INNOVATIVE
LESSON PLAN
Name of the Teacher : lWn._n.F¨v Standard : IX
Name of the School : Kh._n.F¨v.Fkv.Fkv Division : A
Subject : KWn-X-imkv{Xw Strength : 36
Unit : ]c-¸-fhv Duration : 35
Sub unit : _lp-`p-P-§fpw {XntIm-Whpw Date :
Curricular Statement : Develop different dimensions of knowledge
application, interest and skill in polygons and
triangle through group discussion lecture
method evaluation by questioning participation
in group discussion.
CONTENT ANALYSIS
FACT:- GsXmcp _lp-`p-P-s¯bpw
{XntIm-W-§-fm¡n hn`-Pn-¡m³
Ignbpw.
COCEPT:- _lp-`p-P-§fpw
{XntIm-Whpw
Learning Outcomes : - The students will be able to,
 Recall related knowledge about polygons.
 Recognize the characteristics of polygons.
 Identify the relationship below polygons and triangle.
 Explain the knowledge about area polygons and triangles.
 Select appropriate method, procedure and formation.
 Apply the concept in familiar situations.
 Plans to form general relationship below polygons and triangle.
 Suggest a new method for solving the problem.
 Accept the beauty of the mathematics.
PREREQUISITES
 NXp-c-¯nsâ {]tX-y-IX Adnbmw
 _lp-`p-P-§-fpsS {]tX-y-IX Adnbmw
 {XntIm-W-¯nsâ {]tX-y-IX Adnbmw
 ]c-¸-f-hp-IÄ Adnbmw
Teaching Learning Resource
NmÀ«v ]okp-I-Ä, kvsIbn etc
REFERENCE
]mT]p-kvXIw
CLASSROOM INTERACTION
a-kvIm-cw,
{][m hmÀ¯-IÄ hmbn-¡p-¶Xv jUv`pPw. Ct¸mÄ In«nb hmÀ¯,
{XntIm-Whpw NXp-chpw X½n hm¡p-XÀ¡w. ]©-`pPw CS-s]-s«-¦nepw XoÀ¸m-
¡m³ km[n-¨n-«nÃ. ]c-¸-f-hp-IÄ X½n-epÅ _Ôs¯ sNmÃn-bmWv XÀ¡w
Bcw-`n-¨Xv. IqSp-X hnh-c-§Ä¡mbn ½psS {]Xn-n[n k]vX-`pPw IqsS-t¨-
cp¶p.
ltem k]vX-`pPw tIÄ¡mtam ? tIf¡mw. F´m-Wn-t¸m-gs¯
AhØ? ]c-¸-fhv ImWm-pÅ klmbw tNmZn¨v {XntIm-Ws¯ kao-]n-¡p-I-
bm-bn-cp¶p. {XntImWw ]dªv sImSp-¡m³ X¿m-dm-sb-¦nepw AXv ImWp¶
coXn-bpsS t]cn Ccp-h-i-hpw X½n XÀ¡-¯n-em-hp-I-bm-bn-cp¶p. Ccp-h-cp-
sSbpw XÀ¡w amäm³ jUv`pPw CS-s]-s«-¦nepw ]cn-lm-c-Sp--m-ImsX ]n³am-
td-n h¶p. HSp-hn Ccp-hcpw aäp-Å-h-cpsS A`-yÀ° amn¨v DS³ Xs¶
Hcp H¯p-XoÀ¸v NÀ¨bv¡v X¿m-dm-sW¶v Adn-bn-¡p-I-bp--mbn,
icn k]vX-`pPw
IqSp-X hmÀ¯-bn-te¡v hcmw
Hcn-S-th-fbv¡v tijw,
lmbv, Rm³ hr¯w n§Ä¡-dn-bm-atÃm
F¶m Rm³ hcp¶p n§Äs¡m¸w
Hcp ]pXnb aÂk-c-hp-ambn Im¯n-cn-bv¡pI.
a-kvImcw...hmÀ¯-bn-tebv¡v XncnsI hcmw.
NXpÀ`p-P-¯nsâ kwL-S-bpw {XntIm-W-¯nsâ kwL-S-bpw X½n-epÅ NÀ¨-
bpsS XÂk-a-b-{]-t£-]-W-¯n-tebv¡v H¶p sN¶p tm¡mw,
]©-`pPw : ltem, a-kvImcw ap¡v ChnsS XÀ¡n-bv¡msX ]c-
kv]cw Hcp XoÀ¸p--m-t¡---XmWv.
