SlideShare a Scribd company logo
そこのあなた、もしその単語が
使えなくなったらどうしますか?
中川裕志
(東京大学)
昔、ソシュールという偉い先生が
• 「言語が現れる以前は(現実の世界で)何一
つ判別できるものはなかった」と言った。
• 本当かと思って、試しに「月」(monthの意味)
という言葉がない世界を仮定してみた。
• すると、まず、「月の平均気温」とか「今月の
売り上げ」などが使えない。入学日時も2014
年100日みたいなことになって困ったことにな
る
誤解を解いておきましょう
• では、人々は「月」ではなく、新しい単語「き
つ」でも作って代用するからいいでしょ?とい
う反論が考えられますが
• ソシュールは「月」という単語によって、月の
概念が形成された、というような主旨ですから、
「月」という概念が無かった場合、と言い直し
ましょう。
本題に戻りますと
• 「月」という言葉(=概念)を消しただけで、おおよ
そ社会機能は麻痺しそうです。月給はなくなり、
みんな年俸か日給、時間給になるとか、冗談み
たいなことが起きます。
• つまり、文化は当然として、社会制度のほぼす
べての機能が単語から生成されてきています。
– だから、「月」のような重要な単語が消失すると社会
制度がダメージを受けたり、崩壊したりしそう。
• だが、「中川裕志」という人名がなくなっても社会に
はなんの影響もない。
つまり、単語には社会における必要度が付随し
ています
単語の社会における必要度の図
中心ほどコアで必要度高い
周辺部にいくほど個別領域の単語で必要度低い
年、月、日、
男、女、
食べる、寝る、
現金、借金、
VC次元
W杯
理研
ZARA
Google
CRM
中川裕志
L0正則化
マック100円セール
ナタリア・ポクロンスカヤ
言語学や自然言語処理
• 前ページのスライド「単語の社会における必要度の図」でお伝えしたいのは
– みんなが使う「月」が消失すると甚大な影響を及ぼす
– 専門用語「VC次元」くらいがなくなっても世界は大きく変わらないだろう
– 一般人の名前がひとつ消えても社会は何も変わらない
• というように、単語がカバーする社会現象の範囲の大きくなると「必要度」が大きく
なり、
• カバー範囲が専門分野や特定業界のように小さくなってくると、VC次元、CRM,ZARA
みたいに「必要度」が減少し
• 一般人の身の回りのようにカバー範囲がもっと狭まると「中川裕志」のように「必要度」
はほとんど無くなるということです。
• 言語学や自然言語処理の研究者の方で、ある単語を消去したら、世界や社会の
構造がどのくらい変わってしまうかという観点から 「単語の社会における必要度」
を、調べた人がいるんでしょうか?
• 対象分野をある程度、限定してみると、大量のコーパスから個別単語の「単語の社
会における必要度」を計算できそうです。
単語の必要度を計算するモデルとして
単語をノードとするグラフ=単語グラフ
• 単語の社会における必要度を計算するには
単語と社会の種々の概念の関係を使うのが
良さそう(今までの議論から)
• ところが、社会における種々の概念は単語で
表現されるので、結局、
単語間の関係をモデル化すればよいのです。
一般的なモデルは単語をノードとするグラフ
基本語彙(単単語)をノードとし、複合語として隣接す
ることはリンクにした場合の単語グラフのイメージ
個人
収集
同意
利用
委員会
特定
データ
法
保護
情報
ビッグ
パーソナル
単語がノードならリンクは何?
• 案1:係り受け関係
– 文法的な意味や重みをリンクに付けられる
– しかし、処理が重たいし、関係に曖昧さあり
• 案2:共起
– 文章内共起、1文内での共起、ある幅の窓内での共起、単なる共起
ではなく隣接共起もあります
– 簡単!
– 重みはコーパス中の全文書での共起回数
• 案3:複合語における関係
– 複合語における共起
– 複合語における隣接共起(前方隣接、後方接続)
 案X:その他いろいろな関係が考えられます。新規で役立つ関係を
見つければ、それだけで大業績!
このスライドの「単語の必要度」もリンクの定義によって変わってきま
す。いろいろなリンクの定義で計算した「単語の必要度」を意味づけし
たり比較検討したりするのは自然言語処理の研究テーマになりそう
です。
単語グラフにおけるグラフの処理
積み上げ型
• 従来の方法はグラフ上で近い位置になる単語の
間の関係から、単語の重要さや類似性を求める
もの。以下にいくつかの例を示します。
複合語抽出 その1
リンクは文における隣接関係 「情報処理」というの
