SlideShare a Scribd company logo
[course site]
Day 2 Lecture 3
Recurrent Neural
Networks II
Santiago Pascual
2
Outline
1. LSTM latest improvement: Phased-LSTM
2. Causal Convolutions
3. Quasi-RNN
4. Main ideas to be kept
Recap LSTM…
An LSTM cell is defined by two groups of neurons plus the cell state (memory unit):
1. Gates
2. Activation units
3. Cell state
If we don’t have any
input, the cell is still
applying a forget
factor!
4
Phased LSTM
Extend the LSTM cell by adding a new time gate, controlled by a parametrized oscillation with a
frequency range that produces updates of the memory cell only during small percentage of the
cycle.
Phased LSTM: Accelerating Recurrent Network Training
for Long or Event-based Sequences (Neil et al. 2016)
5
Phased LSTM
Extend the LSTM cell by adding a new time gate, controlled by a parametrized oscillation with a
frequency range that produces updates of the memory cell only during small percentage of the
cycle.
T
Ron = Fraction of active period
s
Learnable parameters
6
Phased LSTM
3 phases in kt gate: In first 2 phases the “openness” of the gate rises from 0 to 1 (first phase) and from
1 to 0 (second phase). During third phase, gate closes and cell state is maintained. α parameter is a
leaky factor to allow gradient flowing during training, 0 during test.
T
Ron = Fraction of active period
s
7
Phased LSTM
3 phases in kt gate: In first 2 phases the “openness” of the gate rises from 0 to 1 (first phase) and from
1 to 0 (second phase). During third phase, gate closes and cell state is maintained. α parameter is a
leaky factor to allow gradient flowing during training, 0 during test.
T
Ron = Fraction of active period
s
8
Phased LSTM
Updates happen when the cell gate is open, as depicted in the colored figure below, where the different
cell states are updated when the clock signal is burst.
Phased LSTM
Really faster convergence than vanilla LSTM architecture, as well as more long-term memory
retention, as they preserve info about some time-steps far back in time when kt gate is closed, till it’s
open again, where current time-step receives fresh information about a possibly quite old state.
1D Convolutions
hi there how are you doing ?
100 dim
Let’s say we have a sequence of 100 dimensional vectors describing words.
sequence length = 8
arrangein 2D
100
dim
sequence length = 8
,
1D Convolutions
We can apply a 1D convolutional activation over the 2D matrix: for an arbitrari kernel of width=3
100
dim
sequence length = 8
K1
Each 1D convolutional kernel is a
2D matrix of size (3, 100)
100
dim
1D Convolutions
Keep in mind we are working with 100 dimensions although here we depict just one for simplicity
1 2 3 4 5 6 7 8
w1 w2 w3
w1 w2 w3
w1 w2 w3
w1 w2 w3
w1 w2 w3
1 2 3 4 5 6
w1 w2 w3
The length result of the convolution is
well known to be:
seqlength - kwidth + 1 = 8 - 3 + 1 = 6
So the output matrix will be (6, 100)
because there was no padding
1D Convolutions
When we add zero padding, we normally do so on both sides of the sequence (as in image padding)
1 2 3 4 5 6 7 8
w1 w2 w3
w1 w2 w3
w1 w2 w3
w1 w2 w3
w1 w2 w3
1 2 3 4 5 6 7 8
w1 w2 w3
The length result of the convolution is
well known to be:
seqlength - kwidth + 1 = 10 - 3 + 1 = 8
So the output matrix will be (8, 100)
because we had padding
0 0
w1 w2 w3
w1 w2 w3
Causal 1D Convolutions
Add the zero padding just on the left side of the sequence, not symmetrically
1 2 3 4 5 6 7 8
w1 w2 w3
w1 w2 w3
w1 w2 w3
w1 w2 w3
w1 w2 w3
1 2 3 4 5 6 7 8
w1 w2 w3
The length result of the convolution is
well known to be:
seqlength - kwidth + 1 = 10 - 3 + 1 = 8
So the output matrix will be (8, 100)
because we had padding
HOWEVER: now every time-step t
depends on the two previous inputs as
well as the current time-step → every
output is causal
We make a causal convolution by
padding left the sequence with
(kwidth - 1) zeros
0
w1 w2 w3
w1 w2 w3
0
Quasi-RNN
Red blocks are parameterized projections (layer activations/dot products) and blue blocks are pooling
operations:
● In the case of LSTM it is applying the gates transforms (i, f, o)
● In the case of CNN it is a parallel pooling regardless of the position (remember CNNs don’t have a
sense of order)
Advantage of CNN: We can compute all convolutions in parallel
Advantage of LSTM: It imposes the sense of order (appropriate for sequences)
QRNNs are up to x16 times faster than LSTMs!!
Quasi-Recurrent Neural Networks (Bradbury et al. 2016)
Quasi-RNN
QRNN: Merge the best of both worlds to speed up the operations for when we need to process large
sequences.
A QRNN layer is composed of a convolutional stage and a pooling stage:
● Conv stage: perform the different activations in parallel (i.e. layer activations and gate activations) through time,
such that each red sub-block is independent.
● Pooling stage: impose ordering information across time. It is a sequential process (as depicted by the arrow), yes,
BUT the heavy computation has already been performed in a single forward pass in the convolutional stage!
Make all activations in parallel with convolutions and merge sequentially, with no recursive weight operations.
Breaking down Quasi-RNN…
Having a sequence of length T with n-dimensional vectors
Compute the layer input activations (like LSTM) with m conv 1D kernels of Wz:
We want to apply two learnable gates F (forget) and O (output):
● Note the sigmoid functions when it comes to gate activations → because we want them to
act like switches! (between 0 and 1)
Consider weights matrices are thus containing m kernels, k kernel
width each (amount of time-steps seen per convolution) and with n input dimensions (like previous slides
example with 100 dim) → output Z is
To exemplify: what happens when k=2? We process the current time-step and the right previous one
Looks similar to LSTM equations, huh?
Breaking down Quasi-RNN…
Finally, pooling stage is the recursive part, where order is imposed (thus it becomes an RNN-like
mechanism). Note this is just an element-wise product, so quite quicker than computing the gate
activation at every time-step (like in LSTM).
Three different flavors depending on the gates we computed:
● f-pooling
● fo-pooling
● ifo-pooling
Main ideas to be kept regarding RNNs
● RNNs are very good to process sequences, so whenever order matters → think about including
some recurrent module to keep track of temporal evolution
● Generally LSTM/GRU perform similarly, though it is interesting to try both by yourselves with any
task!
○ Whenever you ask yourselves: which cell should I use? If you have lots of data you may
want to go first with LSTMs (it has more parameters)
● If you have to process very long sequences (e.g. 2.000 time-steps) → maybe try PLSTM
● If you care about speed/efficiency during training → maybe try QRNN
20
Thanks ! Q&A ?
@Santty128