AXp-sIm-v c-p Iq«cpw kl-I-cn¨v apt¶m«v
t]mIWw.
{XntImWw(k-a-`pP , ka-]mÀiz ) : R§Ä¡p k½-X-amWv
NXpÀ`pPw : R§Ä¡pw k½-X-amWv
]©-`pPw : NXpÀ`pPw ]dbq F´mWv {]ivw ?
NXpÀ`pPw (kmam-´-cn-Iw, ew_Iw) : R§Äs¡mcp kq{X-hm-I-y-ap-v
]c-¸-fhv ImWm³ s]mXpsh.
]ns¶ R§Ät¡m-tcm-cp-¯À¡pw Hmtcm-¶p-ap-v.
]©-`pPw : AXn-smcp XÀ¡-anÃ.AXv ofwxhoXn AsÃ?
NXpÀ`pPw : AsX, R§-fn-epÅ hy-X-ym-k-a-p-k-cn¨v AXnp hy-X-ym-k-
ap-v.
]©-`pPw : icn. AXn-s´m {]ivw
{XntImWw : {]ivw Rm³ ]dbmw.
NXpÀ`pPw : th- Rm³ ]d-tªmfmw.
]©-`pPw : XÀ¡w th- HcmÄ ]dbq.
NXpÀ`pPw : R§sf 2 {XntIm-W-am¡n amäm³ Ignbpw. tijw Hmtcm
{XntIm-W-¯nsâbpw ]c-¸-fhv Is-¯n Iq«n-bmepw R§-
fpsS ]c-¸-fhv In«pwNXpÀ`pPw.
]©-`pPw : icn. AXv n§sf am{X-aà R§-sfbpw A§s sN¿m³
Ignbpw.
NXpÀ`pPw : AX-ÃmsX asämcp coXn-bp-t-m¶p Xnc¡n klmbw tNmZn¨
Fs¶ Ifn-bm¡n.
]©-`pPw : F´mWv {XntImWw?
{XntImWw : Rm³ Ifn-bm-¡n-bn-«Nã
]©-`pPw : ]ns¶-´mWv?
{XntImWw : c-v kam-´-c-tc-J-IÄ¡n-S-bn-epÅ Htc ]mZ-apÅ {XntIm-W-
§Äs¡Ãmw XpÃn-]-c-¸-f-hmWv. Cu Bi-b-ap-]-tbm-Kn¨v
NXpÀ`p-P-s¯tbm, ]©-`p-P-s¯tbm Hs¡ R§-sf-t¸mse
{XntI#mW-am¡n amän ]c-¸-fhv ImWm³ Ignbpw.AXmWv
Rm³ ]d-ªXv.
NXpÀ`pPw : AXv Xs¶-btà Rmpw ]d-ªXv.
{XntImWw : AÃ, Cu Bi-b-ap-]-tbm-Kn-¨-ÃmsX {XntIm-W-am¡n amäm³
{]bm-k-amWv.AXmWv Rm³ ]d-ªXv.
NXpÀ`pPw : AsX-´vsIm-v ]änÃ
{XntImWw : ]änÃ
]©-`pPw : XÀ¡n-bv¡msX AXv hy-à-am¡q.
{XntImWw : RmXv Im«n-¯cmw
Rm³ ]dª Bi-b-ap-]-tbm-Kn¨v, CXn-semcp hnIÀ®w
hc-bv¡pI. Cu hnIÀ®-¯nv kam-´-c-ambn D bn¡qSn Hcp kam-´-c-tcJ
hc-bv¡Ww.
D C
A B
NXpÀ`pPw : CsXms¡ ]än-bv¡p-I-bmWv.
]©-`pPw : BZyw AXv {i²n-bv¡v, {XntImWw ]dbq.
{XntImWw :
AB ]mZ-ambn Icp-XWw
{][m {XntIm-W-¯nsâ
]mZw.
tijw,
c-v kam-´-c-tc-J-IÄ¡n-S-bn Htc ]mZ-apÅ {XntIm-W-§Ä XpÃ-y-am-bXv
sIm-v ADC bv¡v XpÃ-y-ambn AEC hc-bv¡m³ Ignbpw.
NXpÀ`pPw : ChnsS F´mWv In«n-bXv?
{XntImWw : ChnsS F¶ NXp-c-`p-P-¯np XpÃ-y-ambn In«n-bnsÃ
]©-`pPw : icn-bmWv.
NXpÀ`pPw : Cn B {XntIm-W-¯nsâ ]c-¸-fhv I-m NXpÀ`p-P-¯np
XpÃ-b-am-Ip-asÃ?