は「情報」と「処理」が隣接
このとき、2単語が同一文内で隣接して出現する頻度
が統計的に有意に高ければ、その2単語は複合語と
みなせます
統計的有意さは、χ二乗検定、Dice係数など
詳細は付録1を参照
単語グラフにおけるグラフの処理
積み上げ型
複合語抽出 その2
リンクの定義は何でもよいです。
単語×単語の行列を作ります。行列の要素はリンク
の重み
リンクに方向性がない(単語×単語)行列の固有値
の大きさを単語の重要度にする方法:
GoogleのPageRankアルゴリズムを単語の重要度計算に応
用みたいな。
リンクに方向性を持たせ、1方向のリンクからなる行
列の固有値を求めるような動作を両方向に繰り返し
て計算する方法
HITSアルゴリズムを単語の重要度計算に応用みたいな
単語グラフにおけるグラフの処理
積み上げ型
複合語抽出 その3:言選Web (昔、私が提案しました)
リンクの定義は同一文内での隣接
前方隣接と後方隣接に分けます。
グラフの次数を使った単語重要度の計算
付録2参照
実働システム
はこちら
グラフの局所的性質
を使っているだけです
単語 3 2 統計
クラス 1 情報
文字 1 1 獲得
「単語情報」という表
現がコーパスに3回
出現=リンク重み
「情報統計」という表
現がコーパスに2回
出現=リンク重み
「文字情報」「クラス情報」
「情報統計」「情報獲得」とい
う表現がコーパスに1回ず
つ出現=リンク重み
単語グラフにおけるグラフの処理
引き算的なやり方
本題に戻りましょう。単語が消失したらときの大変さ
を使って単語の必要度を計算したかったので、積み
上げ型ではなく、引き算的な方法にしたいところです。
では、引き算的ってどうやって実現するのでしょう
か。。。
ある単語が消失したら、単語グラフの構造が変
わります。
それによって、消失前はリンクをたどっていけば
到達できた単語に行き着けなくなると消失した単
語は必要だったんだよな、という考え方。
{複合語,単単語}をノードとし、文内共起や文書内共
起をリンクにした場合の単語グラフのイメージ
政府
データ収集
同意
利活用
設置
パーソナルデータ
ビッグデータ
法改正
委員会
個人情報保護
インターネット
行動履歴 クリック
単語Zの消失による単語A,B間の
損失=
𝐿
𝑁
この損失を全部の単語ペアで
合計したものが単語の必要度
単語 Z
単語 B
単語 A 単語 D
単語 C
.
.
.
.
.
.
単語Aと単語B
をつなぐ経路数
=N
単語Aと単語Bをつなぐ
経路のうち、単語Zの消
失によって切れた数=L
総和総和
• 単語Zを含むリンクが少なければ「必要度」は
低いわけです。
• 単語Zがたくさんのリンクの要素なら、いろい
ろな単語(=概念)をつなぐ要素としてとても
重要です。
• グラフがある分野のコーパスなら、その分野
における単語Zの必要度が分かるということ
です。
• ふむふむ、直感にあっているね!
大規模グラフの処理としての問題
• 単語は一つの言語で105から106(語彙数)=
ノード数
• リンクはコーパスサイズによるが、およそ単語
数の2乗= 1010から1012
• 限定された分野でも語彙は103から104
• 大規模グラフなので、ノード間のリンク列を全
部数え上げるのはかなり大変。効率のよいア
ルゴリズムが欲しいところです。
Betweenness Centarlity
• 損失L/Nは大規模グラフではよく知られたBetweenness
Centarlityという概念の要素です。
• グラフにおいてノードiからノードjへの経路数をgijとしそれ
らの経路のうちノードkを通る経路の数をgikjとします。ノー
ドkのBetweenness Centarlity: BC(j)は次の式で定義されま
す。
• 𝐵𝐶 𝑘 =
𝑔 𝑖𝑘𝑗𝑗𝑖
𝑔 𝑖𝑗𝑗𝑖
• Betweenness Centarlityはネットワーク分野で応用されおり、
疫学などで役立っています。高速に計算するアルゴリズム
の研究も出てきています。
ERATOの大規模グラフプロジェクト(リーダはNII河原林教授)で
も高速計算のアルゴリズムの研究成果が出ています。
そういった成果のアルゴリズムを使って、「単語の必要度」とい
う言語処理分野で研究したら楽しいかもしれません。誰かやっ
てみませんか?
付録1 共起による複合語取り出し
Contingency Matix
二つの単語の連接しての共起の有意さによる
相互情報量
χ2乗検定
Log likelyhood ratio
W1 no W1
W2 a b
no W2 c d
dcbaN
caba
aN
wpwp
wwp
MI 

