SlideShare a Scribd company logo
RAY OPTICS - II
1. Refraction through a Prism
2. Expression for Refractive Index of Prism
3. Dispersion
4. Angular Dispersion and Dispersive Power
5. Blue Colour of the Sky and Red Colour of the Sun
6. Compound Microscope
7. Astronomical Telescope (Normal Adjustment)
8. Astronomical Telescope (Image at LDDV)
9. Newtonian Telescope (Reflecting Type)
10.Resolving Power of Microscope and Telescope
Created by C. Mani, Principal, K V No.1, AFS, Jalahalli West, Bangalore
Refraction of Light through Prism:
A
Refracting Surfaces
Prism
i
δ
A
B C
e
O
P
Q
r1 r2
N1 N2
D
In quadrilateral APOQ,
A + O = 180° …….(1)
(since N1 and N2 are normal)
In triangle OPQ,
r1 + r2 + O = 180° …….(2)
In triangle DPQ,
δ = (i - r1) + (e - r2)
δ = (i + e) – (r1 + r2) …….(3)
From (1) and (2),
A = r1 + r2
From (3),
δ = (i + e) – (A)
or i + e = A + δ
μ
Sum of angle of incidence and angle
of emergence is equal to the sum of
angle of prism and angle of deviation.
Variation of angle of deviation with angle of incidence:
δ
i
0 i = e
δm
When angle of incidence increases,
the angle of deviation decreases.
At a particular value of angle of incidence the
angle of deviation becomes minimum and is
called ‘angle of minimum deviation’.
At δm, i = e and r1 = r2 = r (say)
After minimum deviation, angle of deviation
increases with angle of incidence.
Refractive Index of Material of Prism:
A = r1 + r2
A = 2r
r = A / 2
i + e = A + δ
2 i = A + δm
i = (A + δm) / 2
According to Snell’s law,
sin i
μ =
sin r1
sin i
sin r
=
μ =
sin
(A + δm)
2
sin
A
2
Refraction by a Small-angled Prism for Small angle of Incidence:
sin i
μ =
sin r1
sin e
μ =
sin r2
and
If i is assumed to be small, then r1, r2 and e will also be very small.
So, replacing sines of the angles by angles themselves, we get
i
μ =
r1
and
e
μ =
r2
i + e = μ (r1 + r2) = μ A
But i + e = A + δ
So, A + δ = μ A
or δ = A (μ – 1)
Dispersion of White Light through Prism:
The phenomenon of splitting a ray of white light into its constituent colours
(wavelengths) is called dispersion and the band of colours from violet to red
is called spectrum (VIBGYOR).
δr
A
B C
D
White
light
δv
Cause of Dispersion:
sin i
μv =
sin rv
sin i
μr =
sin rr
and
Since μv > μr , rr > rv
So, the colours are refracted at different
angles and hence get separated.
R
O
Y
G
B
I
V
Screen
N
Dispersion can also be explained on the basis of Cauchy’s equation.
μ = a +
b
λ2
c
λ4
+ (where a, b and c are constants for the material)
Since λv < λ r , μv > μr
But δ = A (μ – 1)
Therefore, δv > δr
So, the colours get separated with different angles of deviation.
Violet is most deviated and Red is least deviated.
Angular Dispersion:
1. The difference in the deviations suffered by two colours in passing
through a prism gives the angular dispersion for those colours.
2. The angle between the emergent rays of any two colours is called angular
dispersion between those colours.
3. It is the rate of change of angle of deviation with wavelength. (Φ = dδ / dλ)
Φ = δv - δr or Φ = (μv – μr) A
Dispersive Power:
The dispersive power of the material of a prism for any two colours is defined
as the ratio of the angular dispersion for those two colours to the mean
deviation produced by the prism.
It may also be defined as dispersion per unit deviation.
ω =
Φ
δ
where δ is the mean deviation and δ =
δv + δr
2
Also ω =
δv - δr
δ
or ω =
(μv – μr) A
(μy – 1) A or ω =
(μv – μr)
(μy – 1)
Scattering of Light – Blue colour of the sky and Reddish appearance
of the Sun at Sun-rise and Sun-set:
The molecules of the atmosphere and other particles that are smaller than the
longest wavelength of visible light are more effective in scattering light of shorter
wavelengths than light of longer wavelengths. The amount of scattering is
inversely proportional to the fourth power of the wavelength. (Rayleigh Effect)
Light from the Sun near the horizon passes through a greater distance in the Earth’s
atmosphere than does the light received when the Sun is overhead. The
