LESSON TEMPLATE 
Name of the Student teacher : Period : 
Name of the School : Date : 
Standard : VIII 
Subject : Mathematics Time : 
Unit : Area Strength : 
Topic : Area of Average age : 13+ 
Parallelogram 
CURRICULAR STATEMENT 
 Hcp hiw b bpw kam-´-c-h-i-§Ä X½n-epÅ AIew n Dw Bb kmam-´-cn-I-¯nsâ ]c-¸-fhv bn BsW¶v And-bp-¶p. 
CONTENT ANALYSIS 
TERMS kmam-´-cn-Iw, {XntIm-Ww, ]mZw, kam-´-c-h-i-§Ä, D¶Xn 
Facts FXnÀh-i-§Ä kam-´-c-amb Pyman-Xo-b-cq-]-amWv kmam-´-cnIw 
 kmam-´-cn-Is¯ Hcp hnI-ÀWw sIm­p 
`mKn-¨m c­v 
kÀh-k-a-{Xn-tIm-W-§Ä e`n¡pw 
 c­v 
{XntIm-W-§-fp-sSbpw ]c-¸-f-hp-I-fpsS XpI-bmWv kmam-´-cn-I-¯nsâ ]c-¸-f-hv. 
 {XntIm-W-¯nsâ ]c-¸-fhv 1/2 bh BWv. 
 kmam-´-cn-I-¯nsâ Hcp hiw b bpw kmam-´-c-h-i-§Ä X½n-epÅ AIew h Dw Bbm ]c-¸-fhv bh Bbn-cn¡pw 
Concept Hcp kmam-´-cn-I-¯nsâ ]c-¸-fhv bh BsW¶ Bibw 
Equation kmam-´-cn-I-¯sâ ]c-¸-fhv = bh 
Symbols b kmam-´-cn-I-¯nsâ Hcp hiw 
h kam-´-c-h-i-§Ä X½n-epÅ AIew 
CLASSROOM INTERACTION PROCEDURE RESPONSES 
INTRODUCTION 
n§Ä hnhn[ Xcw Pyman-Xob cq]-§Ä ]Tn-¨n-«p-­- 
tÃm. {XntIm-Ww,
NXp-cw, NXpÀ`p-Pw, ]©-`p-Pw,-j-Uv`pPw XpS-§n-b-h-bm-WtÃm n§Ä 
]cn-N-b-s¸-«n-«p-Å-Xv. n§Ä¡v ÂIp¶ {XntIm-W-§sf {Ia-s¸-Sp-¯p-I. 
Ah-bpsS {]tXy-I-X-IÄ I­- 
¯pI? 
{XntIm-W-§Ä tNÀ¯p h¨-t¸mÄ hnhn-[-Xcw Pyman-Xob cq]-§Ä e`n-¨p. 
AXm-bXv FsXmcp Pyman-Xob cp]-s¯bpw {XntIm-W-§-fmbn `mKn-¡mw. 
PRESENTATION 
Activity – 1 
Ip«n-Isf hnhn[ {Kq¸p-I-fmbn Xncn¨v Htcm {Kq¸npw Htcm kmam-´-cnI 
¯sâ amXrI ÂIp-¶p. {]tXy-I-X-IÄ Is­- 
¯m³ Ip«n-I-tfmSv 
Bh-iy-s¸-Sp-¶p. Ip«n-IÄ kmam-´-cn-I-¯nsâ 
{]tXy-I-X-IÄ Is­ 
¯p¶p. 
Activity – 2 
Ip«n-IÄ ÂInb kmam-´-cn-I-¯n Hcp hnIÀWw hc¨v {]tXy-I-X-IÄ 
Is­- 
¯m³ Bh-iy-s¸-Sp-¶p. 
c­v 
kÀh-k-a-{Xn-tIm-W-§Ä 
Activity 3 e`n-¡p-sa¶v Is­ 
¯p¶p. 
{XntIm-W-§-fpsS ]c-¸-fhp Is­- 
¯m³ Bh-iy-s¸-Sp-¶p.
]mZw b bpw D¶Xn h Dw Bb {XntIm-W-¯nsâ ]c-¸-fhv 1/2 bh 
F¶p I­- 
¯p-¶p. 