 ,
))((
log
)2()1(
)2,1(
log
))()()((
)( 2
2
dbcBcaba
bcad



Contingency Matix (相互情報量と例)
二つの単語の連接しての共起の有意さによる
相互情報量
大学 ¬大学
改革 a=10 b=5
¬改革 c=5 d=980
38.83.333log
)510()510(
100010
log
))((
log






caba
aN
MI
Contingency Matix (相互情報量と例-1)
二つの単語の連接しての共起の有意さによる
相互情報量
大学 ¬大学
改革 a=10 b=100
¬改革 c=90 d=800
18.309.9log
)10010()9010(
100010
log
))((
log






caba
aN
MI
相互情報量の問題点
二つの単語の連接しての共起の有意さによる
相互情報量
これでは過大評価dice係数(重み付き)
大学 ¬大学
改革 a=1 b=0
¬改革 c=0 d=999
96.9
)1()1(
10001
log
))((
log 





caba
aN
MI
74.27.6log)
1515
20
10log(
0)
11
2
1log()
)()(
2
log(








Dicepreviouscompare
caba
a
aDice
Contingency Matix (χ2乗検定と例)
二つの単語の連接しての共起の有意さによる
χ2乗検定
自由度1のχ2乗分布で棄却率は0.1%以
下有意に共起
大学 ¬大学
改革 a=10 b=5
¬改革 c=5 d=980
489
9859851515
1098001000 22
2







)(
))()()((
)(
dbdccaba
bcadN

Contingency Matix (χ2乗検定と例-1)
二つの単語の連接しての共起の有意さによる
χ2乗検定
自由度1のχ2乗分布で棄却率は75%以下
有意に共起
大学 ¬大学
改革 a=10 b=100
¬改革 c=90 d=800
11.0
900890100110
)90008000(1000
))()()((
)( 22
2







dbdccaba
bcadN

Likelihood ratio
仮説H1: p(w2|w1)=p(w2|¬w1)
仮説H2: p(w2|w1)>p(w2| ¬w1)
H1,H2のlikelihoodをL(H1),L(H2)とすると
 が閾値Cより小さければ
w1 w2は有意な連語
L(H1),L(H2) の計算はちょっと面倒
)(
)(
loglog
2
1
HL
HL

計算例
N
ba
pwwpwwpH

 )|()|(: 12121
)2,,()1,,()2(
),,(),,()1(
)1(),,(
2)1|2(
,1)1|2(:2
)(
pdbbbpcaabHL
pdbbbpcaabHL
xx
k
n
xnkb
caN
b
db
b
pwwp
ca
a
pwwpH
knk
