correspondingly greater scattering of short wavelengths accounts for the reddish
appearance of the Sun at rising and at setting.
When looking at the sky in a direction away from the Sun, we receive scattered
sunlight in which short wavelengths predominate giving the sky its characteristic
bluish colour.
Compound Microscope:
• •• • •
Fo
•
Fo
Fe
2Fe
2Fo
fo
fo
fe
Eye
A
B
A’
B’
A’’
B’’
Objective
Eyepiece
2Fo
Objective: The converging lens nearer to the object.
Eyepiece: The converging lens through which the final image is seen.
Both are of short focal length. Focal length of eyepiece is slightly greater
than that of the objective.
A’’’
α
β
D
L
vouo
Po Pe
Angular Magnification or Magnifying Power (M):
Angular magnification or magnifying power of a compound microscope is
defined as the ratio of the angle β subtended by the final image at the eye to
the angle α subtended by the object seen directly, when both are placed at
the least distance of distinct vision.
M =
β
α
Since angles are small,
α = tan α and β = tan β
M =
tan β
tan α
M =
A’’B’’
D
x
D
A’’A’’’
M =
A’’B’’
D
x
D
AB
M =
A’’B’’
AB
M =
A’’B’’
A’B’
x
A’B’
AB
M = Me x Mo
Me = 1 +
D
fe
and Mo =
vo
- uo
M =
vo
- uo
( 1 +
D
fe
)
Since the object is placed very close to the
principal focus of the objective and the
image is formed very close to the eyepiece,
uo ≈ fo and vo ≈ L
M =
- L
fo
( 1 +
D
fe
)
or M ≈
- L
fo
x
D
fe
(Normal adjustment
i.e. image at infinity)
Me = 1 -
ve
fe
or (ve = - D
= - 25 cm)
I
Image at
infinity
•
Fe
α
α
Fo
Objective
Eyepiece
Astronomical Telescope: (Image formed at infinity –
Normal Adjustment)
fo fe
Po Pe
Eye
β
fo + fe = L
Focal length of the objective is much greater than that of the eyepiece.
Aperture of the objective is also large to allow more light to pass through it.
Angular magnification or Magnifying power of a telescope in normal
adjustment is the ratio of the angle subtended by the image at the eye as
seen through the telescope to the angle subtended by the object as seen
directly, when both the object and the image are at infinity.
M =
β
α
Since angles are small, α = tan α and β = tan β
M =
tan β
tan α
(fo + fe = L is called the length of the
telescope in normal adjustment).
M = /
Fe I
PoFe
Fe I
PeFe
M = /
- I
fo
- I
- fe
M =
- fo
fe
I
A
B
α
Objective
Astronomical Telescope: (Image formed at LDDV)
Po
Fo
Eye
Peβ
fo
Fe
• •
fe
α
Eyepiece
ue
D
Angular magnification or magnifying power of a telescope in this case is
defined as the ratio of the angle β subtended at the eye by the final image
formed at the least distance of distinct vision to the angle α subtended at
the eye by the object lying at infinity when seen directly.
M =
β
α
Since angles are small,
α = tan α and β = tan β
M =
tan β
tan α
M =
Fo I
PeFo
/
Fo I
PoFo
M =
PoFo
PeFo
M =
+ fo
- ue
Multiplying by fo on both sides and
rearranging, we get
M =
- fo
fe
( 1 +
fe
D
)
-
1
u
1
f
1
v
=
-
1
- ue
1
fe
1
- D
=
or
Lens Equation
becomes
or +
1
ue
1
fe
1
D
=
Clearly focal length of objective must be
greater than that of the eyepiece for larger
magnifying power.
Also, it is to be noted that in this case M is
larger than that in normal adjustment
position.
Newtonian Telescope: (Reflecting Type)
Concave Mirror
Plane Mirror
Eyepiece
Eye
Light
from star
M =
fo
fe
Magnifying Power:
Resolving Power of a Microscope:
The resolving power of a microscope is defined as the reciprocal of the
distance between two objects which can be just resolved when seen
through the microscope.
Resolving Power =
1
Δd
=
2 μ sin θ
λ
Resolving power depends on i) wavelength λ, ii) refractive index of the
medium between the object and the objective and iii) half angle of the
cone of light from one of the objects θ.
Resolving Power of a Telescope:
The resolving power of a telescope is defined as the reciprocal of the
smallest angular separation between two distant objects whose images are
seen separately.
Resolving Power =
1
dθ
=
a
1.22 λ
Resolving power depends on i) wavelength λ, ii) diameter of the
objective a.
End of Ray Optics - II
• •
Δd
θ
Objective
• •
dθ
Objective

