SOLAR CELLS
DYE SENSITIZED SOLAR CELLSDYE SENSITIZED SOLAR CELLS
DYE SENSITIZED SOLAR CELLS
Thiru Ram
 
Hybrid inorganic/organic semiconductor structures for opto-electronics.
Hybrid inorganic/organic semiconductor structures for opto-electronics.Hybrid inorganic/organic semiconductor structures for opto-electronics.
Hybrid inorganic/organic semiconductor structures for opto-electronics.
Sociedade Brasileira de Pesquisa em Materiais
 
DSSC, Designed Traffic lights using henna & mint & hibiscus dyes, IDM8
DSSC, Designed  Traffic lights using henna & mint & hibiscus dyes, IDM8DSSC, Designed  Traffic lights using henna & mint & hibiscus dyes, IDM8
DSSC, Designed Traffic lights using henna & mint & hibiscus dyes, IDM8
Qatar University- Young Scientists Center (Al-Bairaq)
 
Plastic electronics
Plastic electronicsPlastic electronics
Plastic electronics
AnuragSharma781
 
Nano tubes technology in solar
Nano tubes technology in solarNano tubes technology in solar
Nano tubes technology in solar
sriviswanadh gubba
 
Plastic Electronics
Plastic ElectronicsPlastic Electronics
Plastic Electronics
Shuvan Prashant
 

What's hot (20)

Iaetsd dye sensitized solar cell
Iaetsd dye sensitized solar cellIaetsd dye sensitized solar cell
Iaetsd dye sensitized solar cell
 
Models for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy resultsModels for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy results
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
B.Tech Project
B.Tech ProjectB.Tech Project
B.Tech Project
 
Electron Injection Kinetics in Dye-Sensitized Solar Cells
Electron Injection Kinetics in Dye-Sensitized Solar CellsElectron Injection Kinetics in Dye-Sensitized Solar Cells
Electron Injection Kinetics in Dye-Sensitized Solar Cells
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
Dssc (Dye sensitized solar cell)
Dssc (Dye sensitized solar cell)Dssc (Dye sensitized solar cell)
Dssc (Dye sensitized solar cell)
 
The Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-ElectronicsThe Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-Electronics
 
Chemistry and physics of dssc ppt
Chemistry and physics of dssc pptChemistry and physics of dssc ppt
Chemistry and physics of dssc ppt
 
Photosyntheis in a test tube-Dye sensitized solar cells (USPseminar)
Photosyntheis in a test tube-Dye sensitized solar cells (USPseminar)Photosyntheis in a test tube-Dye sensitized solar cells (USPseminar)
Photosyntheis in a test tube-Dye sensitized solar cells (USPseminar)
 
The Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar CellsThe Science Behind Dye-Sensitized Solar Cells
The Science Behind Dye-Sensitized Solar Cells
 
Introduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water SplittingIntroduction to Photoelectrochemical (PEC) Water Splitting
Introduction to Photoelectrochemical (PEC) Water Splitting
 
Seminar
SeminarSeminar
Seminar
 
Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)
 
DYE SENSITIZED SOLAR CELLS
DYE SENSITIZED SOLAR CELLSDYE SENSITIZED SOLAR CELLS
DYE SENSITIZED SOLAR CELLS
 
Hybrid inorganic/organic semiconductor structures for opto-electronics.
Hybrid inorganic/organic semiconductor structures for opto-electronics.Hybrid inorganic/organic semiconductor structures for opto-electronics.
Hybrid inorganic/organic semiconductor structures for opto-electronics.
 
DSSC, Designed Traffic lights using henna & mint & hibiscus dyes, IDM8
DSSC, Designed  Traffic lights using henna & mint & hibiscus dyes, IDM8DSSC, Designed  Traffic lights using henna & mint & hibiscus dyes, IDM8
DSSC, Designed Traffic lights using henna & mint & hibiscus dyes, IDM8
 
Plastic electronics
Plastic electronicsPlastic electronics
Plastic electronics
 
Nano tubes technology in solar
Nano tubes technology in solarNano tubes technology in solar
Nano tubes technology in solar
 
Plastic Electronics
Plastic ElectronicsPlastic Electronics
Plastic Electronics
 

Viewers also liked

Shkolla Shqiptare e Vallëzimit `SHOTA` në Zvicër
Shkolla Shqiptare e Vallëzimit `SHOTA` në ZvicërShkolla Shqiptare e Vallëzimit `SHOTA` në Zvicër
Shkolla Shqiptare e Vallëzimit `SHOTA` në Zvicër
Marjan Dodaj
 
INFORMACIONET ME TE FUNDIT RRETH KANCERIT NGA Dr JOHN HOPKINS
INFORMACIONET ME TE FUNDIT RRETH KANCERIT NGA Dr JOHN HOPKINSINFORMACIONET ME TE FUNDIT RRETH KANCERIT NGA Dr JOHN HOPKINS
INFORMACIONET ME TE FUNDIT RRETH KANCERIT NGA Dr JOHN HOPKINS
Marjan Dodaj
 