More Related Content

What's hot

【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
負の二項分布について
負の二項分布について負の二項分布について
負の二項分布について
Hiroshi Shimizu
 
Diffusion models beat gans on image synthesis
Diffusion models beat gans on image synthesisDiffusion models beat gans on image synthesis
Diffusion models beat gans on image synthesis
BeerenSahu
 
データ解析14 ナイーブベイズ
データ解析14 ナイーブベイズデータ解析14 ナイーブベイズ
データ解析14 ナイーブベイズ
Hirotaka Hachiya
 
Deep Learningと自然言語処理
Deep Learningと自然言語処理Deep Learningと自然言語処理
Deep Learningと自然言語処理
Preferred Networks
 
Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Variational Autoencoder Tutorial
Variational Autoencoder Tutorial
Hojin Yang
 
敵対的学習による統合型ソースフィルタネットワーク
敵対的学習による統合型ソースフィルタネットワーク敵対的学習による統合型ソースフィルタネットワーク
敵対的学習による統合型ソースフィルタネットワーク
NU_I_TODALAB
 
時系列分析入門
時系列分析入門時系列分析入門
時系列分析入門
Miki Katsuragi
 
テンソル代数
テンソル代数テンソル代数
テンソル代数
KCS Keio Computer Society
 
MLP輪読会 バンディット問題の理論とアルゴリズム 第3章
MLP輪読会 バンディット問題の理論とアルゴリズム 第3章MLP輪読会 バンディット問題の理論とアルゴリズム 第3章
MLP輪読会 バンディット問題の理論とアルゴリズム 第3章
takashi usami
 
オセロゲームにおける強化学習を用いたゲーム戦略の獲得
オセロゲームにおける強化学習を用いたゲーム戦略の獲得オセロゲームにおける強化学習を用いたゲーム戦略の獲得
オセロゲームにおける強化学習を用いたゲーム戦略の獲得
Ko Shira
 
記号を用いたコミュニケーションを実現するために何が必要か?― 記号創発ロボティクスの 視点から ―
記号を用いたコミュニケーションを実現するために何が必要か?― 記号創発ロボティクスの 視点から ―記号を用いたコミュニケーションを実現するために何が必要か?― 記号創発ロボティクスの 視点から ―
記号を用いたコミュニケーションを実現するために何が必要か?― 記号創発ロボティクスの 視点から ―Tadahiro Taniguchi
 
Introduction to XGboost
Introduction to XGboostIntroduction to XGboost
Introduction to XGboost
Shuai Zhang
 
劣モジュラ最適化と機械学習1章
劣モジュラ最適化と機械学習1章劣モジュラ最適化と機械学習1章
劣モジュラ最適化と機械学習1章
Hakky St
 
深層学習(岡本孝之 著) - Deep Learning chap.1 and 2
深層学習(岡本孝之 著) - Deep Learning chap.1 and 2深層学習(岡本孝之 著) - Deep Learning chap.1 and 2
深層学習(岡本孝之 著) - Deep Learning chap.1 and 2
Masayoshi Kondo
 
Deep Learningと画像認識   ~歴史・理論・実践~
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~
nlab_utokyo
 
強化学習その3
強化学習その3強化学習その3
強化学習その3
nishio
 
[DL輪読会]Object-Centric Learning with Slot Attention
[DL輪読会]Object-Centric Learning with Slot Attention[DL輪読会]Object-Centric Learning with Slot Attention
[DL輪読会]Object-Centric Learning with Slot Attention
Deep Learning JP
 
【論文読み会】Moser Flow: Divergence-based Generative Modeling on Manifolds
【論文読み会】Moser Flow: Divergence-based Generative Modeling on Manifolds【論文読み会】Moser Flow: Divergence-based Generative Modeling on Manifolds
【論文読み会】Moser Flow: Divergence-based Generative Modeling on Manifolds
ARISE analytics
 
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
Deep Learning JP
 

What's hot (20)

【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
負の二項分布について
負の二項分布について負の二項分布について
負の二項分布について
 
Diffusion models beat gans on image synthesis
Diffusion models beat gans on image synthesisDiffusion models beat gans on image synthesis
Diffusion models beat gans on image synthesis
 
データ解析14 ナイーブベイズ
データ解析14 ナイーブベイズデータ解析14 ナイーブベイズ
データ解析14 ナイーブベイズ
 
Deep Learningと自然言語処理
Deep Learningと自然言語処理Deep Learningと自然言語処理
Deep Learningと自然言語処理
 
Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Variational Autoencoder Tutorial
Variational Autoencoder Tutorial
 