{XntImWw : AsX AXmWv, Rm³ ]d-bm³ {ian-¨Xv.
NXpÀ`pPw : icn.
]©-`pPw : hnP-b-I-c-ambn Xs¶ ½psS N¨ Ah-km-n-¸n-¡m³
km[n¨p.
hmÀ¯-hn-tebv¡v XncnsI hcmw....
NXpÀ`p-Phpw {XntIm-Whpw X½n-epÅ NÀ¨ hnP-b-I-c-ambn Ah-km-n¨p.
Ccp-h-cpsSbpw sXän-²m-c-W-IÄ hy-à-ambn kwkm-cn¨v H¯p XoÀ¸m¡n. ]©-
`pPw Xs¶-bmWv CS-s]-«Xv. ap-s¡m¸w ]©-`pPw IqsS-bp--v, ]dbq ]©-
`pPw F´mWv NÀ¨-bvs¡m-Sp-hn F¯n-t¨À¶Xv.]e-¸-f-hns sNmÃn-bmWv
Ccp-hcpw X½n XÀ¡-ap--m-bXv. Hcp sNdnb sXän-²m-c-W-bpsS t]cn kw`-
hn-¨-XmWv.
F´mWv ]dbq...
GsXmcp _lp-`p-P-s¯bpw c-v kam-´c tcJ-IÄ¡n-S-bn-epÅ Htc ]mZ-
apÅ {XntIm-W-§Äs¡Ãmw XpÃy ]c-¸-f-hmWv F¶ Bi-b-¯n-eqsS {XntIm-
W-am¡n amän ]c-¸-fhv ImWm³ Ignbpw. CXv a-Ên-em-¡n-b-Xn-ep-ff sXän-²m-c-
W-bmWv {]iv-am-bXv. AXv kwkm-cn¨v Ccp Iq«cpw H¯v XoÀ¸mbn.
µn ]©-`pPw.
NXpÀ`p-Phpw {XntIm-Whpw X½n-epÅ {]ivw Ah-km-n¨p.
AXnsâ kt´m-j-¯n-emWv Ccp kwL-S--Ifpw. ASp¯ hmÀ¯ 4 aWnbv¡v.
Cn Irjn-bn-tebv¡v Hcp F¯n-tm«w.AXp-hsc a-kvImcw.

Project

  • 1.
  • 2.
    Name of theTeacher : lWn._n.F¨v Standard : IX Name of the School : Kh._n.F¨v.Fkv.Fkv Division : A Subject : KWn-X-imkv{Xw Strength : 36 Unit : ]c-¸-fhv Duration : 35 Sub unit : _lp-`p-P-§fpw {XntIm-Whpw Date : Curricular Statement : Develop different dimensions of knowledge application, interest and skill in polygons and triangle through group discussion lecture method evaluation by questioning participation in group discussion. CONTENT ANALYSIS FACT:- GsXmcp _lp-`p-P-s¯bpw {XntIm-W-§-fm¡n hn`-Pn-¡m³ Ignbpw. COCEPT:- _lp-`p-P-§fpw {XntIm-Whpw
  • 3.
    Learning Outcomes :- The students will be able to,  Recall related knowledge about polygons.  Recognize the characteristics of polygons.  Identify the relationship below polygons and triangle.  Explain the knowledge about area polygons and triangles.  Select appropriate method, procedure and formation.  Apply the concept in familiar situations.  Plans to form general relationship below polygons and triangle.  Suggest a new method for solving the problem.  Accept the beauty of the mathematics. PREREQUISITES  NXp-c-¯nsâ {]tX-y-IX Adnbmw  _lp-`p-P-§-fpsS {]tX-y-IX Adnbmw  {XntIm-W-¯nsâ {]tX-y-IX Adnbmw  ]c-¸-f-hp-IÄ Adnbmw Teaching Learning Resource NmÀ«v ]okp-I-Ä, kvsIbn etc REFERENCE ]mT]p-kvXIw
  • 4.