Aquilo final presentation
Aquilo final presentationAquilo final presentation
Aquilo final presentation
Gabriele Petronella
 
Nga Fritz Radovani SHQIPNI, QENDRO
Nga Fritz Radovani  SHQIPNI, QENDRONga Fritz Radovani  SHQIPNI, QENDRO
Nga Fritz Radovani SHQIPNI, QENDRO
Marjan Dodaj
 
Saint Rrok Church - Kisha e Shen Rrokut
Saint Rrok Church - Kisha e Shen RrokutSaint Rrok Church - Kisha e Shen Rrokut
Saint Rrok Church - Kisha e Shen Rrokut
Marjan Dodaj
 
Akademik Mark Krasniqi -Nderi i Kombit do te mbetet shembull frymezimi (shkri...
Akademik Mark Krasniqi -Nderi i Kombit do te mbetet shembull frymezimi (shkri...Akademik Mark Krasniqi -Nderi i Kombit do te mbetet shembull frymezimi (shkri...
Akademik Mark Krasniqi -Nderi i Kombit do te mbetet shembull frymezimi (shkri...
Marjan Dodaj
 
Reka e epërme - Fshatrat e Rekës së Epërme
Reka e epërme - Fshatrat e Rekës së EpërmeReka e epërme - Fshatrat e Rekës së Epërme
Reka e epërme - Fshatrat e Rekës së Epërme
Marjan Dodaj
 

Viewers also liked (7)

Shkolla Shqiptare e Vallëzimit `SHOTA` në Zvicër
Shkolla Shqiptare e Vallëzimit `SHOTA` në ZvicërShkolla Shqiptare e Vallëzimit `SHOTA` në Zvicër
Shkolla Shqiptare e Vallëzimit `SHOTA` në Zvicër
 
INFORMACIONET ME TE FUNDIT RRETH KANCERIT NGA Dr JOHN HOPKINS
INFORMACIONET ME TE FUNDIT RRETH KANCERIT NGA Dr JOHN HOPKINSINFORMACIONET ME TE FUNDIT RRETH KANCERIT NGA Dr JOHN HOPKINS
INFORMACIONET ME TE FUNDIT RRETH KANCERIT NGA Dr JOHN HOPKINS
 
Aquilo final presentation
Aquilo final presentationAquilo final presentation
Aquilo final presentation
 
Nga Fritz Radovani SHQIPNI, QENDRO
Nga Fritz Radovani  SHQIPNI, QENDRONga Fritz Radovani  SHQIPNI, QENDRO
Nga Fritz Radovani SHQIPNI, QENDRO
 
Saint Rrok Church - Kisha e Shen Rrokut
Saint Rrok Church - Kisha e Shen RrokutSaint Rrok Church - Kisha e Shen Rrokut
Saint Rrok Church - Kisha e Shen Rrokut
 
Akademik Mark Krasniqi -Nderi i Kombit do te mbetet shembull frymezimi (shkri...
Akademik Mark Krasniqi -Nderi i Kombit do te mbetet shembull frymezimi (shkri...Akademik Mark Krasniqi -Nderi i Kombit do te mbetet shembull frymezimi (shkri...
Akademik Mark Krasniqi -Nderi i Kombit do te mbetet shembull frymezimi (shkri...
 
Reka e epërme - Fshatrat e Rekës së Epërme
Reka e epërme - Fshatrat e Rekës së EpërmeReka e epërme - Fshatrat e Rekës së Epërme
Reka e epërme - Fshatrat e Rekës së Epërme
 

Similar to Organic solar cells the exciting interplay of excitons and nano-morphology

solar technology
solar technologysolar technology
solar technology
Khalandarmangalore
 
Self assembly in photovoltaic devices
Self assembly in photovoltaic devicesSelf assembly in photovoltaic devices
Self assembly in photovoltaic devices
Zaahir Salam
 
Exploiting the potential of 2-((5-(4-(diphenylamino)- phenyl)thiophen-2-yl)me...
Exploiting the potential of 2-((5-(4-(diphenylamino)- phenyl)thiophen-2-yl)me...Exploiting the potential of 2-((5-(4-(diphenylamino)- phenyl)thiophen-2-yl)me...
Exploiting the potential of 2-((5-(4-(diphenylamino)- phenyl)thiophen-2-yl)me...
Akinola Oyedele
 
Electrical and environmental parameters of the performance of polymer solar c...
Electrical and environmental parameters of the performance of polymer solar c...Electrical and environmental parameters of the performance of polymer solar c...
Electrical and environmental parameters of the performance of polymer solar c...
International Journal of Power Electronics and Drive Systems
 
An1 derivat.ro chimie_organic solar cells
An1 derivat.ro chimie_organic solar cellsAn1 derivat.ro chimie_organic solar cells
An1 derivat.ro chimie_organic solar cells
Robin Cruise Jr.
 
An1 derivat.ro chimie_organic solar cells
An1 derivat.ro chimie_organic solar cellsAn1 derivat.ro chimie_organic solar cells
An1 derivat.ro chimie_organic solar cells
Robin Cruise Jr.
 
