Name of the teacher : Reenamol K Standard : IX 
Name of the School : Division : 
Subject : Mathematics Strength : 
Unit : ]c¸fhv Date : 
Sub Unit : amdm¯]c¸fhv Duration : 
Curricular Statement 
c−v kam´ctcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntImW§Äs¡Ãmw Htc ]c¸fhmsW¶p 
aÊnem¡p¶p. 
Content Analysis 
Term : amdm¯ ]c¸fhv 
Facts : c−v kam´ctcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntImW§Äs¡Ãmw Htc ]c¸fhmsW¶p 
aÊnem¡p¶p. 
Concept : c−v kam´ctcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntImW§Äs¡Ãmw Htc ]c¸fhmsW¶v 
Bibw. 
Principle : c−v kam´ctcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntImW§Äs¡Ãmw Htc ]c¸fhmWv.
Process : c−v kam´ctcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntImW§Äs¡Ãmw Htc ]c¸fhmsW¶p 
Is−¯p¶ {]{Inb 
Learning Out comes: 
1. Remembering information related to the above mentioned facts and concepts. 
2. Develops understanding in finding the above facts and concepts. 
3. Applying the information in similar situations. 
4. Analysing the information to explore understanding and relationships. 
5. Creating new ideas related to the above concepts. 
6. Justifying the above concepts. 
7. Develops skill in finding the above facts and concepts. 
Pre-requisites : NXpc¯nsâ ]c¸fhv, {XntImW¯nsâ ]c¸fhv 
Teaching- Learning Resources : Bibw hyàam¡p¶ NmÀ«v 
Bibw hyàam¡p¶ ssÉUpIÄ
Classroom Interaction Preparation Pupil Responses 
Preparation : 
A[ym]nI ImÀUn sh«nsbSp¯ Nn{Xw 
ImWn¡p¶p. 
NphsSbpÅ Nn{X¯n {XntImW¯nsâbpw 
NXpc¯nsâbpw ]c¸fhpIÄ X½nepÅ _Ôw 
F´mWv ? 
APB F¶ {XntImW¯np amäap−mbmepw CXp 
icnbmIptam ? 
Development 
A[ym]nI BB bn Hcp Nn{Xw hcbv¡p¶p.
{XntImW¯nsâ ]c¸fhnp ta ]dª hmZw 
icnbmIptam ? 
P bn n¶v A B bnte¡v ew_w hcbv¡p¶p
APB bpsS ]c¸fhv = ½ x AB x PQ 
= ½ x AB x AD 
AXmbXv, Ct¸mgpw {XntImW¯nsâ ]c¸fhv 
NXpc¯nsâ ]c¸fhnsâ ]IpXn Xs¶bmWv. 
CXn n¶pw c−v kam´ctcJIÄ¡nSbnepÅ 
Htc ]mZapÅ {XntImW§Äs¡Ãmw Htc 
]c¸fhmWv. 
XpSÀ¶v Bibw hyàam¡p¶ NmÀ«v {]ZÀin¸n¡p¶p.
c−v kam´c tcJIÄ¡nSbnse {XntImW§Ä.
c−p kam´c tcJIÄ¡nSbnepÅ Htc ]mZapÅ 
{XntImW§Äs¡Ãmw Htc ]c¸fhmWv. 
Ip«nIÄ NmÀ«v hmbn¨v Bibw ZrUam¡p¶p. 
Application : 
Nn{X¯n PQR F¶ {XntImW¯nsâ AtX 
]c¸fhpÅ Hcp {XntImWw P bnse tIm¬ a«ambn 
hcbv¡mtam ?
R eqsS PQ hnv kam´cambn Hcp hc hc¨v 
AXnse Hcp _nμp X Dw Bbn PQ tbmPn¸n¨mepw 
PQR sâ AtX ]c¸fhpÅ Hcp {XntImWw PQX 
In«pw. 
F¶m ChnsS asäcp n_ÔIqSn ]men¡Ww 
P bnse tIm¬ a«hpamIWw. At¸mÄ aq¶mas¯ 
ioÀjw P bn¡qSnbpÅ PQ hnsâ 
ew_¯nepamIWw.
Review : c−p kam´c tcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntIW§fpsS {]tXyIXsb´mWv ? 
Follow Up Activity : Nn{X¯n ABC F¶ {XntImW¯nsâ AtX ]c¸fhpÅ Hcp {XntImWw A 
tIm¬ a«ambn hcbv¡mtam ?