    CLASSROOM INTERACTION a-kvIm-cw, {][m hmÀ¯-IÄhmbn-¡p-¶Xv jUv`pPw. Ct¸mÄ In«nb hmÀ¯, {XntIm-Whpw NXp-chpw X½n hm¡p-XÀ¡w. ]©-`pPw CS-s]-s«-¦nepw XoÀ¸m- ¡m³ km[n-¨n-«nÃ. ]c-¸-f-hp-IÄ X½n-epÅ _Ôs¯ sNmÃn-bmWv XÀ¡w Bcw-`n-¨Xv. IqSp-X hnh-c-§Ä¡mbn ½psS {]Xn-n[n k]vX-`pPw IqsS-t¨- cp¶p. ltem k]vX-`pPw tIÄ¡mtam ? tIf¡mw. F´m-Wn-t¸m-gs¯ AhØ? ]c-¸-fhv ImWm-pÅ klmbw tNmZn¨v {XntIm-Ws¯ kao-]n-¡p-I- bm-bn-cp¶p. {XntImWw ]dªv sImSp-¡m³ X¿m-dm-sb-¦nepw AXv ImWp¶ coXn-bpsS t]cn Ccp-h-i-hpw X½n XÀ¡-¯n-em-hp-I-bm-bn-cp¶p. Ccp-h-cp- sSbpw XÀ¡w amäm³ jUv`pPw CS-s]-s«-¦nepw ]cn-lm-c-Sp--m-ImsX ]n³am- td-n h¶p. HSp-hn Ccp-hcpw aäp-Å-h-cpsS A`-yÀ° amn¨v DS³ Xs¶ Hcp H¯p-XoÀ¸v NÀ¨bv¡v X¿m-dm-sW¶v Adn-bn-¡p-I-bp--mbn, icn k]vX-`pPw IqSp-X hmÀ¯-bn-te¡v hcmw Hcn-S-th-fbv¡v tijw, lmbv, Rm³ hr¯w n§Ä¡-dn-bm-atÃm F¶m Rm³ hcp¶p n§Äs¡m¸w Hcp ]pXnb aÂk-c-hp-ambn Im¯n-cn-bv¡pI. a-kvImcw...hmÀ¯-bn-tebv¡v XncnsI hcmw. NXpÀ`p-P-¯nsâ kwL-S-bpw {XntIm-W-¯nsâ kwL-S-bpw X½n-epÅ NÀ¨- bpsS XÂk-a-b-{]-t£-]-W-¯n-tebv¡v H¶p sN¶p tm¡mw, ]©-`pPw : ltem, a-kvImcw ap¡v ChnsS XÀ¡n-bv¡msX ]c- kv]cw Hcp XoÀ¸p--m-t¡---XmWv. AXp-sIm-v c-p Iq«cpw kl-I-cn¨v apt¶m«v t]mIWw. {XntImWw(k-a-`pP , ka-]mÀiz ) : R§Ä¡p k½-X-amWv NXpÀ`pPw : R§Ä¡pw k½-X-amWv ]©-`pPw : NXpÀ`pPw ]dbq F´mWv {]ivw ? NXpÀ`pPw (kmam-´-cn-Iw, ew_Iw) : R§Äs¡mcp kq{X-hm-I-y-ap-v ]c-¸-fhv ImWm³ s]mXpsh. ]ns¶ R§Ät¡m-tcm-cp-¯À¡pw Hmtcm-¶p-ap-v.
  • 5.
    ]©-`pPw : AXn-smcpXÀ¡-anÃ.AXv ofwxhoXn AsÃ? NXpÀ`pPw : AsX, R§-fn-epÅ hy-X-ym-k-a-p-k-cn¨v AXnp hy-X-ym-k- ap-v. ]©-`pPw : icn. AXn-s´m {]ivw {XntImWw : {]ivw Rm³ ]dbmw. NXpÀ`pPw : th- Rm³ ]d-tªmfmw. ]©-`pPw : XÀ¡w th- HcmÄ ]dbq. NXpÀ`pPw : R§sf 2 {XntIm-W-am¡n amäm³ Ignbpw. tijw Hmtcm {XntIm-W-¯nsâbpw ]c-¸-fhv Is-¯n Iq«n-bmepw R§- fpsS ]c-¸-fhv In«pwNXpÀ`pPw. ]©-`pPw : icn. AXv n§sf am{X-aà R§-sfbpw A§s sN¿m³ Ignbpw. NXpÀ`pPw : AX-ÃmsX asämcp coXn-bp-t-m¶p Xnc¡n klmbw tNmZn¨ Fs¶ Ifn-bm¡n. ]©-`pPw : F´mWv {XntImWw? {XntImWw : Rm³ Ifn-bm-¡n-bn-«Nã ]©-`pPw : ]ns¶-´mWv? {XntImWw : c-v kam-´-c-tc-J-IÄ¡n-S-bn-epÅ Htc ]mZ-apÅ {XntIm-W- §Äs¡Ãmw XpÃn-]-c-¸-f-hmWv. Cu Bi-b-ap-]-tbm-Kn¨v NXpÀ`p-P-s¯tbm, ]©-`p-P-s¯tbm Hs¡ R§-sf-t¸mse {XntI#mW-am¡n amän ]c-¸-fhv ImWm³ Ignbpw.AXmWv Rm³ ]d-ªXv. NXpÀ`pPw : AXv Xs¶-btà Rmpw ]d-ªXv. {XntImWw : AÃ, Cu Bi-b-ap-]-tbm-Kn-¨-ÃmsX {XntIm-W-am¡n amäm³ {]bm-k-amWv.AXmWv Rm³ ]d-ªXv. NXpÀ`pPw : AsX-´vsIm-v ]änà {XntImWw : ]änà ]©-`pPw : XÀ¡n-bv¡msX AXv hy-à-am¡q. {XntImWw : RmXv Im«n-¯cmw
  • 6.