Organic solar cells principles, mechanism and recent dvelopments
Organic solar cells principles, mechanism and recent dvelopmentsOrganic solar cells principles, mechanism and recent dvelopments
Organic solar cells principles, mechanism and recent dvelopments
eSAT Publishing House
 
Siemens Research Report
Siemens Research ReportSiemens Research Report
Siemens Research Report
Marc Bouchet
 
MultiJunctionSolarCells (1)
MultiJunctionSolarCells (1)MultiJunctionSolarCells (1)
MultiJunctionSolarCells (1)
Nitin Maurya
 
huen2016.pdf
huen2016.pdfhuen2016.pdf
huen2016.pdf
EswaranM11
 
cnt ppt
cnt pptcnt ppt
cnt ppt
Daksh Joshi
 
Organic electronic
Organic electronicOrganic electronic
Organic electronic
Azurah Razak
 
Design and Simulation of Dye Sensitized Solar Cell as a Cost-Effective Alt...
Design and Simulation of  Dye  Sensitized Solar Cell as a Cost-Effective  Alt...Design and Simulation of  Dye  Sensitized Solar Cell as a Cost-Effective  Alt...
Design and Simulation of Dye Sensitized Solar Cell as a Cost-Effective Alt...
Scientific Review SR
 
Basics of SPECT, PET and PET/CT imaging
Basics of SPECT, PET and PET/CT imagingBasics of SPECT, PET and PET/CT imaging
Basics of SPECT, PET and PET/CT imaging
@Saudi_nmc
 
Organic Electronic Materials
Organic Electronic MaterialsOrganic Electronic Materials
Organic Electronic Materials
guest8e7624
 
Dye Sysentized Solar Cell (Dyssc)
Dye Sysentized Solar Cell (Dyssc)Dye Sysentized Solar Cell (Dyssc)
Dye Sysentized Solar Cell (Dyssc)
IJERA Editor
 
Cathode composition greatly
Cathode composition greatlyCathode composition greatly
Cathode composition greatly
Sujata Singh
 
Seminar ppt
Seminar pptSeminar ppt
Seminar ppt
saikumar pudi
 
Recent Advances in Photovoltaic Technology based on Perovskite Solar Cell- A ...
Recent Advances in Photovoltaic Technology based on Perovskite Solar Cell- A ...Recent Advances in Photovoltaic Technology based on Perovskite Solar Cell- A ...
Recent Advances in Photovoltaic Technology based on Perovskite Solar Cell- A ...
IRJET Journal
 
Paloma Poster 2015
Paloma Poster 2015Paloma Poster 2015
Paloma Poster 2015
Malek El-Aooiti
 

Similar to Organic solar cells the exciting interplay of excitons and nano-morphology (20)

solar technology
solar technologysolar technology
solar technology
 
Self assembly in photovoltaic devices
Self assembly in photovoltaic devicesSelf assembly in photovoltaic devices
Self assembly in photovoltaic devices
 
Exploiting the potential of 2-((5-(4-(diphenylamino)- phenyl)thiophen-2-yl)me...
Exploiting the potential of 2-((5-(4-(diphenylamino)- phenyl)thiophen-2-yl)me...Exploiting the potential of 2-((5-(4-(diphenylamino)- phenyl)thiophen-2-yl)me...
Exploiting the potential of 2-((5-(4-(diphenylamino)- phenyl)thiophen-2-yl)me...
 
Electrical and environmental parameters of the performance of polymer solar c...
Electrical and environmental parameters of the performance of polymer solar c...Electrical and environmental parameters of the performance of polymer solar c...
Electrical and environmental parameters of the performance of polymer solar c...
 
An1 derivat.ro chimie_organic solar cells
An1 derivat.ro chimie_organic solar cellsAn1 derivat.ro chimie_organic solar cells
An1 derivat.ro chimie_organic solar cells
 
An1 derivat.ro chimie_organic solar cells
An1 derivat.ro chimie_organic solar cellsAn1 derivat.ro chimie_organic solar cells
An1 derivat.ro chimie_organic solar cells
 
Organic solar cells principles, mechanism and recent dvelopments
Organic solar cells principles, mechanism and recent dvelopmentsOrganic solar cells principles, mechanism and recent dvelopments
Organic solar cells principles, mechanism and recent dvelopments
 
Siemens Research Report
Siemens Research ReportSiemens Research Report
Siemens Research Report
 
MultiJunctionSolarCells (1)
MultiJunctionSolarCells (1)MultiJunctionSolarCells (1)
MultiJunctionSolarCells (1)
 
huen2016.pdf
huen2016.pdfhuen2016.pdf
huen2016.pdf
 
cnt ppt
cnt pptcnt ppt
cnt ppt
 
Organic electronic
Organic electronicOrganic electronic
Organic electronic
 
Design and Simulation of Dye Sensitized Solar Cell as a Cost-Effective Alt...
Design and Simulation of  Dye  Sensitized Solar Cell as a Cost-Effective  Alt...Design and Simulation of  Dye  Sensitized Solar Cell as a Cost-Effective  Alt...
Design and Simulation of Dye Sensitized Solar Cell as a Cost-Effective Alt...
 