 二項分布
計算例
0150
1000
510
12121 .)|()|(: 

 pwwpwwpH
有意に共起
 二項分布





























53)
)2(
)1(
log(
1
1060.1
1039.1
)2(
)1(
)005.0,985,5()67,0,15,10()2,,()1,,()2(
)015.0,985,5()015.0,15,10(),,(),,()1(
)1(),,(
005.0
5980
5
2)1|2(
,67.0
510
10
1)1|2(:2
18
34
)(
HL
HL
HL
HL
bbpdbbbpcaabHL
bbpdbbbpcaabHL
xx
k
n
xnkb
caN
b
db
b
pwwp
ca
a
pwwpH
knk
計算例-1
1.0
1000
9010
)1|2()1|2(:1 

 pwwpwwpH
有意に共起ではない
 二項分布

























68.0)
)2(
)1(
log(
1
1010.4
1058.6
)2(
)1(
)11.0,900,90()1.0,100,10()2,,()1,,()2(
)1.0,900,90()1.0,100,10(),,(),,()1(
)1(),,(
11.0
900
100
2)1|2(
,1.0
100
10
1)1|2(:2
142
142
)(
HL
HL
HL
HL
bbpdbbbpcaabHL
bbpdbbbpcaabHL
xx
k
n
xnkb
caN
b
db
b
pwwp
ca
a
pwwpH
knk
付録2:言選Web
• Pre(N) はコーパスにおいて名詞N に前接し複合名
詞を作る名詞の種類数
• Post(N) はコーパスにおいて名詞N に後接し複合
名詞を作る名詞の種類数
 Pre-freq(N) はコーパスにおいて名詞N に前接し複
合名詞を作る名詞の頻度
 Post-freq(N) はコーパスにおいて名詞N に後接し
複合名詞を作る名詞の頻度
Pre と Post
Pre, Postの計算 作例
例:コーパスから次の出現回数が分かったとする。
 単語 トライグラム(3回)、 トライグラム 統計(2回)
クラス トライグラム(1回)、トライグラム 獲得(1回)
文字 トライグラム(1回)、
-----------------------------------------------------------------------
Pre(トライグラム)=3 Post(トライグラム)=2
Pre-freq(トライグラム)=5 Post-freq(トライグラム)=3
トライグラム(4回)
単名詞のスコア付け
Pre(トライグラム)=3 Post(トライグラム)=2
Pre-ferq(トライグラム)=5 Post-freq(トライグラム)=3
前方接続の頻度 N 後方接続の頻度
3 単語 統計 2
1 クラス 情報
1 文字 獲得 1
• 複合名詞: N1 N2 …Nk の スコアは次のように定義 ただし、
preはpre-freq, postはpost-freqでもよい。
• 作例では、pre,postの場合
• score1(トライグラム)=((3+1)(2+1))1/2=3.46
• pre-freq, post-freq だと
• score2(トライグラム)= ((5+1)(3+1))1/2=4.90
複合名詞に拡張しスコア を定義
k
i
k
i ik NPostPre(NNNorscore 2
1
11 )))1)(()1)((()..)(2(1  
• この方法では、まだ個々の複合名詞の独立した出現を考
慮していないので
• 作例では、トライグラムが4回独立して出現しているので
• score3=score1 ×4 =13.84
• score4= score2 ×4 =19.6
• 我々が日本語の国立情報学研究所提供の用語抽出テ
ストコレクションで実験したところ、score4が一番成績がよ
く、情報工学分野の用語1000語を選んだところ60%強
が人間の選んだ用語と一致した。
)..()))1)(()1)(((
)..(3
21
2
1
1
1
k
k
i
k
i i
k
NNNNPostPre(N
NNscore
独立出現頻度 

More Related Content

What's hot

科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
Ichigaku Takigawa
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)
Masahiro Suzuki
 
学習時に使ってはいないデータの混入「リーケージを避ける」
学習時に使ってはいないデータの混入「リーケージを避ける」学習時に使ってはいないデータの混入「リーケージを避ける」
学習時に使ってはいないデータの混入「リーケージを避ける」
西岡 賢一郎
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
Shiga University, RIKEN
 
BlackBox モデルの説明性・解釈性技術の実装
BlackBox モデルの説明性・解釈性技術の実装BlackBox モデルの説明性・解釈性技術の実装
BlackBox モデルの説明性・解釈性技術の実装
Deep Learning Lab(ディープラーニング・ラボ)
 