More Related Content

What's hot

Wave Optics Class 12 Part-1
Wave Optics Class 12 Part-1Wave Optics Class 12 Part-1
Wave Optics Class 12 Part-1Self-employed
 
Semiconductor Devices Class 12 Part-2
Semiconductor Devices Class 12 Part-2Semiconductor Devices Class 12 Part-2
Semiconductor Devices Class 12 Part-2Self-employed
 
Semiconductor Devices Class 12 Part-1
Semiconductor Devices Class 12 Part-1Semiconductor Devices Class 12 Part-1
Semiconductor Devices Class 12 Part-1Self-employed
 
Alternating Currents Class 12
Alternating Currents Class 12Alternating Currents Class 12
Alternating Currents Class 12Self-employed
 
ray optics class 12 ppt part 2 slideshare
ray optics class 12 ppt part 2 slideshareray optics class 12 ppt part 2 slideshare
ray optics class 12 ppt part 2 slideshare
Arpit Meena
 
ray optics class 12 ppt slideshare
ray optics class 12 ppt slideshareray optics class 12 ppt slideshare
ray optics class 12 ppt slideshare
Arpit Meena
 
Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12
Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12
Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12Self-employed
 
Class 12th physics current electricity ppt
Class 12th physics current electricity ppt Class 12th physics current electricity ppt
Class 12th physics current electricity ppt
Arpit Meena
 
Class 12th Physics Atom nuclei PPt
Class 12th Physics Atom nuclei PPtClass 12th Physics Atom nuclei PPt
Class 12th Physics Atom nuclei PPt
Arpit Meena
 
Class 12th physics magnetism ppt
Class 12th physics magnetism pptClass 12th physics magnetism ppt
Class 12th physics magnetism ppt
Arpit Meena
 
Electrostatics Class 12- Part 2
Electrostatics Class 12- Part 2Electrostatics Class 12- Part 2
Electrostatics Class 12- Part 2Self-employed
 
Electromagnetic Induction Class 12
Electromagnetic Induction Class 12 Electromagnetic Induction Class 12
Electromagnetic Induction Class 12 Self-employed
 
Class 12th Physics Photoelectric effect dual nature of matter radiations
Class 12th Physics Photoelectric effect dual nature of matter radiationsClass 12th Physics Photoelectric effect dual nature of matter radiations
Class 12th Physics Photoelectric effect dual nature of matter radiations
Arpit Meena
 
Electrostatic potential and capacitance
Electrostatic potential and capacitanceElectrostatic potential and capacitance
Electrostatic potential and capacitance
EdigniteNGO
 
Electrostatics Class 12- Part 1
Electrostatics Class 12- Part 1Electrostatics Class 12- Part 1
Electrostatics Class 12- Part 1Self-employed
 
Electrostatics 2
Electrostatics 2Electrostatics 2
Electrostatics 2
Shwetha Inspiring
 
Ray optics and optical
Ray optics and opticalRay optics and optical
Ray optics and optical
fathimakk
 
Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3Self-employed
 
CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics
Pooja M
 

What's hot (20)

Wave Optics Class 12 Part-1
Wave Optics Class 12 Part-1Wave Optics Class 12 Part-1
Wave Optics Class 12 Part-1
 
Semiconductor Devices Class 12 Part-2
Semiconductor Devices Class 12 Part-2Semiconductor Devices Class 12 Part-2
Semiconductor Devices Class 12 Part-2
 