敵対的学習による統合型ソースフィルタネットワーク
敵対的学習による統合型ソースフィルタネットワーク敵対的学習による統合型ソースフィルタネットワーク
敵対的学習による統合型ソースフィルタネットワーク
 
時系列分析入門
時系列分析入門時系列分析入門
時系列分析入門
 
テンソル代数
テンソル代数テンソル代数
テンソル代数
 
MLP輪読会 バンディット問題の理論とアルゴリズム 第3章
MLP輪読会 バンディット問題の理論とアルゴリズム 第3章MLP輪読会 バンディット問題の理論とアルゴリズム 第3章
MLP輪読会 バンディット問題の理論とアルゴリズム 第3章
 
オセロゲームにおける強化学習を用いたゲーム戦略の獲得
オセロゲームにおける強化学習を用いたゲーム戦略の獲得オセロゲームにおける強化学習を用いたゲーム戦略の獲得
オセロゲームにおける強化学習を用いたゲーム戦略の獲得
 
記号を用いたコミュニケーションを実現するために何が必要か?― 記号創発ロボティクスの 視点から ―
記号を用いたコミュニケーションを実現するために何が必要か?― 記号創発ロボティクスの 視点から ―記号を用いたコミュニケーションを実現するために何が必要か?― 記号創発ロボティクスの 視点から ―
記号を用いたコミュニケーションを実現するために何が必要か?― 記号創発ロボティクスの 視点から ―
 
Introduction to XGboost
Introduction to XGboostIntroduction to XGboost
Introduction to XGboost
 
劣モジュラ最適化と機械学習1章
劣モジュラ最適化と機械学習1章劣モジュラ最適化と機械学習1章
劣モジュラ最適化と機械学習1章
 
深層学習(岡本孝之 著) - Deep Learning chap.1 and 2
深層学習(岡本孝之 著) - Deep Learning chap.1 and 2深層学習(岡本孝之 著) - Deep Learning chap.1 and 2
深層学習(岡本孝之 著) - Deep Learning chap.1 and 2
 
Deep Learningと画像認識   ~歴史・理論・実践~
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~
 
強化学習その3
強化学習その3強化学習その3
強化学習その3
 
[DL輪読会]Object-Centric Learning with Slot Attention
[DL輪読会]Object-Centric Learning with Slot Attention[DL輪読会]Object-Centric Learning with Slot Attention
[DL輪読会]Object-Centric Learning with Slot Attention
 
【論文読み会】Moser Flow: Divergence-based Generative Modeling on Manifolds
【論文読み会】Moser Flow: Divergence-based Generative Modeling on Manifolds【論文読み会】Moser Flow: Divergence-based Generative Modeling on Manifolds
【論文読み会】Moser Flow: Divergence-based Generative Modeling on Manifolds
 
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
 

Viewers also liked

Recurrent Neural Networks I (D2L2 Deep Learning for Speech and Language UPC 2...
Recurrent Neural Networks I (D2L2 Deep Learning for Speech and Language UPC 2...Recurrent Neural Networks I (D2L2 Deep Learning for Speech and Language UPC 2...
Recurrent Neural Networks I (D2L2 Deep Learning for Speech and Language UPC 2...
Universitat Politècnica de Catalunya
 
Language Model (D3L1 Deep Learning for Speech and Language UPC 2017)
Language Model (D3L1 Deep Learning for Speech and Language UPC 2017)Language Model (D3L1 Deep Learning for Speech and Language UPC 2017)
Language Model (D3L1 Deep Learning for Speech and Language UPC 2017)
Universitat Politècnica de Catalunya
 
Speech Recognition with Deep Neural Networks (D3L2 Deep Learning for Speech a...
Speech Recognition with Deep Neural Networks (D3L2 Deep Learning for Speech a...Speech Recognition with Deep Neural Networks (D3L2 Deep Learning for Speech a...
Speech Recognition with Deep Neural Networks (D3L2 Deep Learning for Speech a...
Universitat Politècnica de Catalunya
 
Advanced Neural Machine Translation (D4L2 Deep Learning for Speech and Langua...
Advanced Neural Machine Translation (D4L2 Deep Learning for Speech and Langua...Advanced Neural Machine Translation (D4L2 Deep Learning for Speech and Langua...
Advanced Neural Machine Translation (D4L2 Deep Learning for Speech and Langua...
Universitat Politècnica de Catalunya
 
Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)
Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)
Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)
Universitat Politècnica de Catalunya
 
Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)
Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)
Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)
Universitat Politècnica de Catalunya
 
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
Universitat Politècnica de Catalunya
 
Neural Machine Translation (D3L4 Deep Learning for Speech and Language UPC 2017)
Neural Machine Translation (D3L4 Deep Learning for Speech and Language UPC 2017)Neural Machine Translation (D3L4 Deep Learning for Speech and Language UPC 2017)
Neural Machine Translation (D3L4 Deep Learning for Speech and Language UPC 2017)
Universitat Politècnica de Catalunya
 
Speaker ID II (D4L1 Deep Learning for Speech and Language UPC 2017)
Speaker ID II (D4L1 Deep Learning for Speech and Language UPC 2017)Speaker ID II (D4L1 Deep Learning for Speech and Language UPC 2017)
Speaker ID II (D4L1 Deep Learning for Speech and Language UPC 2017)
Universitat Politècnica de Catalunya
 
End-to-end Speech Recognition with Recurrent Neural Networks (D3L6 Deep Learn...
End-to-end Speech Recognition with Recurrent Neural Networks (D3L6 Deep Learn...End-to-end Speech Recognition with Recurrent Neural Networks (D3L6 Deep Learn...
End-to-end Speech Recognition with Recurrent Neural Networks (D3L6 Deep Learn...
Universitat Politècnica de Catalunya
 