SSII2021 [OS2-03] 自己教師あり学習における対照学習の基礎と応用
SSII2021 [OS2-03] 自己教師あり学習における対照学習の基礎と応用SSII2021 [OS2-03] 自己教師あり学習における対照学習の基礎と応用
SSII2021 [OS2-03] 自己教師あり学習における対照学習の基礎と応用
SSII
 
LSTM (Long short-term memory) 概要
LSTM (Long short-term memory) 概要LSTM (Long short-term memory) 概要
LSTM (Long short-term memory) 概要
Kenji Urai
 
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII
 
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
Kosuke Shinoda
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
hoxo_m
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
Satoshi Hara
 
Bayes Independence Test - HSIC と性能を比較する-
Bayes Independence Test - HSIC と性能を比較する-Bayes Independence Test - HSIC と性能を比較する-
Bayes Independence Test - HSIC と性能を比較する-
Joe Suzuki
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
joisino
 
Variational Template Machine for Data-to-Text Generation
Variational Template Machine for Data-to-Text GenerationVariational Template Machine for Data-to-Text Generation
Variational Template Machine for Data-to-Text Generation
harmonylab
 
機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論
Taiji Suzuki
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
Satoshi Hara
 
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
Deep Learning JP
 
幾何を使った統計のはなし
幾何を使った統計のはなし幾何を使った統計のはなし
幾何を使った統計のはなし
Toru Imai
 
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
Deep Learning JP
 

What's hot (20)

科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)
 
学習時に使ってはいないデータの混入「リーケージを避ける」
学習時に使ってはいないデータの混入「リーケージを避ける」学習時に使ってはいないデータの混入「リーケージを避ける」
学習時に使ってはいないデータの混入「リーケージを避ける」
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
 
BlackBox モデルの説明性・解釈性技術の実装
BlackBox モデルの説明性・解釈性技術の実装BlackBox モデルの説明性・解釈性技術の実装
BlackBox モデルの説明性・解釈性技術の実装
 
SSII2021 [OS2-03] 自己教師あり学習における対照学習の基礎と応用
SSII2021 [OS2-03] 自己教師あり学習における対照学習の基礎と応用SSII2021 [OS2-03] 自己教師あり学習における対照学習の基礎と応用
SSII2021 [OS2-03] 自己教師あり学習における対照学習の基礎と応用
 
LSTM (Long short-term memory) 概要
LSTM (Long short-term memory) 概要LSTM (Long short-term memory) 概要
LSTM (Long short-term memory) 概要
 
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
SSII2020 [OS2-02] 教師あり事前学習を凌駕する「弱」教師あり事前学習
 
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
Bayes Independence Test - HSIC と性能を比較する-
Bayes Independence Test - HSIC と性能を比較する-Bayes Independence Test - HSIC と性能を比較する-
Bayes Independence Test - HSIC と性能を比較する-
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
 
Variational Template Machine for Data-to-Text Generation
Variational Template Machine for Data-to-Text GenerationVariational Template Machine for Data-to-Text Generation
Variational Template Machine for Data-to-Text Generation
 
機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
 
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
 
幾何を使った統計のはなし
幾何を使った統計のはなし幾何を使った統計のはなし
幾何を使った統計のはなし
 
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
 

Viewers also liked

[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
Deep Learning JP
 
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
Takahiro Kubo
 
20171024NL研報告スライド
20171024NL研報告スライド20171024NL研報告スライド
20171024NL研報告スライド
Masatoshi TSUCHIYA
 
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
Deep Learning JP
 
PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)Hidekazu Oiwa
 
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
Yahoo!デベロッパーネットワーク
 
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
nocchi_airport
 
スキルチェックリスト 2017年版
スキルチェックリスト 2017年版スキルチェックリスト 2017年版
スキルチェックリスト 2017年版
The Japan DataScientist Society
 
多項式あてはめで眺めるベイズ推定 ~今日からきみもベイジアン~
多項式あてはめで眺めるベイズ推定~今日からきみもベイジアン~多項式あてはめで眺めるベイズ推定~今日からきみもベイジアン~
多項式あてはめで眺めるベイズ推定 ~今日からきみもベイジアン~
tanutarou
 