Semiconductor Devices Class 12 Part-1
Semiconductor Devices Class 12 Part-1Semiconductor Devices Class 12 Part-1
Semiconductor Devices Class 12 Part-1
 
Alternating Currents Class 12
Alternating Currents Class 12Alternating Currents Class 12
Alternating Currents Class 12
 
ray optics class 12 ppt part 2 slideshare
ray optics class 12 ppt part 2 slideshareray optics class 12 ppt part 2 slideshare
ray optics class 12 ppt part 2 slideshare
 
ray optics class 12 ppt slideshare
ray optics class 12 ppt slideshareray optics class 12 ppt slideshare
ray optics class 12 ppt slideshare
 
Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12
Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12
Photoelectric Effect And Dual Nature Of Matter And Radiation Class 12
 
Magnetism
MagnetismMagnetism
Magnetism
 
Class 12th physics current electricity ppt
Class 12th physics current electricity ppt Class 12th physics current electricity ppt
Class 12th physics current electricity ppt
 
Class 12th Physics Atom nuclei PPt
Class 12th Physics Atom nuclei PPtClass 12th Physics Atom nuclei PPt
Class 12th Physics Atom nuclei PPt
 
Class 12th physics magnetism ppt
Class 12th physics magnetism pptClass 12th physics magnetism ppt
Class 12th physics magnetism ppt
 
Electrostatics Class 12- Part 2
Electrostatics Class 12- Part 2Electrostatics Class 12- Part 2
Electrostatics Class 12- Part 2
 
Electromagnetic Induction Class 12
Electromagnetic Induction Class 12 Electromagnetic Induction Class 12
Electromagnetic Induction Class 12
 
Class 12th Physics Photoelectric effect dual nature of matter radiations
Class 12th Physics Photoelectric effect dual nature of matter radiationsClass 12th Physics Photoelectric effect dual nature of matter radiations
Class 12th Physics Photoelectric effect dual nature of matter radiations
 
Electrostatic potential and capacitance
Electrostatic potential and capacitanceElectrostatic potential and capacitance
Electrostatic potential and capacitance
 
Electrostatics Class 12- Part 1
Electrostatics Class 12- Part 1Electrostatics Class 12- Part 1
Electrostatics Class 12- Part 1
 
Electrostatics 2
Electrostatics 2Electrostatics 2
Electrostatics 2
 
Ray optics and optical
Ray optics and opticalRay optics and optical
Ray optics and optical
 
Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3
 
CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics
 

Viewers also liked

Ray Optics
Ray OpticsRay Optics
Ray Optics
KANNAN
 
Ray Optics Formulaes
Ray Optics FormulaesRay Optics Formulaes
Ray Optics Formulaes
Ankit Mahapatra
 
Ray optics
Ray optics Ray optics
Ray optics
Akshay Kumar
 
Semiconductor Devices Class 12 Part-4
Semiconductor Devices Class 12 Part-4Semiconductor Devices Class 12 Part-4
Semiconductor Devices Class 12 Part-4Self-employed
 
Semiconductor Devices Class 12 Part-3
Semiconductor Devices Class 12 Part-3Semiconductor Devices Class 12 Part-3
Semiconductor Devices Class 12 Part-3Self-employed
 
Communication - Line Communication Class 12 Part-6
Communication - Line Communication Class 12 Part-6Communication - Line Communication Class 12 Part-6
Communication - Line Communication Class 12 Part-6Self-employed
 
Communication - Laser Class 12 Part-7
Communication - Laser Class 12 Part-7Communication - Laser Class 12 Part-7
Communication - Laser Class 12 Part-7Self-employed
 
Communication - Space Communication Class 12 Part-5
Communication - Space Communication Class 12 Part-5Communication - Space Communication Class 12 Part-5
Communication - Space Communication Class 12 Part-5Self-employed
 
Communication - Amplitude Modulation Class 12 Part-1
Communication - Amplitude Modulation Class 12 Part-1Communication - Amplitude Modulation Class 12 Part-1
Communication - Amplitude Modulation Class 12 Part-1Self-employed
 
Computer Science Investigatory Project Class 12
Computer Science Investigatory Project Class 12Computer Science Investigatory Project Class 12
Computer Science Investigatory Project Class 12Self-employed
 