Basics of SPECT, PET and PET/CT imaging
Basics of SPECT, PET and PET/CT imagingBasics of SPECT, PET and PET/CT imaging
Basics of SPECT, PET and PET/CT imaging
 
Organic Electronic Materials
Organic Electronic MaterialsOrganic Electronic Materials
Organic Electronic Materials
 
Dye Sysentized Solar Cell (Dyssc)
Dye Sysentized Solar Cell (Dyssc)Dye Sysentized Solar Cell (Dyssc)
Dye Sysentized Solar Cell (Dyssc)
 
Cathode composition greatly
Cathode composition greatlyCathode composition greatly
Cathode composition greatly
 
Seminar ppt
Seminar pptSeminar ppt
Seminar ppt
 
Recent Advances in Photovoltaic Technology based on Perovskite Solar Cell- A ...
Recent Advances in Photovoltaic Technology based on Perovskite Solar Cell- A ...Recent Advances in Photovoltaic Technology based on Perovskite Solar Cell- A ...
Recent Advances in Photovoltaic Technology based on Perovskite Solar Cell- A ...
 
Paloma Poster 2015
Paloma Poster 2015Paloma Poster 2015
Paloma Poster 2015
 

Recently uploaded

Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
Matthew Sinclair
 
Data structures and Algorithms in Python.pdf
Data structures and Algorithms in Python.pdfData structures and Algorithms in Python.pdf
Data structures and Algorithms in Python.pdf
TIPNGVN2
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
Kari Kakkonen
 
20 Comprehensive Checklist of Designing and Developing a Website
20 Comprehensive Checklist of Designing and Developing a Website20 Comprehensive Checklist of Designing and Developing a Website
20 Comprehensive Checklist of Designing and Developing a Website
Pixlogix Infotech
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
Rohit Gautam
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
Adtran
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
Neo4j
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
Octavian Nadolu
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
Matthew Sinclair
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
Zilliz
 
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AIEnchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Vladimir Iglovikov, Ph.D.
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Paige Cruz
 
How to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For FlutterHow to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For Flutter
Daiki Mogmet Ito
 
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
SOFTTECHHUB
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems S.M.S.A.
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
Neo4j
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 

Recently uploaded (20)

Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
 
Data structures and Algorithms in Python.pdf
Data structures and Algorithms in Python.pdfData structures and Algorithms in Python.pdf
Data structures and Algorithms in Python.pdf
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
 
20 Comprehensive Checklist of Designing and Developing a Website
20 Comprehensive Checklist of Designing and Developing a Website20 Comprehensive Checklist of Designing and Developing a Website
20 Comprehensive Checklist of Designing and Developing a Website
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
 
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AIEnchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
 
How to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For FlutterHow to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For Flutter
 