D C 
A B 
]mZw b bpw D¶Xn hDw Bb {XntIm-W-¯sâ ]c-¸-fhv 1/2 bh 
Is­- 
¯p-¶p. 
c­v 
{XntIm-W-§fpw kÀh-kaw Bb-Xn-m BsI ]c-¸-fhv 
= 1/2 bh + ½ bh = bh 
kmam-´-cnIw ABCD bpsS ]c-¸-fhv 
= ADB bpsS ]c-¸-fhv + BCD bpsS ]c-¸-fhv 
+ 1/2 bh + ½ bh = bh 
AXm-bXv Hcp hiw b bpw kam-´-c-h-i-§Ä X½n-epÅ AIew h Dw 
Bbm kmam-´-cn-I-¯nsâ ]c-¸-fhv bh Bbn-cn-¡p-sa¶v A²ym-]nI 
]dªp sImSp-¡-¶p. 
A²ym-]nI tmSvkv sImSp-¡-¶p. 
]c-¸-fhv 
kmam-´-cn-I-¯nsâ ]c-¸-fhv = bh 
b = kmam-´-cn-I-¯nsâ Hcp hiw 
h = kam-´-chi-§Ä X½n-epÅ AIew 
APPLICATION 
kmam-´-cn-I-¯nsâ Hcp hiw 5cm Dw kam-´-c-h-i-§Ä X½n-epÅ AIew 
4cmDw Bbm ]c-¸-f-sh´v ? 
tNmZy¯n X¶n-cn-¡p¶Xv Fs´-Ãm-amWv ? b = 5cm, h = 4cm 
kmam-´-cn-I-¯nsâ ]c-¸-fhv Is­- 
¯m-pÅ kq{X-hm-Iy-sa´v ? bh 
A§-s-sb-¦Nâ ]c-¸-fhv F{X ? 5 x 4 = 20 N. sk.-an. 
BqWnäv F´v ? 
----------------------- 
_____________________________________________________________________________________
REVIEW 
1) kmam-´-cn-I-¯nsâ {]tXy-I-X-IÄ Fs´Ãmw ? 
2) kmam-´-cn-I-¯nsâ ]c-¸-fhv Is­- 
¯-pÅ kq{X-hmIyw ? 
FOLLOW UP ACTIVITY 
Hcp hi-¯nsâ ofw 10cm Dw kam-´-c-h-i-§Ä X½n-epevf AIew 4cm Dw Bb kmam-´-cn-I-¯nsâ ]c-¸-fhv F{X-bmWv ?

LESSON TEMPLATE

  • 1.
    LESSON TEMPLATE Nameof the Student teacher : Period : Name of the School : Date : Standard : VIII Subject : Mathematics Time : Unit : Area Strength : Topic : Area of Average age : 13+ Parallelogram CURRICULAR STATEMENT  Hcp hiw b bpw kam-´-c-h-i-§Ä X½n-epÅ AIew n Dw Bb kmam-´-cn-I-¯nsâ ]c-¸-fhv bn BsW¶v And-bp-¶p. CONTENT ANALYSIS TERMS kmam-´-cn-Iw, {XntIm-Ww, ]mZw, kam-´-c-h-i-§Ä, D¶Xn Facts FXnÀh-i-§Ä kam-´-c-amb Pyman-Xo-b-cq-]-amWv kmam-´-cnIw  kmam-´-cn-Is¯ Hcp hnI-ÀWw sIm­p `mKn-¨m c­v kÀh-k-a-{Xn-tIm-W-§Ä e`n¡pw  c­v {XntIm-W-§-fp-sSbpw ]c-¸-f-hp-I-fpsS XpI-bmWv kmam-´-cn-I-¯nsâ ]c-¸-f-hv.  {XntIm-W-¯nsâ ]c-¸-fhv 1/2 bh BWv.  kmam-´-cn-I-¯nsâ Hcp hiw b bpw kmam-´-c-h-i-§Ä X½n-epÅ AIew h Dw Bbm ]c-¸-fhv bh Bbn-cn¡pw Concept Hcp kmam-´-cn-I-¯nsâ ]c-¸-fhv bh BsW¶ Bibw Equation kmam-´-cn-I-¯sâ ]c-¸-fhv = bh Symbols b kmam-´-cn-I-¯nsâ Hcp hiw h kam-´-c-h-i-§Ä X½n-epÅ AIew CLASSROOM INTERACTION PROCEDURE RESPONSES INTRODUCTION n§Ä hnhn[ Xcw Pyman-Xob cq]-§Ä ]Tn-¨n-«p-­- tÃm. {XntIm-Ww,
  • 2.