Physics Investigatory Project Class 12
Physics Investigatory Project Class 12Physics Investigatory Project Class 12
Physics Investigatory Project Class 12Self-employed
 
Current Electricity Class 12 Part-3
Current Electricity Class 12 Part-3Current Electricity Class 12 Part-3
Current Electricity Class 12 Part-3Self-employed
 
Current Electricity Class 12 Part-1
Current Electricity Class 12 Part-1Current Electricity Class 12 Part-1
Current Electricity Class 12 Part-1Self-employed
 
Electromagnetic Waves Class 12
Electromagnetic Waves Class 12 Electromagnetic Waves Class 12
Electromagnetic Waves Class 12 Self-employed
 
Module 3 the nature and properties of light
Module 3 the nature and properties of lightModule 3 the nature and properties of light
Module 3 the nature and properties of lightdionesioable
 

Viewers also liked (17)

Ray Optics
Ray OpticsRay Optics
Ray Optics
 
Ray Optics Formulaes
Ray Optics FormulaesRay Optics Formulaes
Ray Optics Formulaes
 
Ray optics
Ray optics Ray optics
Ray optics
 
Semiconductor Devices Class 12 Part-4
Semiconductor Devices Class 12 Part-4Semiconductor Devices Class 12 Part-4
Semiconductor Devices Class 12 Part-4
 
Semiconductor Devices Class 12 Part-3
Semiconductor Devices Class 12 Part-3Semiconductor Devices Class 12 Part-3
Semiconductor Devices Class 12 Part-3
 
Communication - Line Communication Class 12 Part-6
Communication - Line Communication Class 12 Part-6Communication - Line Communication Class 12 Part-6
Communication - Line Communication Class 12 Part-6
 
Communication - Laser Class 12 Part-7
Communication - Laser Class 12 Part-7Communication - Laser Class 12 Part-7
Communication - Laser Class 12 Part-7
 
Communication - Space Communication Class 12 Part-5
Communication - Space Communication Class 12 Part-5Communication - Space Communication Class 12 Part-5
Communication - Space Communication Class 12 Part-5
 
Communication - Amplitude Modulation Class 12 Part-1
Communication - Amplitude Modulation Class 12 Part-1Communication - Amplitude Modulation Class 12 Part-1
Communication - Amplitude Modulation Class 12 Part-1
 
Computer Science Investigatory Project Class 12
Computer Science Investigatory Project Class 12Computer Science Investigatory Project Class 12
Computer Science Investigatory Project Class 12
 
Physics Investigatory Project Class 12
Physics Investigatory Project Class 12Physics Investigatory Project Class 12
Physics Investigatory Project Class 12
 
Current Electricity Class 12 Part-3
Current Electricity Class 12 Part-3Current Electricity Class 12 Part-3
Current Electricity Class 12 Part-3
 
Current Electricity Class 12 Part-1
Current Electricity Class 12 Part-1Current Electricity Class 12 Part-1
Current Electricity Class 12 Part-1
 
Electromagnetic Waves Class 12
Electromagnetic Waves Class 12 Electromagnetic Waves Class 12
Electromagnetic Waves Class 12
 
Prism
PrismPrism
Prism
 
Module 3 the nature and properties of light
Module 3 the nature and properties of lightModule 3 the nature and properties of light
Module 3 the nature and properties of light
 
2.1 Kinematics
2.1 Kinematics 2.1 Kinematics
2.1 Kinematics
 

Similar to Ray Optics Class 12 Part-2

2_ray_optics_2.ppt
2_ray_optics_2.ppt2_ray_optics_2.ppt
2_ray_optics_2.ppt
AshisSatapathy4
 
Class XII-OPTICS.pdf
Class XII-OPTICS.pdfClass XII-OPTICS.pdf
Class XII-OPTICS.pdf
divyanshudaranga
 
Ray Optics, Part 2 (Physics) for JEE Main
Ray Optics, Part 2 (Physics) for JEE MainRay Optics, Part 2 (Physics) for JEE Main
Ray Optics, Part 2 (Physics) for JEE Main
Ednexa
 