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 

Organic solar cells the exciting interplay of excitons and nano-morphology

  • 1. BΦ – Belgian Physical Society Magazine FEATURED ARTICLE ORGANIC SOLAR CELLS: THE EXCITING INTERPLAY OF EXCITONS AND NANO-MORPHOLOGY K. Vandewal, L. Goris, G. Krishna & J.V. Manca Universiteit Hasselt, Instituut voor Materiaalonderzoek, Wetenschapspark 1, B-3590 Diepenbeek   jean.manca@uhasselt.be       Photovoltaic   energy   conversion   in   nanostructured   organic   donor:acceptor     bulk   heterojunctions   is   a   very   promising   concept   towards   future   renewable   energy   generation.   This  article  provides  a  brief  introduction  into  the  field  of  organic  ‘excitonic’  solar  cells.       1.  Organic  electronics     In   1990   researchers   from   the   Cavendish   Laboratory  in  Cambridge  (UK)  discovered  that   a  thin  layer  of  the  conjugated  polymer  Poly(p-­‐‑ phenylene   vinylene)   sandwiched   between   a   hole-­‐‑injecting   electrode   (transparent   ITO)   and   an  electron-­‐‑injecting  electrode  (e.g.  aluminium)   yielded  light  emission  under  voltage  bias1.  The   injected  electrons  and  holes  meet  in  the  bulk  of   the  polymer  film  and  emit  light  as  the  result  of   radiative   charge   carrier   recombination.   The   discovery   of   electroluminescence   in   polymer   films   was   rapidly   followed   by   a   wave   of   breakthroughs   in   the   development   of     light   emitting   diodes,   thin   film   transistors,   (bio-­‐‑)   sensors   and   solar   cells   based   on   organic   materials,   e.g.   conjugated   polymers   or   small   organic  molecules.     Conjugated   polymers   possess   a   delocalized   π-­‐‑ electron   system   along   the   polymer   backbone.   In   general   they   are   constructed   from   aromatic   units   and/or   multiple   bonds   alternating   with   single   bonds.     The   overlap   of   adjacent   atomic   pz-­‐‑orbitals   yields   lower   energy   bonding   (π)   and  higher  energy  anti-­‐‑bonding  (π*)  molecular   03/2010 orbitals.   The   difference   in   energy   between   the   highest   occupied   molecular   orbital   (HOMO)   and   lowest   unoccupied   molecular   orbital     (LUMO)   –   as   in   inorganic   semiconductors   termed  bandgap  (Eg)  –  is  typically  between  1-­‐‑4   eV.    The  chemical  structures  of  some  the  most   known   conjugated   polymers   is   shown   in   Figure  1.         Figure 1: Chemical structures of several common conjugated polymers: poly(acetylene) (PA), poly(aniline) (PANI), poly(pyrole) (PPy), poly(pphenylene) (PPP), poly(pphenylenevinylene) (PPV) and poly(thiophene) (PT).   Conjugated   polymers   combine   properties   of   classical   macromolecules,   such   as   low   weight,   - 28 -
  • 2. BΦ – Belgian Physical Society Magazine FEATURED ARTICLE good   mechanical   behaviour   and   an   easy   processing   with   (semi)-­‐‑conductor   properties   arising  from  their  electronic  structure.    From  a   technological   point   of   view,   these   polymers   yield   a   potential   to   develop   a   large-­‐‑scale   and   low   cost,   roll-­‐‑to-­‐‑roll   production   of   solid   state   electro-­‐‑optical   devices   on   flexible   substrates   using  wet-­‐‑solution  processing  techniques  such   as   spincoating,   screenprinting   or   inktjet   printing.       The   scientific   community   has   explicitly   acknowledged   the   importance   of   this   class   of   materials  by  awarding  the  pioneers  in  this  field   Alan   Heeger,   Alan   MacDiarmid   and   Hideki   Shirakawa   with   the   year   2000   Nobel   Prize   for   chemistry.   In   the   seventies,   they   observed   an   increase   in   conductivity   by   several   orders   of   magnitude  for  a  poly(acetylene)  film,  oxidized   with  iodine  vapour2.     2.  Organic  solar  cells     As   compared   to   inorganic   materials   used   in   solar   cells   nowadays   (e.g.   silicon),   typical   organic   small   molecules   and   conjugated   polymers   have   high   absorption   coefficients.   A   100   nm   thick   device   of   such   a   material   is   sufficient   to   absorb   virtually   all   the   light   with   energy  higher  than  its  optical  gap.  Therefore  it   is   no   surprise   that   already   in   the   beginning   days   of   photovoltaic   research,   people   have   attempted   to   prepare   devices   from   strongly   absorbing   organic   materials3.   The   power   efficiency   η   of   single   layer   organic   materials   sandwiched   between   two   electrodes   however,   is   disappointing   (η   <   1   %)4.   This   originates   from   the   low   dielectric   constant   of   organic   materials,   causing   the   optical   excitations   to   consist   of   an   electron   and   hole   which   are   still   mutually  attracting  –  termed  as  excitons-­‐‑,  with   a   typical   binding   energy   of   0.5   eV5.   This   binding   energy   is   much   too   large   for   the   internal   fields   in   the   device   to   break   the   excitons  within  their  ~1  ns  lifetime.  This  causes   03/2010 organic   solar   cells   consisting   of   a   single   organic   material   sandwiched   between   two   electrodes   to   generate   low   photocurrents   resulting  in  low  overall  performances.         Figure   2-­‐‑a   :   Schematic   representation   of   architecture   of   bulk   heterojunction  solar  cell.       