新規事業・起業を妨げる「ビジネスモデル症候群」とは
新規事業・起業を妨げる「ビジネスモデル症候群」とは新規事業・起業を妨げる「ビジネスモデル症候群」とは
新規事業・起業を妨げる「ビジネスモデル症候群」とは
Lean Startup Japan LLC
 
確率的プログラミングライブラリEdward
確率的プログラミングライブラリEdward確率的プログラミングライブラリEdward
確率的プログラミングライブラリEdward
Yuta Kashino
 
AWS Black Belt - AWS Glue
AWS Black Belt - AWS GlueAWS Black Belt - AWS Glue
AWS Black Belt - AWS Glue
Amazon Web Services Japan
 
すべてを自動化せよ! 〜生産性向上チームの挑戦〜
すべてを自動化せよ! 〜生産性向上チームの挑戦〜すべてを自動化せよ! 〜生産性向上チームの挑戦〜
すべてを自動化せよ! 〜生産性向上チームの挑戦〜
Jumpei Miyata
 
Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28
Kimikazu Kato
 
(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network
Masahiro Suzuki
 
本当は恐ろしい分散システムの話
本当は恐ろしい分散システムの話本当は恐ろしい分散システムの話
本当は恐ろしい分散システムの話
Kumazaki Hiroki
 

Viewers also liked (16)

[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
[DLHacks LT] PytorchのDataLoader -torchtextのソースコードを読んでみた-
 
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
 
20171024NL研報告スライド
20171024NL研報告スライド20171024NL研報告スライド
20171024NL研報告スライド
 
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
[DL輪読会]Learning by Association - A versatile semi-supervised training method ...
 
PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)PoisoningAttackSVM (ICMLreading2012)
PoisoningAttackSVM (ICMLreading2012)
 
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
 
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
 
スキルチェックリスト 2017年版
スキルチェックリスト 2017年版スキルチェックリスト 2017年版
スキルチェックリスト 2017年版
 
多項式あてはめで眺めるベイズ推定 ~今日からきみもベイジアン~
多項式あてはめで眺めるベイズ推定~今日からきみもベイジアン~多項式あてはめで眺めるベイズ推定~今日からきみもベイジアン~
多項式あてはめで眺めるベイズ推定 ~今日からきみもベイジアン~
 
新規事業・起業を妨げる「ビジネスモデル症候群」とは
新規事業・起業を妨げる「ビジネスモデル症候群」とは新規事業・起業を妨げる「ビジネスモデル症候群」とは
新規事業・起業を妨げる「ビジネスモデル症候群」とは
 
確率的プログラミングライブラリEdward
確率的プログラミングライブラリEdward確率的プログラミングライブラリEdward
確率的プログラミングライブラリEdward
 
AWS Black Belt - AWS Glue
AWS Black Belt - AWS GlueAWS Black Belt - AWS Glue
AWS Black Belt - AWS Glue
 
すべてを自動化せよ! 〜生産性向上チームの挑戦〜
すべてを自動化せよ! 〜生産性向上チームの挑戦〜すべてを自動化せよ! 〜生産性向上チームの挑戦〜
すべてを自動化せよ! 〜生産性向上チームの挑戦〜
 
Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28
 
(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network(DL hacks輪読)Bayesian Neural Network
(DL hacks輪読)Bayesian Neural Network
 
本当は恐ろしい分散システムの話
本当は恐ろしい分散システムの話本当は恐ろしい分散システムの話
本当は恐ろしい分散システムの話
 

More from Hiroshi Nakagawa

人工知能学会大会2020ーAI倫理とガバナンス
人工知能学会大会2020ーAI倫理とガバナンス人工知能学会大会2020ーAI倫理とガバナンス
人工知能学会大会2020ーAI倫理とガバナンス
Hiroshi Nakagawa
 
信頼できるAI評価リスト パーソナルAIエージェントへの適用例
信頼できるAI評価リスト パーソナルAIエージェントへの適用例信頼できるAI評価リスト パーソナルAIエージェントへの適用例
信頼できるAI評価リスト パーソナルAIエージェントへの適用例
Hiroshi Nakagawa
 
NICT-nakagawa2019Feb12
NICT-nakagawa2019Feb12NICT-nakagawa2019Feb12
NICT-nakagawa2019Feb12
Hiroshi Nakagawa
 