Reenamol lesson
Reenamol lesson

Reenamol lesson

  • 1.
    Name of theteacher : Reenamol K Standard : IX Name of the School : Division : Subject : Mathematics Strength : Unit : ]c¸fhv Date : Sub Unit : amdm¯]c¸fhv Duration : Curricular Statement c−v kam´ctcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntImW§Äs¡Ãmw Htc ]c¸fhmsW¶p aÊnem¡p¶p. Content Analysis Term : amdm¯ ]c¸fhv Facts : c−v kam´ctcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntImW§Äs¡Ãmw Htc ]c¸fhmsW¶p aÊnem¡p¶p. Concept : c−v kam´ctcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntImW§Äs¡Ãmw Htc ]c¸fhmsW¶v Bibw. Principle : c−v kam´ctcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntImW§Äs¡Ãmw Htc ]c¸fhmWv.
  • 2.
    Process : c−vkam´ctcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntImW§Äs¡Ãmw Htc ]c¸fhmsW¶p Is−¯p¶ {]{Inb Learning Out comes: 1. Remembering information related to the above mentioned facts and concepts. 2. Develops understanding in finding the above facts and concepts. 3. Applying the information in similar situations. 4. Analysing the information to explore understanding and relationships. 5. Creating new ideas related to the above concepts. 6. Justifying the above concepts. 7. Develops skill in finding the above facts and concepts. Pre-requisites : NXpc¯nsâ ]c¸fhv, {XntImW¯nsâ ]c¸fhv Teaching- Learning Resources : Bibw hyàam¡p¶ NmÀ«v Bibw hyàam¡p¶ ssÉUpIÄ
  • 3.
    Classroom Interaction PreparationPupil Responses Preparation : A[ym]nI ImÀUn sh«nsbSp¯ Nn{Xw ImWn¡p¶p. NphsSbpÅ Nn{X¯n {XntImW¯nsâbpw NXpc¯nsâbpw ]c¸fhpIÄ X½nepÅ _Ôw F´mWv ? APB F¶ {XntImW¯np amäap−mbmepw CXp icnbmIptam ? Development A[ym]nI BB bn Hcp Nn{Xw hcbv¡p¶p.
  • 4.
    {XntImW¯nsâ ]c¸fhnp taÂ]dª hmZw icnbmIptam ? P bn n¶v A B bnte¡v ew_w hcbv¡p¶p
  • 5.
    APB bpsS ]c¸fhv= ½ x AB x PQ = ½ x AB x AD AXmbXv, Ct¸mgpw {XntImW¯nsâ ]c¸fhv NXpc¯nsâ ]c¸fhnsâ ]IpXn Xs¶bmWv. CXn n¶pw c−v kam´ctcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntImW§Äs¡Ãmw Htc ]c¸fhmWv. XpSÀ¶v Bibw hyàam¡p¶ NmÀ«v {]ZÀin¸n¡p¶p.
  • 6.
  • 7.
    c−p kam´c tcJIÄ¡nSbnepÅHtc ]mZapÅ {XntImW§Äs¡Ãmw Htc ]c¸fhmWv. Ip«nIÄ NmÀ«v hmbn¨v Bibw ZrUam¡p¶p. Application : Nn{X¯n PQR F¶ {XntImW¯nsâ AtX ]c¸fhpÅ Hcp {XntImWw P bnse tIm¬ a«ambn hcbv¡mtam ?
  • 8.
    R eqsS PQhnv kam´cambn Hcp hc hc¨v AXnse Hcp _nμp X Dw Bbn PQ tbmPn¸n¨mepw PQR sâ AtX ]c¸fhpÅ Hcp {XntImWw PQX In«pw. F¶m ChnsS asäcp n_ÔIqSn ]men¡Ww P bnse tIm¬ a«hpamIWw. At¸mÄ aq¶mas¯ ioÀjw P bn¡qSnbpÅ PQ hnsâ ew_¯nepamIWw.
  • 9.
    Review : c−pkam´c tcJIÄ¡nSbnepÅ Htc ]mZapÅ {XntIW§fpsS {]tXyIXsb´mWv ? Follow Up Activity : Nn{X¯n ABC F¶ {XntImW¯nsâ AtX ]c¸fhpÅ Hcp {XntImWw A tIm¬ a«ambn hcbv¡mtam ?