How to Study Ray Optics in Physics?
How to Study Ray Optics in Physics?How to Study Ray Optics in Physics?
How to Study Ray Optics in Physics?
Ednexa
 
Computer Vision: Shape from Specularities and Motion
Computer Vision: Shape from Specularities and MotionComputer Vision: Shape from Specularities and Motion
Computer Vision: Shape from Specularities and MotionDamian T. Gordon
 
1_ray_optics_1.ppt
1_ray_optics_1.ppt1_ray_optics_1.ppt
1_ray_optics_1.ppt
Rahul656584
 
1_ray_optics_1.ppt
1_ray_optics_1.ppt1_ray_optics_1.ppt
1_ray_optics_1.ppt
ssuser943a79
 
1_ray_optics_1.ppt
1_ray_optics_1.ppt1_ray_optics_1.ppt
1_ray_optics_1.ppt
rico136653
 
1_ray_optics_1.ppt
1_ray_optics_1.ppt1_ray_optics_1.ppt
1_ray_optics_1.ppt
mragarwal
 
Reflection and refraction at home & curved surfaces
Reflection and refraction at home & curved surfacesReflection and refraction at home & curved surfaces
Reflection and refraction at home & curved surfacesMohammad Arman Bin Aziz
 
graphics notes
graphics notesgraphics notes
graphics notes
Sonia Pahuja
 
Sign convention
Sign conventionSign convention
Sign convention
Suraj Shil
 
ch-10 ( wave optics).pptx
ch-10 ( wave optics).pptxch-10 ( wave optics).pptx
ch-10 ( wave optics).pptx
bablivashisht
 
Physics pbl
Physics pblPhysics pbl
Physics pbl
amangupta919
 
geo exam2W
geo exam2Wgeo exam2W
geo exam2W
Lasersunshine
 

Similar to Ray Optics Class 12 Part-2 (16)

2_ray_optics_2.ppt
2_ray_optics_2.ppt2_ray_optics_2.ppt
2_ray_optics_2.ppt
 
Class XII-OPTICS.pdf
Class XII-OPTICS.pdfClass XII-OPTICS.pdf
Class XII-OPTICS.pdf
 
Ray Optics, Part 2 (Physics) for JEE Main
Ray Optics, Part 2 (Physics) for JEE MainRay Optics, Part 2 (Physics) for JEE Main
Ray Optics, Part 2 (Physics) for JEE Main
 
How to Study Ray Optics in Physics?
How to Study Ray Optics in Physics?How to Study Ray Optics in Physics?
How to Study Ray Optics in Physics?
 
Computer Vision: Shape from Specularities and Motion
Computer Vision: Shape from Specularities and MotionComputer Vision: Shape from Specularities and Motion
Computer Vision: Shape from Specularities and Motion
 
1 ray optics_1
1 ray optics_11 ray optics_1
1 ray optics_1
 
1_ray_optics_1.ppt
1_ray_optics_1.ppt1_ray_optics_1.ppt
1_ray_optics_1.ppt
 
1_ray_optics_1.ppt
1_ray_optics_1.ppt1_ray_optics_1.ppt
1_ray_optics_1.ppt
 
1_ray_optics_1.ppt
1_ray_optics_1.ppt1_ray_optics_1.ppt
1_ray_optics_1.ppt
 
1_ray_optics_1.ppt
1_ray_optics_1.ppt1_ray_optics_1.ppt
1_ray_optics_1.ppt
 
Reflection and refraction at home & curved surfaces
Reflection and refraction at home & curved surfacesReflection and refraction at home & curved surfaces
Reflection and refraction at home & curved surfaces
 
graphics notes
graphics notesgraphics notes
graphics notes
 
Sign convention
Sign conventionSign convention
Sign convention
 
ch-10 ( wave optics).pptx
ch-10 ( wave optics).pptxch-10 ( wave optics).pptx
ch-10 ( wave optics).pptx
 
Physics pbl
Physics pblPhysics pbl
Physics pbl
 
geo exam2W
geo exam2Wgeo exam2W
geo exam2W
 

Recently uploaded

Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
EduSkills OECD
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
PedroFerreira53928
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
Celine George
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
Celine George
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
Steve Thomason
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 

Recently uploaded (20)

Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 

Ray Optics Class 12 Part-2

  • 1. RAY OPTICS - II 1. Refraction through a Prism 2. Expression for Refractive Index of Prism 3. Dispersion 4. Angular Dispersion and Dispersive Power 5. Blue Colour of the Sky and Red Colour of the Sun 6. Compound Microscope 7. Astronomical Telescope (Normal Adjustment) 8. Astronomical Telescope (Image at LDDV) 9. Newtonian Telescope (Reflecting Type) 10.Resolving Power of Microscope and Telescope Created by C. Mani, Principal, K V No.1, AFS, Jalahalli West, Bangalore
  • 2. Refraction of Light through Prism: A Refracting Surfaces Prism i δ A B C e O P Q r1 r2 N1 N2 D In quadrilateral APOQ, A + O = 180° …….(1) (since N1 and N2 are normal) In triangle OPQ, r1 + r2 + O = 180° …….(2) In triangle DPQ, δ = (i - r1) + (e - r2) δ = (i + e) – (r1 + r2) …….(3) From (1) and (2), A = r1 + r2 From (3), δ = (i + e) – (A) or i + e = A + δ μ Sum of angle of incidence and angle of emergence is equal to the sum of angle of prism and angle of deviation.
  • 3. Variation of angle of deviation with angle of incidence: δ i 0 i = e δm When angle of incidence increases, the angle of deviation decreases. At a particular value of angle of incidence the angle of deviation becomes minimum and is called ‘angle of minimum deviation’. At δm, i = e and r1 = r2 = r (say) After minimum deviation, angle of deviation increases with angle of incidence. Refractive Index of Material of Prism: A = r1 + r2 A = 2r r = A / 2 i + e = A + δ 2 i = A + δm i = (A + δm) / 2 According to Snell’s law, sin i μ = sin r1 sin i sin r = μ = sin (A + δm) 2 sin A 2
  • 4. Refraction by a Small-angled Prism for Small angle of Incidence: sin i μ = sin r1 sin e μ = sin r2 and If i is assumed to be small, then r1, r2 and e will also be very small. So, replacing sines of the angles by angles themselves, we get i μ = r1 and e μ = r2 i + e = μ (r1 + r2) = μ A But i + e = A + δ So, A + δ = μ A or δ = A (μ – 1)
  • 5. Dispersion of White Light through Prism: The phenomenon of splitting a ray of white light into its constituent colours (wavelengths) is called dispersion and the band of colours from violet to red is called spectrum (VIBGYOR). δr A B C D White light δv Cause of Dispersion: sin i μv = sin rv sin i μr = sin rr and Since μv > μr , rr > rv So, the colours are refracted at different angles and hence get separated. R O Y G B I V Screen N
  • 6. Dispersion can also be explained on the basis of Cauchy’s equation. μ = a + b λ2 c λ4 + (where a, b and c are constants for the material) Since λv < λ r , μv > μr But δ = A (μ – 1) Therefore, δv > δr So, the colours get separated with different angles of deviation. Violet is most deviated and Red is least deviated. Angular Dispersion: 1. The difference in the deviations suffered by two colours in passing through a prism gives the angular dispersion for those colours. 2. The angle between the emergent rays of any two colours is called angular dispersion between those colours. 3. It is the rate of change of angle of deviation with wavelength. (Φ = dδ / dλ) Φ = δv - δr or Φ = (μv – μr) A
  • 7. Dispersive Power: The dispersive power of the material of a prism for any two colours is defined as the ratio of the angular dispersion for those two colours to the mean deviation produced by the prism. It may also be defined as dispersion per unit deviation. ω = Φ δ where δ is the mean deviation and δ = δv + δr 2 Also ω = δv - δr δ or ω = (μv – μr) A (μy – 1) A or ω = (μv – μr) (μy – 1) Scattering of Light – Blue colour of the sky and Reddish appearance of the Sun at Sun-rise and Sun-set: The molecules of the atmosphere and other particles that are smaller than the longest wavelength of visible light are more effective in scattering light of shorter wavelengths than light of longer wavelengths. The amount of scattering is inversely proportional to the fourth power of the wavelength. (Rayleigh Effect) Light from the Sun near the horizon passes through a greater distance in the Earth’s atmosphere than does the light received when the Sun is overhead. The correspondingly greater scattering of short wavelengths accounts for the reddish appearance of the Sun at rising and at setting. When looking at the sky in a direction away from the Sun, we receive scattered sunlight in which short wavelengths predominate giving the sky its characteristic bluish colour.