Generative Adversarial Networks (D2L5 Deep Learning for Speech and Language U...
Generative Adversarial Networks (D2L5 Deep Learning for Speech and Language U...Generative Adversarial Networks (D2L5 Deep Learning for Speech and Language U...
Generative Adversarial Networks (D2L5 Deep Learning for Speech and Language U...
Universitat Politècnica de Catalunya
 
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
Universitat Politècnica de Catalunya
 
Recurrent Neural Networks. Part 1: Theory
Recurrent Neural Networks. Part 1: TheoryRecurrent Neural Networks. Part 1: Theory
Recurrent Neural Networks. Part 1: Theory
Andrii Gakhov
 
Recurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRURecurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRU
ananth
 
Recurrent Neural Networks for Text Analysis
Recurrent Neural Networks for Text AnalysisRecurrent Neural Networks for Text Analysis
Recurrent Neural Networks for Text Analysis
odsc
 
Understanding RNN and LSTM
Understanding RNN and LSTMUnderstanding RNN and LSTM
Understanding RNN and LSTM
健程 杨
 
Recurrent neural networks
Recurrent neural networksRecurrent neural networks
Recurrent neural networks
Viacheslav Khomenko
 
LSTM - Moving to the Brightside
LSTM - Moving to the BrightsideLSTM - Moving to the Brightside
LSTM - Moving to the Brightside
D2L Barry
 
Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model (UP...
Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model (UP...Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model (UP...
Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model (UP...
Universitat Politècnica de Catalunya
 
RNN, LSTM and Seq-2-Seq Models
RNN, LSTM and Seq-2-Seq ModelsRNN, LSTM and Seq-2-Seq Models
RNN, LSTM and Seq-2-Seq Models
Emory NLP
 

Viewers also liked (20)

Recurrent Neural Networks I (D2L2 Deep Learning for Speech and Language UPC 2...
Recurrent Neural Networks I (D2L2 Deep Learning for Speech and Language UPC 2...Recurrent Neural Networks I (D2L2 Deep Learning for Speech and Language UPC 2...
Recurrent Neural Networks I (D2L2 Deep Learning for Speech and Language UPC 2...
 
Language Model (D3L1 Deep Learning for Speech and Language UPC 2017)
Language Model (D3L1 Deep Learning for Speech and Language UPC 2017)Language Model (D3L1 Deep Learning for Speech and Language UPC 2017)
Language Model (D3L1 Deep Learning for Speech and Language UPC 2017)
 
Speech Recognition with Deep Neural Networks (D3L2 Deep Learning for Speech a...
Speech Recognition with Deep Neural Networks (D3L2 Deep Learning for Speech a...Speech Recognition with Deep Neural Networks (D3L2 Deep Learning for Speech a...
Speech Recognition with Deep Neural Networks (D3L2 Deep Learning for Speech a...
 
Advanced Neural Machine Translation (D4L2 Deep Learning for Speech and Langua...
Advanced Neural Machine Translation (D4L2 Deep Learning for Speech and Langua...Advanced Neural Machine Translation (D4L2 Deep Learning for Speech and Langua...
Advanced Neural Machine Translation (D4L2 Deep Learning for Speech and Langua...
 
Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)
Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)
Word Embeddings (D2L4 Deep Learning for Speech and Language UPC 2017)
 
Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)
Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)
Deep Belief Networks (D2L1 Deep Learning for Speech and Language UPC 2017)
 
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
 
Neural Machine Translation (D3L4 Deep Learning for Speech and Language UPC 2017)
Neural Machine Translation (D3L4 Deep Learning for Speech and Language UPC 2017)Neural Machine Translation (D3L4 Deep Learning for Speech and Language UPC 2017)
Neural Machine Translation (D3L4 Deep Learning for Speech and Language UPC 2017)
 
Speaker ID II (D4L1 Deep Learning for Speech and Language UPC 2017)
Speaker ID II (D4L1 Deep Learning for Speech and Language UPC 2017)Speaker ID II (D4L1 Deep Learning for Speech and Language UPC 2017)
Speaker ID II (D4L1 Deep Learning for Speech and Language UPC 2017)
 
End-to-end Speech Recognition with Recurrent Neural Networks (D3L6 Deep Learn...
End-to-end Speech Recognition with Recurrent Neural Networks (D3L6 Deep Learn...End-to-end Speech Recognition with Recurrent Neural Networks (D3L6 Deep Learn...
End-to-end Speech Recognition with Recurrent Neural Networks (D3L6 Deep Learn...
 
Generative Adversarial Networks (D2L5 Deep Learning for Speech and Language U...
Generative Adversarial Networks (D2L5 Deep Learning for Speech and Language U...Generative Adversarial Networks (D2L5 Deep Learning for Speech and Language U...
Generative Adversarial Networks (D2L5 Deep Learning for Speech and Language U...
 
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
 
Recurrent Neural Networks. Part 1: Theory
Recurrent Neural Networks. Part 1: TheoryRecurrent Neural Networks. Part 1: Theory
Recurrent Neural Networks. Part 1: Theory
 
Recurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRURecurrent Neural Networks, LSTM and GRU
Recurrent Neural Networks, LSTM and GRU
 
Recurrent Neural Networks for Text Analysis
Recurrent Neural Networks for Text AnalysisRecurrent Neural Networks for Text Analysis
Recurrent Neural Networks for Text Analysis
 
Understanding RNN and LSTM
Understanding RNN and LSTMUnderstanding RNN and LSTM
Understanding RNN and LSTM
 
Recurrent neural networks
Recurrent neural networksRecurrent neural networks
Recurrent neural networks
 
LSTM - Moving to the Brightside
LSTM - Moving to the BrightsideLSTM - Moving to the Brightside
LSTM - Moving to the Brightside
 
Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model (UP...
Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model (UP...Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model (UP...
Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model (UP...
 