情報ネットワーク法学会研究大会
情報ネットワーク法学会研究大会情報ネットワーク法学会研究大会
情報ネットワーク法学会研究大会
Hiroshi Nakagawa
 
最近のAI倫理指針からの考察
最近のAI倫理指針からの考察最近のAI倫理指針からの考察
最近のAI倫理指針からの考察
Hiroshi Nakagawa
 
AI and Accountability
AI and AccountabilityAI and Accountability
AI and Accountability
Hiroshi Nakagawa
 
AI Forum-2019_Nakagawa
AI Forum-2019_NakagawaAI Forum-2019_Nakagawa
AI Forum-2019_Nakagawa
Hiroshi Nakagawa
 
2019 3-9-nakagawa
2019 3-9-nakagawa2019 3-9-nakagawa
2019 3-9-nakagawa
Hiroshi Nakagawa
 
CPDP2019 summary-report
CPDP2019 summary-reportCPDP2019 summary-report
CPDP2019 summary-report
Hiroshi Nakagawa
 
情報法制研究所 第5回情報法セミナー:人工知能倫理と法制度、社会
情報法制研究所 第5回情報法セミナー:人工知能倫理と法制度、社会情報法制研究所 第5回情報法セミナー:人工知能倫理と法制度、社会
情報法制研究所 第5回情報法セミナー:人工知能倫理と法制度、社会
Hiroshi Nakagawa
 
Ai e-accountability
Ai e-accountabilityAi e-accountability
Ai e-accountability
Hiroshi Nakagawa
 
自動運転と道路沿い情報インフラ
自動運転と道路沿い情報インフラ自動運転と道路沿い情報インフラ
自動運転と道路沿い情報インフラ
Hiroshi Nakagawa
 
暗号化によるデータマイニングと個人情報保護
暗号化によるデータマイニングと個人情報保護暗号化によるデータマイニングと個人情報保護
暗号化によるデータマイニングと個人情報保護
Hiroshi Nakagawa
 
Defamation Caused by Anonymization
Defamation Caused by AnonymizationDefamation Caused by Anonymization
Defamation Caused by Anonymization
Hiroshi Nakagawa
 
人工知能と社会
人工知能と社会人工知能と社会
人工知能と社会
Hiroshi Nakagawa
 
人工知能学会合同研究会2017-汎用人工知能研究会(SIG-AGI)招待講演
人工知能学会合同研究会2017-汎用人工知能研究会(SIG-AGI)招待講演人工知能学会合同研究会2017-汎用人工知能研究会(SIG-AGI)招待講演
人工知能学会合同研究会2017-汎用人工知能研究会(SIG-AGI)招待講演
Hiroshi Nakagawa
 
情報ネットワーク法学会2017大会第8分科会発表資料
情報ネットワーク法学会2017大会第8分科会発表資料情報ネットワーク法学会2017大会第8分科会発表資料
情報ネットワーク法学会2017大会第8分科会発表資料
Hiroshi Nakagawa
 
学術会議 ITシンポジウム資料「プライバシー保護技術の概観と展望」
学術会議 ITシンポジウム資料「プライバシー保護技術の概観と展望」学術会議 ITシンポジウム資料「プライバシー保護技術の概観と展望」
学術会議 ITシンポジウム資料「プライバシー保護技術の概観と展望」
Hiroshi Nakagawa
 
AI社会論研究会
AI社会論研究会AI社会論研究会
AI社会論研究会
Hiroshi Nakagawa
 
Social Effects by the Singularity -Pre-Singularity Era-
Social Effects by the Singularity  -Pre-Singularity Era-Social Effects by the Singularity  -Pre-Singularity Era-
Social Effects by the Singularity -Pre-Singularity Era-
Hiroshi Nakagawa
 

More from Hiroshi Nakagawa (20)

人工知能学会大会2020ーAI倫理とガバナンス
人工知能学会大会2020ーAI倫理とガバナンス人工知能学会大会2020ーAI倫理とガバナンス
人工知能学会大会2020ーAI倫理とガバナンス
 