A   breakthrough   came   in   1985   when   Tang6   presented   a   two   layer   organic   photovoltaic   device  with  a  power  conversion  efficiency  η  of   ~1%.   In   such   bilayer   devices,   the   interface   between   the   two   organic   layers   is   crucial   in   determining   its   photovoltaic   properties.   Excitons   created   in   either   of   the   two   material   phases   are   dissociated   at   the   interface.   The   material   in   which   the   electron   ends   up   after   dissociation   is   named   the   electron   acceptor,   accepting  the  electron  from  the  donor  material.   Today,  the  bilayer  cell  concept  is  still  used  for   devices   using   evaporated   organic   small   molecules7.   One   of   the   most   successful   and   most   studied   electron   accepting   material   is   the   C60   buckminsterfullerene.   The   discovery   of   ultrafast   (~100   fs)   electron   transfer   between   C60   and   conjugated   polymers8   stimulated   interest   in   these   systems   for   photovoltaic   applications.   In   bilayer   devices   comprising   conjugated   polymers   and   C60,   however,   only   excitons   created   within   their   diffusion   length   from   the   interface,   can   contribute   to   the   photovoltaic  effect.  For  conjugated  polymers,  a   - 29 -
  • 3. BΦ – Belgian Physical Society Magazine FEATURED ARTICLE typical   exciton   diffusion   length   of   ~5-­‐‑7   nm   is   not   sufficient   to   absorb   a   large   fraction   of   the   light,  in  such  a  bilayer  configuration9.     of   research   on   organic   photovoltaics   therefore   is   to   improve   device   efficiency   together   with   device   stability,   while   keeping   the   cost   of   the   technology  low.   Figure 2-b : Transmission Electron Miscroscopy (TEM) micrograph of bulk morphology of MDMOPPV:PCBM (1:4 weight fraction) solar cell prepared from respectively toluene (left) and chlorobenzene (right) solvents, yielding a clear difference in both morphology and in photovoltaic performance. Today,   the   highest   efficiencies   reached   using   this   approach   are   about   6   %   by   using   the   polymer   PCDTBT   as   donor   material12.   The   most   successful   soluble   acceptor   materials   up   to  date  are  the  C60  derivative  PCBM  (depicted   in   Figure   2)   and   the   C70   derivative   PC71BM.   PCBM   is   a   weak   absorber   while   PC71BM   contributes   to   sunlight   absorption   when   used   in   polymer:fullerene   solar   cells.   Alternative   electron   accepting   materials,   such   as   n-­‐‑type   conjugated   polymers   and   inorganic   metal   oxides   are   currently   under   investigation.   With   inorganic   metal   oxides   so-­‐‑called   hybrid   Dye   Sensitized   Solar   Cells   (DSSC)   are   being   developed  (will  be  discussed  in  paragraph  4).     Table   1-­‐‑1   summarizes   the   confirmed   power   conversion   efficiencies   of   several   photovoltaic   technologies13.   It   reveals   that,   as   compared   to   the   other   technologies,   the   organic   solar   cells   still  have  a  modest  efficiency.  One  of  the  goals   03/2010 Photovoltaic technology η (%) Silicon (Si) Mono-crystalline Silicon (Si) Multi-crystalline Silicon (Si) Amorphous Gallium arsenide (GaAs) 25.0 Copper indium gallium diselenide (CIGS) Dye sensitized 19.4 Organic 20.4 9.5 26.1 10.4 5.2 Table  1-­‐‑1:  Confirmed  submodule  power  conversion  efficiencies   (η)   measured   on   a   1   cm2   cell   surface,   under   the   standardized   global   AM1.5   spectrum   (1000   W.m-­‐‑2)   at   25   °C   for   several   photovoltaic  technologies13.  The  highest  efficiency  measured   for  organic  solar  cells  is  5.2  %.  However  for  cells  smaller  than   1  cm2,  efficiencies  higher  than  6  %  have  been  reported.12     - 30 -
  • 4. BΦ – Belgian Physical Society Magazine FEATURED ARTICLE 3.  Working  principle     In   the   past   years,   many   reviews   on   organic   solar   cells   have   been   written   (see   ref.   14).     In   most   of   them,   the   following   scheme   (Figure   3   (a))   is   presented,   depicting   the   simplified   mechanism   by   which   the   incident   photon   flux   is   converted   into   an   electrical   current   in   organic   donor/acceptor   based   devices.   It   has   4   fundamental   steps.   While   the   efficiency   of   the   exciton   creation   (step   1)   and   diffusion   (step   2)   depend  strongly  on  sample  thickness  and  bulk   heterojunction   morphology,   the   crucial   charge   generation   mechanism   (step   3),   is   believed   to   depend   on   the   energetic   interfacial   structure   and   can   be   highly   efficient   in   some   well   performing   BHJ   solar   cells.   However,   up   to   now,   this   step   is   not   fully   understood   and   under   vivid   discussion.   Once   the   electron   on   the   acceptor   material   and   the   hole   on   the   donor   material   have   escaped   each   other’s   evidences  indicate  that  an  intermediate  charge-­‐‑ transfer   (CT)   state   exists   between   the   excitons   created   upon   light   absorption   in   the   polymer   and  the  long-­‐‑lived,  free  charge  carriers.  