RNN, LSTM and Seq-2-Seq Models
RNN, LSTM and Seq-2-Seq ModelsRNN, LSTM and Seq-2-Seq Models
RNN, LSTM and Seq-2-Seq Models
 

Similar to Recurrent Neural Networks II (D2L3 Deep Learning for Speech and Language UPC 2017)

Recurrent and Recursive Nets (part 2)
Recurrent and Recursive Nets (part 2)Recurrent and Recursive Nets (part 2)
Recurrent and Recursive Nets (part 2)
sohaib_alam
 
Recurrent Neural Networks
Recurrent Neural NetworksRecurrent Neural Networks
Recurrent Neural Networks
Sharath TS
 
14889574 dl ml RNN Deeplearning MMMm.ppt
14889574 dl ml RNN Deeplearning MMMm.ppt14889574 dl ml RNN Deeplearning MMMm.ppt
14889574 dl ml RNN Deeplearning MMMm.ppt
ManiMaran230751
 
Concepts of Temporal CNN, Recurrent Neural Network, Attention
Concepts of Temporal CNN, Recurrent Neural Network, AttentionConcepts of Temporal CNN, Recurrent Neural Network, Attention
Concepts of Temporal CNN, Recurrent Neural Network, Attention
SaumyaMundra3
 
RNN and LSTM model description and working advantages and disadvantages
RNN and LSTM model description and working advantages and disadvantagesRNN and LSTM model description and working advantages and disadvantages
RNN and LSTM model description and working advantages and disadvantages
AbhijitVenkatesh1
 
Recurrent neural networks rnn
Recurrent neural networks   rnnRecurrent neural networks   rnn
Recurrent neural networks rnn
Kuppusamy P
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
Junaid Bhat
 
An Introduction to Long Short-term Memory (LSTMs)
An Introduction to Long Short-term Memory (LSTMs)An Introduction to Long Short-term Memory (LSTMs)
An Introduction to Long Short-term Memory (LSTMs)
EmmanuelJosterSsenjo
 
kasami spreading code example with explanation.pdf
kasami spreading code example with explanation.pdfkasami spreading code example with explanation.pdf
kasami spreading code example with explanation.pdf
GeletaAman
 
Video Analysis with Recurrent Neural Networks (Master Computer Vision Barcelo...
Video Analysis with Recurrent Neural Networks (Master Computer Vision Barcelo...Video Analysis with Recurrent Neural Networks (Master Computer Vision Barcelo...
Video Analysis with Recurrent Neural Networks (Master Computer Vision Barcelo...
Universitat Politècnica de Catalunya
 
Intelligent Handwriting Recognition_MIL_presentation_v3_final
Intelligent Handwriting Recognition_MIL_presentation_v3_finalIntelligent Handwriting Recognition_MIL_presentation_v3_final
Intelligent Handwriting Recognition_MIL_presentation_v3_finalSuhas Pillai
 
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
Universitat Politècnica de Catalunya
 
Vlsi lab viva question with answers
Vlsi lab viva question with answersVlsi lab viva question with answers
Vlsi lab viva question with answersAyesha Ambreen
 
Recurrent Neural Networks (RNNs)
Recurrent Neural Networks (RNNs)Recurrent Neural Networks (RNNs)
Recurrent Neural Networks (RNNs)
Abdullah al Mamun
 
Rnn presentation 2
Rnn presentation 2Rnn presentation 2
Rnn presentation 2
Shubhangi Tandon
 
Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)
Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)
Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)
Universitat Politècnica de Catalunya
 
Deep-Learning-2017-Lecture6RNN.ppt
Deep-Learning-2017-Lecture6RNN.pptDeep-Learning-2017-Lecture6RNN.ppt
Deep-Learning-2017-Lecture6RNN.ppt
ShankerRajendiran2
 
Deep-Learning-2017-Lecture6RNN.ppt
Deep-Learning-2017-Lecture6RNN.pptDeep-Learning-2017-Lecture6RNN.ppt
Deep-Learning-2017-Lecture6RNN.ppt
SatyaNarayana594629
 
RNN.ppt
RNN.pptRNN.ppt
Deep learning for detection hate speech.ppt
Deep learning for detection hate speech.pptDeep learning for detection hate speech.ppt
Deep learning for detection hate speech.ppt
usmanshoukat28
 

Similar to Recurrent Neural Networks II (D2L3 Deep Learning for Speech and Language UPC 2017) (20)

Recurrent and Recursive Nets (part 2)
Recurrent and Recursive Nets (part 2)Recurrent and Recursive Nets (part 2)
Recurrent and Recursive Nets (part 2)
 
Recurrent Neural Networks
Recurrent Neural NetworksRecurrent Neural Networks
Recurrent Neural Networks
 
14889574 dl ml RNN Deeplearning MMMm.ppt
14889574 dl ml RNN Deeplearning MMMm.ppt14889574 dl ml RNN Deeplearning MMMm.ppt
14889574 dl ml RNN Deeplearning MMMm.ppt
 
Concepts of Temporal CNN, Recurrent Neural Network, Attention
Concepts of Temporal CNN, Recurrent Neural Network, AttentionConcepts of Temporal CNN, Recurrent Neural Network, Attention
Concepts of Temporal CNN, Recurrent Neural Network, Attention
 
RNN and LSTM model description and working advantages and disadvantages
RNN and LSTM model description and working advantages and disadvantagesRNN and LSTM model description and working advantages and disadvantages
RNN and LSTM model description and working advantages and disadvantages
 
Recurrent neural networks rnn
Recurrent neural networks   rnnRecurrent neural networks   rnn
Recurrent neural networks rnn
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
 
An Introduction to Long Short-term Memory (LSTMs)
An Introduction to Long Short-term Memory (LSTMs)An Introduction to Long Short-term Memory (LSTMs)
An Introduction to Long Short-term Memory (LSTMs)
 
kasami spreading code example with explanation.pdf
kasami spreading code example with explanation.pdfkasami spreading code example with explanation.pdf
kasami spreading code example with explanation.pdf
 
Video Analysis with Recurrent Neural Networks (Master Computer Vision Barcelo...
Video Analysis with Recurrent Neural Networks (Master Computer Vision Barcelo...Video Analysis with Recurrent Neural Networks (Master Computer Vision Barcelo...
Video Analysis with Recurrent Neural Networks (Master Computer Vision Barcelo...
 