  • 8. Compound Microscope: • •• • • Fo • Fo Fe 2Fe 2Fo fo fo fe Eye A B A’ B’ A’’ B’’ Objective Eyepiece 2Fo Objective: The converging lens nearer to the object. Eyepiece: The converging lens through which the final image is seen. Both are of short focal length. Focal length of eyepiece is slightly greater than that of the objective. A’’’ α β D L vouo Po Pe
  • 9. Angular Magnification or Magnifying Power (M): Angular magnification or magnifying power of a compound microscope is defined as the ratio of the angle β subtended by the final image at the eye to the angle α subtended by the object seen directly, when both are placed at the least distance of distinct vision. M = β α Since angles are small, α = tan α and β = tan β M = tan β tan α M = A’’B’’ D x D A’’A’’’ M = A’’B’’ D x D AB M = A’’B’’ AB M = A’’B’’ A’B’ x A’B’ AB M = Me x Mo Me = 1 + D fe and Mo = vo - uo M = vo - uo ( 1 + D fe ) Since the object is placed very close to the principal focus of the objective and the image is formed very close to the eyepiece, uo ≈ fo and vo ≈ L M = - L fo ( 1 + D fe ) or M ≈ - L fo x D fe (Normal adjustment i.e. image at infinity) Me = 1 - ve fe or (ve = - D = - 25 cm)
  • 10. I Image at infinity • Fe α α Fo Objective Eyepiece Astronomical Telescope: (Image formed at infinity – Normal Adjustment) fo fe Po Pe Eye β fo + fe = L Focal length of the objective is much greater than that of the eyepiece. Aperture of the objective is also large to allow more light to pass through it.
  • 11. Angular magnification or Magnifying power of a telescope in normal adjustment is the ratio of the angle subtended by the image at the eye as seen through the telescope to the angle subtended by the object as seen directly, when both the object and the image are at infinity. M = β α Since angles are small, α = tan α and β = tan β M = tan β tan α (fo + fe = L is called the length of the telescope in normal adjustment). M = / Fe I PoFe Fe I PeFe M = / - I fo - I - fe M = - fo fe
  • 12. I A B α Objective Astronomical Telescope: (Image formed at LDDV) Po Fo Eye Peβ fo Fe • • fe α Eyepiece ue D
  • 13. Angular magnification or magnifying power of a telescope in this case is defined as the ratio of the angle β subtended at the eye by the final image formed at the least distance of distinct vision to the angle α subtended at the eye by the object lying at infinity when seen directly. M = β α Since angles are small, α = tan α and β = tan β M = tan β tan α M = Fo I PeFo / Fo I PoFo M = PoFo PeFo M = + fo - ue Multiplying by fo on both sides and rearranging, we get M = - fo fe ( 1 + fe D ) - 1 u 1 f 1 v = - 1 - ue 1 fe 1 - D = or Lens Equation becomes or + 1 ue 1 fe 1 D = Clearly focal length of objective must be greater than that of the eyepiece for larger magnifying power. Also, it is to be noted that in this case M is larger than that in normal adjustment position.
  • 14. Newtonian Telescope: (Reflecting Type) Concave Mirror Plane Mirror Eyepiece Eye Light from star M = fo fe Magnifying Power:
  • 15. Resolving Power of a Microscope: The resolving power of a microscope is defined as the reciprocal of the distance between two objects which can be just resolved when seen through the microscope. Resolving Power = 1 Δd = 2 μ sin θ λ Resolving power depends on i) wavelength λ, ii) refractive index of the medium between the object and the objective and iii) half angle of the cone of light from one of the objects θ. Resolving Power of a Telescope: The resolving power of a telescope is defined as the reciprocal of the smallest angular separation between two distant objects whose images are seen separately. Resolving Power = 1 dθ = a 1.22 λ Resolving power depends on i) wavelength λ, ii) diameter of the objective a. End of Ray Optics - II • • Δd θ Objective • • dθ Objective