    Rm³ ]dª Bi-b-ap-]-tbm-Kn¨v,CXn-semcp hnIÀ®w hc-bv¡pI. Cu hnIÀ®-¯nv kam-´-c-ambn D bn¡qSn Hcp kam-´-c-tcJ hc-bv¡Ww. D C A B NXpÀ`pPw : CsXms¡ ]än-bv¡p-I-bmWv. ]©-`pPw : BZyw AXv {i²n-bv¡v, {XntImWw ]dbq. {XntImWw : AB ]mZ-ambn Icp-XWw {][m {XntIm-W-¯nsâ ]mZw. tijw,
  • 7.
    c-v kam-´-c-tc-J-IÄ¡n-S-bn Htc]mZ-apÅ {XntIm-W-§Ä XpÃ-y-am-bXv sIm-v ADC bv¡v XpÃ-y-ambn AEC hc-bv¡m³ Ignbpw. NXpÀ`pPw : ChnsS F´mWv In«n-bXv? {XntImWw : ChnsS F¶ NXp-c-`p-P-¯np XpÃ-y-ambn In«n-bnsà ]©-`pPw : icn-bmWv. NXpÀ`pPw : Cn B {XntIm-W-¯nsâ ]c-¸-fhv I-m NXpÀ`p-P-¯np XpÃ-b-am-Ip-asÃ? {XntImWw : AsX AXmWv, Rm³ ]d-bm³ {ian-¨Xv. NXpÀ`pPw : icn. ]©-`pPw : hnP-b-I-c-ambn Xs¶ ½psS N¨ Ah-km-n-¸n-¡m³ km[n¨p. hmÀ¯-hn-tebv¡v XncnsI hcmw.... NXpÀ`p-Phpw {XntIm-Whpw X½n-epÅ NÀ¨ hnP-b-I-c-ambn Ah-km-n¨p. Ccp-h-cpsSbpw sXän-²m-c-W-IÄ hy-à-ambn kwkm-cn¨v H¯p XoÀ¸m¡n. ]©- `pPw Xs¶-bmWv CS-s]-«Xv. ap-s¡m¸w ]©-`pPw IqsS-bp--v, ]dbq ]©- `pPw F´mWv NÀ¨-bvs¡m-Sp-hn F¯n-t¨À¶Xv.]e-¸-f-hns sNmÃn-bmWv Ccp-hcpw X½n XÀ¡-ap--m-bXv. Hcp sNdnb sXän-²m-c-W-bpsS t]cn kw`- hn-¨-XmWv. F´mWv ]dbq... GsXmcp _lp-`p-P-s¯bpw c-v kam-´c tcJ-IÄ¡n-S-bn-epÅ Htc ]mZ- apÅ {XntIm-W-§Äs¡Ãmw XpÃy ]c-¸-f-hmWv F¶ Bi-b-¯n-eqsS {XntIm- W-am¡n amän ]c-¸-fhv ImWm³ Ignbpw. CXv a-Ên-em-¡n-b-Xn-ep-ff sXän-²m-c- W-bmWv {]iv-am-bXv. AXv kwkm-cn¨v Ccp Iq«cpw H¯v XoÀ¸mbn. µn ]©-`pPw. NXpÀ`p-Phpw {XntIm-Whpw X½n-epÅ {]ivw Ah-km-n¨p. AXnsâ kt´m-j-¯n-emWv Ccp kwL-S--Ifpw. ASp¯ hmÀ¯ 4 aWnbv¡v. Cn Irjn-bn-tebv¡v Hcp F¯n-tm«w.AXp-hsc a-kvImcw.