Intelligent Handwriting Recognition_MIL_presentation_v3_final
Intelligent Handwriting Recognition_MIL_presentation_v3_finalIntelligent Handwriting Recognition_MIL_presentation_v3_final
Intelligent Handwriting Recognition_MIL_presentation_v3_final
 
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
PixelCNN, Wavenet, Normalizing Flows - Santiago Pascual - UPC Barcelona 2018
 
Vlsi lab viva question with answers
Vlsi lab viva question with answersVlsi lab viva question with answers
Vlsi lab viva question with answers
 
Recurrent Neural Networks (RNNs)
Recurrent Neural Networks (RNNs)Recurrent Neural Networks (RNNs)
Recurrent Neural Networks (RNNs)
 
Rnn presentation 2
Rnn presentation 2Rnn presentation 2
Rnn presentation 2
 
Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)
Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)
Recurrent Neural Networks (D2L2 2017 UPC Deep Learning for Computer Vision)
 
Deep-Learning-2017-Lecture6RNN.ppt
Deep-Learning-2017-Lecture6RNN.pptDeep-Learning-2017-Lecture6RNN.ppt
Deep-Learning-2017-Lecture6RNN.ppt
 
Deep-Learning-2017-Lecture6RNN.ppt
Deep-Learning-2017-Lecture6RNN.pptDeep-Learning-2017-Lecture6RNN.ppt
Deep-Learning-2017-Lecture6RNN.ppt
 
RNN.ppt
RNN.pptRNN.ppt
RNN.ppt
 
Deep learning for detection hate speech.ppt
Deep learning for detection hate speech.pptDeep learning for detection hate speech.ppt
Deep learning for detection hate speech.ppt
 

More from Universitat Politècnica de Catalunya

Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Universitat Politècnica de Catalunya
 
Deep Generative Learning for All
Deep Generative Learning for AllDeep Generative Learning for All
Deep Generative Learning for All
Universitat Politècnica de Catalunya
 
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
Universitat Politècnica de Catalunya
 
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-NietoTowards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Universitat Politècnica de Catalunya
 
The Transformer - Xavier Giró - UPC Barcelona 2021
The Transformer - Xavier Giró - UPC Barcelona 2021The Transformer - Xavier Giró - UPC Barcelona 2021
The Transformer - Xavier Giró - UPC Barcelona 2021
Universitat Politècnica de Catalunya
 
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Universitat Politècnica de Catalunya
 
Open challenges in sign language translation and production
Open challenges in sign language translation and productionOpen challenges in sign language translation and production
Open challenges in sign language translation and production
Universitat Politècnica de Catalunya
 
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in VideosGeneration of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Universitat Politècnica de Catalunya
 
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Discovery and Learning of Navigation Goals from Pixels in MinecraftDiscovery and Learning of Navigation Goals from Pixels in Minecraft
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Universitat Politècnica de Catalunya
 
Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...
Universitat Politècnica de Catalunya
 
Intepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural NetworksIntepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural Networks
Universitat Politècnica de Catalunya
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Universitat Politècnica de Catalunya
 
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Universitat Politècnica de Catalunya
 
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Universitat Politècnica de Catalunya
 
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Universitat Politècnica de Catalunya
 
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Universitat Politècnica de Catalunya
 
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Universitat Politècnica de Catalunya
 
Curriculum Learning for Recurrent Video Object Segmentation
Curriculum Learning for Recurrent Video Object SegmentationCurriculum Learning for Recurrent Video Object Segmentation
Curriculum Learning for Recurrent Video Object Segmentation
Universitat Politècnica de Catalunya
 
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Universitat Politècnica de Catalunya
 

More from Universitat Politècnica de Catalunya (20)

Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
 
Deep Generative Learning for All
Deep Generative Learning for AllDeep Generative Learning for All
Deep Generative Learning for All
 
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
 
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-NietoTowards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
 
The Transformer - Xavier Giró - UPC Barcelona 2021
The Transformer - Xavier Giró - UPC Barcelona 2021The Transformer - Xavier Giró - UPC Barcelona 2021
The Transformer - Xavier Giró - UPC Barcelona 2021
 
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
 
Open challenges in sign language translation and production
Open challenges in sign language translation and productionOpen challenges in sign language translation and production
Open challenges in sign language translation and production
 
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in VideosGeneration of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
 
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Discovery and Learning of Navigation Goals from Pixels in MinecraftDiscovery and Learning of Navigation Goals from Pixels in Minecraft
Discovery and Learning of Navigation Goals from Pixels in Minecraft
 
Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...
 
Intepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural NetworksIntepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural Networks
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
 
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
 
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
 
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
 
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
 
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
 
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
 
Curriculum Learning for Recurrent Video Object Segmentation
Curriculum Learning for Recurrent Video Object SegmentationCurriculum Learning for Recurrent Video Object Segmentation
Curriculum Learning for Recurrent Video Object Segmentation
 
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
 

Recently uploaded

一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
nscud
 
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdfSample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Linda486226
 
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Subhajit Sahu
 
【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】
【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】
【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】
NABLAS株式会社
 
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdfCh03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
haila53
 
Adjusting primitives for graph : SHORT REPORT / NOTES
Adjusting primitives for graph : SHORT REPORT / NOTESAdjusting primitives for graph : SHORT REPORT / NOTES
Adjusting primitives for graph : SHORT REPORT / NOTES
Subhajit Sahu
 
Jpolillo Amazon PPC - Bid Optimization Sample
Jpolillo Amazon PPC - Bid Optimization SampleJpolillo Amazon PPC - Bid Optimization Sample
Jpolillo Amazon PPC - Bid Optimization Sample
James Polillo
 
一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单
ocavb
 
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
ewymefz
 
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
axoqas
 
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project PresentationPredicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Boston Institute of Analytics
 
Investigate & Recover / StarCompliance.io / Crypto_Crimes
Investigate & Recover / StarCompliance.io / Crypto_CrimesInvestigate & Recover / StarCompliance.io / Crypto_Crimes
Investigate & Recover / StarCompliance.io / Crypto_Crimes
StarCompliance.io
 
社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .
NABLAS株式会社
 
一比一原版(UVic毕业证)维多利亚大学毕业证成绩单
一比一原版(UVic毕业证)维多利亚大学毕业证成绩单一比一原版(UVic毕业证)维多利亚大学毕业证成绩单
一比一原版(UVic毕业证)维多利亚大学毕业证成绩单
ukgaet
 
tapal brand analysis PPT slide for comptetive data
tapal brand analysis PPT slide for comptetive datatapal brand analysis PPT slide for comptetive data
tapal brand analysis PPT slide for comptetive data
theahmadsaood
 
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
vcaxypu
 
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
vcaxypu
 
Innovative Methods in Media and Communication Research by Sebastian Kubitschk...
Innovative Methods in Media and Communication Research by Sebastian Kubitschk...Innovative Methods in Media and Communication Research by Sebastian Kubitschk...
Innovative Methods in Media and Communication Research by Sebastian Kubitschk...
correoyaya
 
Empowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxEmpowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptx
benishzehra469
 
Q1’2024 Update: MYCI’s Leap Year Rebound
Q1’2024 Update: MYCI’s Leap Year ReboundQ1’2024 Update: MYCI’s Leap Year Rebound
Q1’2024 Update: MYCI’s Leap Year Rebound
Oppotus
 

Recently uploaded (20)

一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
 
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdfSample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
 
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
 
【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】
【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】
【社内勉強会資料_Octo: An Open-Source Generalist Robot Policy】
 
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdfCh03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
 
Adjusting primitives for graph : SHORT REPORT / NOTES
Adjusting primitives for graph : SHORT REPORT / NOTESAdjusting primitives for graph : SHORT REPORT / NOTES
Adjusting primitives for graph : SHORT REPORT / NOTES
 
Jpolillo Amazon PPC - Bid Optimization Sample
Jpolillo Amazon PPC - Bid Optimization SampleJpolillo Amazon PPC - Bid Optimization Sample
Jpolillo Amazon PPC - Bid Optimization Sample
 
一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单
 
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
 
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
 
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project PresentationPredicting Product Ad Campaign Performance: A Data Analysis Project Presentation
Predicting Product Ad Campaign Performance: A Data Analysis Project Presentation
 
Investigate & Recover / StarCompliance.io / Crypto_Crimes
Investigate & Recover / StarCompliance.io / Crypto_CrimesInvestigate & Recover / StarCompliance.io / Crypto_Crimes
Investigate & Recover / StarCompliance.io / Crypto_Crimes
 
社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .
 
一比一原版(UVic毕业证)维多利亚大学毕业证成绩单
一比一原版(UVic毕业证)维多利亚大学毕业证成绩单一比一原版(UVic毕业证)维多利亚大学毕业证成绩单
一比一原版(UVic毕业证)维多利亚大学毕业证成绩单
 
tapal brand analysis PPT slide for comptetive data
tapal brand analysis PPT slide for comptetive datatapal brand analysis PPT slide for comptetive data
tapal brand analysis PPT slide for comptetive data
 
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
一比一原版(RUG毕业证)格罗宁根大学毕业证成绩单
 
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
一比一原版(ArtEZ毕业证)ArtEZ艺术学院毕业证成绩单
 
Innovative Methods in Media and Communication Research by Sebastian Kubitschk...
Innovative Methods in Media and Communication Research by Sebastian Kubitschk...Innovative Methods in Media and Communication Research by Sebastian Kubitschk...
Innovative Methods in Media and Communication Research by Sebastian Kubitschk...
 
Empowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxEmpowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptx
 
Q1’2024 Update: MYCI’s Leap Year Rebound
Q1’2024 Update: MYCI’s Leap Year ReboundQ1’2024 Update: MYCI’s Leap Year Rebound
Q1’2024 Update: MYCI’s Leap Year Rebound
 

Recurrent Neural Networks II (D2L3 Deep Learning for Speech and Language UPC 2017)