Highly   sensitive   studies   of   the   absorption   spectra   of   polymer:fullerene   blends   by   our   research   group   in   Universiteit   Hasselt,   have   revealed   the   presence   of   a   long   wavelength   absorption   band  characteristic  for  a  weak  ground  state  CT   complex   (CTC),   formed   by   the   interaction   of   the  lowest  unoccupied  molecular  orbital  of  the   fullerene   acceptor   LUMO(A)   with   the   highest   occupied   molecular   orbital   of   the   polymer   donor   HOMO(D)15–18.   Illumination   with   wavelengths   in   this   CT   band   results   in   the   direct   creation   of   bound   electron-­‐‑hole   pairs   or   CT   excitons.   The   highly   sensitive   techniques   used   by   our   group   to   study   these   low   signal   sub-­‐‑band   gap   features   are   Photothermal   Deflection   Spectroscopy   (PDS)15,16   and   Fourier   Transform   Photocurrent   Spectroscopy   Figure   3:   (a)   General   mechanism   for   photo-­‐‑energy   conversion   in   donor/acceptor   organic   solar   cells.   The   four   steps   are:   (1)   Absorption  of  light,  creating  an  exciton  in  the  donor  (acceptor)  phase.  (2)  Diffusion  of  excitons  to  the  donor/acceptor  interface.  (3)   Dissociation  of  excitons  yielding  charge  carriers.  (4)  Charge  transport  and  collection  at  the  electrodes.  (b)  A  scheme  of  the  energy  of   relevant  pairs  of  electrons  and  holes:  the  donor  excitonic  state  (D*)  and  the  charge  transfer  state  (CT).  The  energy  of  a  free  electron   on  the  acceptor  phase  and  a  free  hole  on  the  donor  phase  is  equal  to  the  difference  between  their  respective  molecular  orbital  energy   levels.   Coulomb  binding  energy,  they  are  transported   to  the  collecting  electrodes  (step  4).     Charge-­‐‑transfer  states     As   far   as   the   exciton   dissociation   process   is   concerned,   recent   theories   and   experimental   03/2010 (FTPS)17,18.  It  has  been  demonstrated  that  FTPS   allows   measuring   the   spectral   dependence   of   the   absorption   coefficient   of   organic   thin   film   material   systems   and   also   of   the   external   quantum   efficiency   (EQE)   of   photovoltaic   devices  with  high  resolution  (<  1  nm)  in  just  a   matter   of   seconds.   FTPS   has   the   required   - 31 -
  • 5. BΦ – Belgian Physical Society Magazine FEATURED ARTICLE sensitivity  to  measure  the  low  signal  sub-­‐‑band   gap   photocurrent   produced   by   the   direct   creation   of   CT   excitons   upon   long   wavelength   illumination  of  the  CTC’s.     Radiative   decay   of   CT   excitons   is   sometimes   observed  in  photoluminescence  measurements   of   polymer:fullerene   blends16,19,20   and   can   be   more   easily   detected   in   electroluminescence   spectra   obtained   by   applying   a   forward   voltage   over   polymer:fullerene   photovoltaic   devices21.     CT   excitons   play   a   major   role   in   the   operation   of   polymer:fullerene   photovoltaic   devices.   These  weakly  bound  electron-­‐‑hole  pairs  at  the   polymer:fullerene   interface   are   mainly   populated  via  a  photoinduced  electron  transfer   after  excitation  of  polymer  or  fullerene.  Due  to   the  low  oscillator  strength  of  polymer:fullerene   CTCs  only  a  very  small  fraction  of  CT  excitons   is   populated   by   direct   optical   excitation   of   the   CTCs.   The   major   contribution   to   the   photocurrent   originates   from   polymer   or   fullerene  excitation.  However,  the  efficiency  of   CT   exciton   formation   and   their   dissociation   into   free   carriers   determines   the   photocurrent.   Both   formation   and   dissociation   efficiencies   depend   on   the   blend   morphology   and   donor:acceptor  energetics.       and   recombination   processes   in   the   active   layer.   These   recombination   processes   can   proceed  through  the  formation  of  a  CT  exciton   with   subsequent   emission   of   low   energy   photons,   visible   in   sensitive   electroluminescence   experiments.   In   order   to   quantitatively   investigate   the   role   of   CTC   formation   on   the   photovoltage   polymer:fullerene   photovoltaic   devices,   a   reciprocity   relation   between   Voc   and   the   photovoltaic  and  electroluminescent  actions  of   a   generalized   solar   cell   is   used21-­‐‑23.   As   predicted   by   the   reciprocity   relations,   a   linear   correlation   between   Voc   and   the   spectral   position  of  the  CT  band  is  observed  for  a  range   of   polymer:fullerene   blends,   comprising   different   donor   polymers.   The   energy   of   the   CT   state   (ECT)   is   known   to   correlate   with   the   difference   between   the   HOMO   energy   of   the   polymer   donor   and   the   LUMO   energy   of   the   fullerene   acceptor.   This   explains   the   widely   observed,   but   partly   unexplained,   empirical   linear   correlation   between   Voc   and   this   energetic  difference24.     4.    Challenges     The  general  challenges  for  organic  based  solar   cells   are   the   increase   of   both   performance   and   lifetime.     From   a   technological   point   of   view,     an   important   challenge   is   to   develop   cost   efficient   large   area   production   techniques   using  environmentally  friendly  solvents.       Figure   4   –   Micrograph   of   ZnO   nanorods   as   highways   for   electrons  in  hybrid  polymer:  ZnO  solar  cells.     Open  Circuit  Voltage       Also   the   open-­‐‑circuit   voltage   Voc   of   the   photovoltaic  cells  is  determined  by  the  spectral   properties  of  the  CT  excitons,  again  being     morphology   dependent.   Voc   is   determined   by   the   balance   between   free   carrier   generation   03/2010 Towards  ‘green’  organic  based  solar  cells     Dye   sensitized   solar   cells   (DSSCs)   are   considered  as  a  promising  low-­‐‑cost  alternative   to   conventional   inorganic   semiconductor   photovoltaic   devices.   DSSCs,   using   nanoporous   TiO2   electrodes,   ruthenium-­‐‑based   complexes   dyes   and   liquid   electrolytes,   reach   power   conversions   up   to   10%   under   AM   1.5   (100  mW/cm2)  solar  illumination.  The  presence   of   the   liquid   electrolytes   requires   special   - 32 -