信頼できるAI評価リスト パーソナルAIエージェントへの適用例
信頼できるAI評価リスト パーソナルAIエージェントへの適用例信頼できるAI評価リスト パーソナルAIエージェントへの適用例
信頼できるAI評価リスト パーソナルAIエージェントへの適用例
 
NICT-nakagawa2019Feb12
NICT-nakagawa2019Feb12NICT-nakagawa2019Feb12
NICT-nakagawa2019Feb12
 
情報ネットワーク法学会研究大会
情報ネットワーク法学会研究大会情報ネットワーク法学会研究大会
情報ネットワーク法学会研究大会
 
最近のAI倫理指針からの考察
最近のAI倫理指針からの考察最近のAI倫理指針からの考察
最近のAI倫理指針からの考察
 
AI and Accountability
AI and AccountabilityAI and Accountability
AI and Accountability
 
AI Forum-2019_Nakagawa
AI Forum-2019_NakagawaAI Forum-2019_Nakagawa
AI Forum-2019_Nakagawa
 
2019 3-9-nakagawa
2019 3-9-nakagawa2019 3-9-nakagawa
2019 3-9-nakagawa
 
CPDP2019 summary-report
CPDP2019 summary-reportCPDP2019 summary-report
CPDP2019 summary-report
 
情報法制研究所 第5回情報法セミナー:人工知能倫理と法制度、社会
情報法制研究所 第5回情報法セミナー:人工知能倫理と法制度、社会情報法制研究所 第5回情報法セミナー:人工知能倫理と法制度、社会
情報法制研究所 第5回情報法セミナー:人工知能倫理と法制度、社会
 
Ai e-accountability
Ai e-accountabilityAi e-accountability
Ai e-accountability
 
自動運転と道路沿い情報インフラ
自動運転と道路沿い情報インフラ自動運転と道路沿い情報インフラ
自動運転と道路沿い情報インフラ
 
暗号化によるデータマイニングと個人情報保護
暗号化によるデータマイニングと個人情報保護暗号化によるデータマイニングと個人情報保護
暗号化によるデータマイニングと個人情報保護
 
Defamation Caused by Anonymization
Defamation Caused by AnonymizationDefamation Caused by Anonymization
Defamation Caused by Anonymization
 
人工知能と社会
人工知能と社会人工知能と社会
人工知能と社会
 
人工知能学会合同研究会2017-汎用人工知能研究会(SIG-AGI)招待講演
人工知能学会合同研究会2017-汎用人工知能研究会(SIG-AGI)招待講演人工知能学会合同研究会2017-汎用人工知能研究会(SIG-AGI)招待講演
人工知能学会合同研究会2017-汎用人工知能研究会(SIG-AGI)招待講演
 
情報ネットワーク法学会2017大会第8分科会発表資料
情報ネットワーク法学会2017大会第8分科会発表資料情報ネットワーク法学会2017大会第8分科会発表資料
情報ネットワーク法学会2017大会第8分科会発表資料
 
学術会議 ITシンポジウム資料「プライバシー保護技術の概観と展望」
学術会議 ITシンポジウム資料「プライバシー保護技術の概観と展望」学術会議 ITシンポジウム資料「プライバシー保護技術の概観と展望」
学術会議 ITシンポジウム資料「プライバシー保護技術の概観と展望」
 
AI社会論研究会
AI社会論研究会AI社会論研究会
AI社会論研究会
 
Social Effects by the Singularity -Pre-Singularity Era-
Social Effects by the Singularity  -Pre-Singularity Era-Social Effects by the Singularity  -Pre-Singularity Era-
Social Effects by the Singularity -Pre-Singularity Era-
 

Recently uploaded

協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
Osaka University
 
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMMハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
osamut
 
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
sugiuralab
 
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
ARISE analytics
 
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
嶋 是一 (Yoshikazu SHIMA)
 
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
Osaka University
 
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobodyロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
azuma satoshi
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
tazaki1
 
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
Yuki Miyazaki
 

Recently uploaded (9)

協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
 
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMMハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
 
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
 
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
 
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
 
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
 
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobodyロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
 
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
 

もしその単語がなかったら