  • 1. [course site] Day 2 Lecture 3 Recurrent Neural Networks II Santiago Pascual
  • 2. 2 Outline 1. LSTM latest improvement: Phased-LSTM 2. Causal Convolutions 3. Quasi-RNN 4. Main ideas to be kept
  • 3. Recap LSTM… An LSTM cell is defined by two groups of neurons plus the cell state (memory unit): 1. Gates 2. Activation units 3. Cell state If we don’t have any input, the cell is still applying a forget factor!
  • 4. 4 Phased LSTM Extend the LSTM cell by adding a new time gate, controlled by a parametrized oscillation with a frequency range that produces updates of the memory cell only during small percentage of the cycle. Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences (Neil et al. 2016)
  • 5. 5 Phased LSTM Extend the LSTM cell by adding a new time gate, controlled by a parametrized oscillation with a frequency range that produces updates of the memory cell only during small percentage of the cycle. T Ron = Fraction of active period s Learnable parameters
  • 6. 6 Phased LSTM 3 phases in kt gate: In first 2 phases the “openness” of the gate rises from 0 to 1 (first phase) and from 1 to 0 (second phase). During third phase, gate closes and cell state is maintained. α parameter is a leaky factor to allow gradient flowing during training, 0 during test. T Ron = Fraction of active period s
  • 7. 7 Phased LSTM 3 phases in kt gate: In first 2 phases the “openness” of the gate rises from 0 to 1 (first phase) and from 1 to 0 (second phase). During third phase, gate closes and cell state is maintained. α parameter is a leaky factor to allow gradient flowing during training, 0 during test. T Ron = Fraction of active period s
  • 8. 8 Phased LSTM Updates happen when the cell gate is open, as depicted in the colored figure below, where the different cell states are updated when the clock signal is burst.
  • 9. Phased LSTM Really faster convergence than vanilla LSTM architecture, as well as more long-term memory retention, as they preserve info about some time-steps far back in time when kt gate is closed, till it’s open again, where current time-step receives fresh information about a possibly quite old state.
  • 10. 1D Convolutions hi there how are you doing ? 100 dim Let’s say we have a sequence of 100 dimensional vectors describing words. sequence length = 8 arrangein 2D 100 dim sequence length = 8 ,
  • 11. 1D Convolutions We can apply a 1D convolutional activation over the 2D matrix: for an arbitrari kernel of width=3 100 dim sequence length = 8 K1 Each 1D convolutional kernel is a 2D matrix of size (3, 100) 100 dim
  • 12. 1D Convolutions Keep in mind we are working with 100 dimensions although here we depict just one for simplicity 1 2 3 4 5 6 7 8 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 1 2 3 4 5 6 w1 w2 w3 The length result of the convolution is well known to be: seqlength - kwidth + 1 = 8 - 3 + 1 = 6 So the output matrix will be (6, 100) because there was no padding
  • 13. 1D Convolutions When we add zero padding, we normally do so on both sides of the sequence (as in image padding) 1 2 3 4 5 6 7 8 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 1 2 3 4 5 6 7 8 w1 w2 w3 The length result of the convolution is well known to be: seqlength - kwidth + 1 = 10 - 3 + 1 = 8 So the output matrix will be (8, 100) because we had padding 0 0 w1 w2 w3 w1 w2 w3
  • 14. Causal 1D Convolutions Add the zero padding just on the left side of the sequence, not symmetrically 1 2 3 4 5 6 7 8 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 1 2 3 4 5 6 7 8 w1 w2 w3 The length result of the convolution is well known to be: seqlength - kwidth + 1 = 10 - 3 + 1 = 8 So the output matrix will be (8, 100) because we had padding HOWEVER: now every time-step t depends on the two previous inputs as well as the current time-step → every output is causal We make a causal convolution by padding left the sequence with (kwidth - 1) zeros 0 w1 w2 w3 w1 w2 w3 0
  • 15. Quasi-RNN Red blocks are parameterized projections (layer activations/dot products) and blue blocks are pooling operations: ● In the case of LSTM it is applying the gates transforms (i, f, o) ● In the case of CNN it is a parallel pooling regardless of the position (remember CNNs don’t have a sense of order) Advantage of CNN: We can compute all convolutions in parallel Advantage of LSTM: It imposes the sense of order (appropriate for sequences) QRNNs are up to x16 times faster than LSTMs!! Quasi-Recurrent Neural Networks (Bradbury et al. 2016)
  • 16. Quasi-RNN QRNN: Merge the best of both worlds to speed up the operations for when we need to process large sequences. A QRNN layer is composed of a convolutional stage and a pooling stage: ● Conv stage: perform the different activations in parallel (i.e. layer activations and gate activations) through time, such that each red sub-block is independent. ● Pooling stage: impose ordering information across time. It is a sequential process (as depicted by the arrow), yes, BUT the heavy computation has already been performed in a single forward pass in the convolutional stage! Make all activations in parallel with convolutions and merge sequentially, with no recursive weight operations.
  • 17. Breaking down Quasi-RNN… Having a sequence of length T with n-dimensional vectors Compute the layer input activations (like LSTM) with m conv 1D kernels of Wz: We want to apply two learnable gates F (forget) and O (output): ● Note the sigmoid functions when it comes to gate activations → because we want them to act like switches! (between 0 and 1) Consider weights matrices are thus containing m kernels, k kernel width each (amount of time-steps seen per convolution) and with n input dimensions (like previous slides example with 100 dim) → output Z is To exemplify: what happens when k=2? We process the current time-step and the right previous one Looks similar to LSTM equations, huh?
  • 18. Breaking down Quasi-RNN… Finally, pooling stage is the recursive part, where order is imposed (thus it becomes an RNN-like mechanism). Note this is just an element-wise product, so quite quicker than computing the gate activation at every time-step (like in LSTM). Three different flavors depending on the gates we computed: ● f-pooling ● fo-pooling ● ifo-pooling
  • 19. Main ideas to be kept regarding RNNs ● RNNs are very good to process sequences, so whenever order matters → think about including some recurrent module to keep track of temporal evolution ● Generally LSTM/GRU perform similarly, though it is interesting to try both by yourselves with any task! ○ Whenever you ask yourselves: which cell should I use? If you have lots of data you may want to go first with LSTMs (it has more parameters) ● If you have to process very long sequences (e.g. 2.000 time-steps) → maybe try PLSTM ● If you care about speed/efficiency during training → maybe try QRNN
  • 20. 20 Thanks ! Q&A ? @Santty128