  • 6. BΦ – Belgian Physical Society Magazine FEATURED ARTICLE attention   regarding   sealing,   stability   and   multi-­‐‑cell   module   manufacturing.   As   an   alternative  to  the  liquid  electrolyte,  conjugated   polymers   and   in   particular   PTs   attract   much   interest   because   of   their   –   higher   mentioned   -­‐‑   good   processability,   low   cost   and   high   hole   mobilities.   Other   advantages   of   PTs   are   the   low   bandgap   and   high   absorption   coefficient,   which   make   them   good   photosensitizers.   Through   the   use   of   PTs,   light   absorption   and   hole   transport   are   combined   in   one   single   material.     From   an   environmental   point   of   view,   an   important   drawback   when   upscaling   the   production   process   of   PT-­‐‑based   (e.g.   P3HT)   solar  cells  is  the  need  for  toxic  organic  solvents   such   as   chlorobenzene   or   chloroform.   Therefore,  a  water-­‐‑soluble  PT  (P3SHT)  is  used   to   allow   a   safe   and   environmentally   friendly   processing.  By  using  an  aqueous  route  for  both   the   dense   titania   hole-­‐‑blocking   layer   and   the   nanoporous   TiO2   network   it   is   possible   to   develop   fully   ‘green’   solid-­‐‑state   solar   cells   in   which   photosensitizer,   electron   and   hole   conductor   are   achieved   from   a   water-­‐‑based   preparation  method.     Recent  activities  include  the  controlled  growth   of  nanocolumnar  ZnO25  -­‐‑  as  highways  for   electrons  -­‐‑  which  is  studied  in  combination   with  organic  semiconductors  for  photovoltaic   applications.     Interdisciplinarity     The   field   of   organic   solar   cells   is   a   truly   interdisciplinary   field   of   research   involving   chemists,  physicists  and  engineers  working  on   materials   synthesis,   device   physics,   characterization,   modeling,   device   technology   and  reliability.    A  further  strengthening  of  this   interdisciplinary  approach  is  the  only  road  for   organic   based   or   nanostructured   solar   cells   to   contribute   towards   an   intelligent   and   sustainable  future.   03/2010   Figure  5:  Interdisciplinary  approach  towards  novel  generation   organic  based  solar  cells.     References   [1] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns and [2] A.B. Holmes Nature 347 (1990) 539 [3] 2. a) H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc., Chem. Commun. (1977) 579. b) C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Phys. Rev. Lett. (1977) 39, 1098. [4] D. R. Kearns, M. Calvin, J. Chem. Phys. 29, 950 (1958) [5] G. A. Chamberlain, Sol. Cells 8, 47 (1983) [6] L. Sebastian, G. Weiser, Phys. Rev. Lett. 46, 1156 (1981) [7] C. W. Tang, Appl. Phys. Lett. 48, 183 (1986) [8] B. Rand, J. Genoe, P. Heremans, J. Poortmans, Prog. Photovolt: Res. Appl. 15, 659 (2007) [9] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 258, 1474 (1992) [10] J.J.M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys. Lett. 68, 3120 (1996) [11] H. Hoppe, N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004) [12] T. Martens, J. D’Haen, T. Munters, Z. Beelen, L. Goris, J. Manca, M. D’Olieslaeger, D. Vanderzande, L. De Schepper, R. Andriessen, Synt. Met. 138, 243 (2003) [13] S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, Nature Phot. 3, 297 (2009) [14] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt: Res. Appl. 17, 320 (2009) - 33 -
  • 7. BΦ – Belgian Physical Society Magazine FEATURED ARTICLE [15] B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 47, 58 (2008) [16] L. Goris, K. Haenen,M. Nesladek, P.Wagner, D. Vanderzande, L. De Schepper, J. D’Haen, L. Lutsen, J. V. Manca, J. Mater. Sci. 2005, 40, 1413. [17] J. J. Benson-Smith, L. Goris, K. Vandewal, K. Haenen, J. V. Manca, D. Vanderzande, D. D. C. Bradley, J. Nelson, Adv. Funct. Mater. 2007, 17, 451. [18] L. Goris, A. Poruba, L. Hod’akova, M. Vanecek, K. Haenen, M. Nesladek, P. Wagner, D. Vanderzande, L. De Schepper, J. V. Manca, Appl. Phys. Lett. 2006, 88, 052113. [19] K. Vandewal, L. Goris, I. Haeldermans, M. Nesladek, K. Haenen, P. Wagner, J.V. Manca, Thin Solid Films 2008, 516, 7135. [20] M. A. Loi, S. Toffanin, M. Muccini, M. Forster, U. Scherf, and M. Scharber, Adv. Funct. Mater. 2007, 17, 2111. [21] D. Veldman, S. C. J. Meskers, and R. A. J. Janssen, Adv. Funct. Mater. 2009, 19, 1939. [22] K. Tvingstedt, K. Vandewal, A. Gadisa, F. Zhang, J. V. Manca, and O. Inganas, J. Am. Chem. Soc. 2009, 131, 11819. [23] K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, and J. V. Manca, Nature Mater. 2009, 8, 904. [24] U. Rau, Phys. Rev. B 2007, 76, 085303. [25] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 2006, 18, 789. [26] PhD-work of Linny Baeten (2010), Universiteit Hasselt (to be submitted)               03/2010 - 34 -