    NXp-cw, NXpÀ`p-Pw, ]©-`p-Pw,-j-Uv`pPwXpS-§n-b-h-bm-WtÃm n§Ä ]cn-N-b-s¸-«n-«p-Å-Xv. n§Ä¡v ÂIp¶ {XntIm-W-§sf {Ia-s¸-Sp-¯p-I. Ah-bpsS {]tXy-I-X-IÄ I­- ¯pI? {XntIm-W-§Ä tNÀ¯p h¨-t¸mÄ hnhn-[-Xcw Pyman-Xob cq]-§Ä e`n-¨p. AXm-bXv FsXmcp Pyman-Xob cp]-s¯bpw {XntIm-W-§-fmbn `mKn-¡mw. PRESENTATION Activity – 1 Ip«n-Isf hnhn[ {Kq¸p-I-fmbn Xncn¨v Htcm {Kq¸npw Htcm kmam-´-cnI ¯sâ amXrI ÂIp-¶p. {]tXy-I-X-IÄ Is­- ¯m³ Ip«n-I-tfmSv Bh-iy-s¸-Sp-¶p. Ip«n-IÄ kmam-´-cn-I-¯nsâ {]tXy-I-X-IÄ Is­ ¯p¶p. Activity – 2 Ip«n-IÄ ÂInb kmam-´-cn-I-¯n Hcp hnIÀWw hc¨v {]tXy-I-X-IÄ Is­- ¯m³ Bh-iy-s¸-Sp-¶p. c­v kÀh-k-a-{Xn-tIm-W-§Ä Activity 3 e`n-¡p-sa¶v Is­ ¯p¶p. {XntIm-W-§-fpsS ]c-¸-fhp Is­- ¯m³ Bh-iy-s¸-Sp-¶p.
  • 3.
    ]mZw b bpwD¶Xn h Dw Bb {XntIm-W-¯nsâ ]c-¸-fhv 1/2 bh F¶p I­- ¯p-¶p. D C A B ]mZw b bpw D¶Xn hDw Bb {XntIm-W-¯sâ ]c-¸-fhv 1/2 bh Is­- ¯p-¶p. c­v {XntIm-W-§fpw kÀh-kaw Bb-Xn-m BsI ]c-¸-fhv = 1/2 bh + ½ bh = bh kmam-´-cnIw ABCD bpsS ]c-¸-fhv = ADB bpsS ]c-¸-fhv + BCD bpsS ]c-¸-fhv + 1/2 bh + ½ bh = bh AXm-bXv Hcp hiw b bpw kam-´-c-h-i-§Ä X½n-epÅ AIew h Dw Bbm kmam-´-cn-I-¯nsâ ]c-¸-fhv bh Bbn-cn-¡p-sa¶v A²ym-]nI ]dªp sImSp-¡-¶p. A²ym-]nI tmSvkv sImSp-¡-¶p. ]c-¸-fhv kmam-´-cn-I-¯nsâ ]c-¸-fhv = bh b = kmam-´-cn-I-¯nsâ Hcp hiw h = kam-´-chi-§Ä X½n-epÅ AIew APPLICATION kmam-´-cn-I-¯nsâ Hcp hiw 5cm Dw kam-´-c-h-i-§Ä X½n-epÅ AIew 4cmDw Bbm ]c-¸-f-sh´v ? tNmZy¯n X¶n-cn-¡p¶Xv Fs´-Ãm-amWv ? b = 5cm, h = 4cm kmam-´-cn-I-¯nsâ ]c-¸-fhv Is­- ¯m-pÅ kq{X-hm-Iy-sa´v ? bh A§-s-sb-¦Nâ ]c-¸-fhv F{X ? 5 x 4 = 20 N. sk.-an. BqWnäv F´v ? ----------------------- _____________________________________________________________________________________
  • 4.
    REVIEW 1) kmam-´-cn-I-¯nsâ{]tXy-I-X-IÄ Fs´Ãmw ? 2) kmam-´-cn-I-¯nsâ ]c-¸-fhv Is­- ¯-pÅ kq{X-hmIyw ? FOLLOW UP ACTIVITY Hcp hi-¯nsâ ofw 10cm Dw kam-´-c-h-i-§Ä X½n-epevf AIew 4cm Dw Bb kmam-´-cn-I-¯nsâ ]c-¸-fhv F{X-bmWv ?