SlideShare a Scribd company logo
1 of 16
WAVE OPTICS - I
1. Electromagnetic Wave
2. Wavefront
3. Huygens’ Principle
4. Reflection of Light based on Huygens’ Principle
5. Refraction of Light based on Huygens’ Principle
6. Behaviour of Wavefront in a Mirror, Lens and Prism
7. Coherent Sources
8. Interference
9. Young’s Double Slit Experiment
10.Colours in Thin Films
Created by C. Mani, Principal, K V No.1, AFS, Jalahalli West, Bangalore
0
Electromagnetic Wave:
X
E0
B0
Y
Z
Wave is propagating along X – axis with speed c = 1 / √μ0ε0
For discussion of optical property of EM wave, more significance is given
to Electric Field, E. Therefore, Electric Field is called ‘light vector’.
1. Variations in both electric and magnetic fields occur simultaneously.
Therefore, they attain their maxima and minima at the same place and at
the same time.
2. The direction of electric and magnetic fields are mutually perpendicular
to each other and as well as to the direction of propagation of wave.
3. The speed of electromagnetic wave depends entirely on the electric and
magnetic properties of the medium, in which the wave travels and not on
the amplitudes of their variations.
Wavefront:
A wavelet is the point of disturbance due to propagation of light.
A wavefront is the locus of points (wavelets) having the same phase of
oscillations.
A line perpendicular to a wavefront is called a ‘ray’.
Spherical
Wavefront
from a point
source
Cylindrical
Wavefront
from a linear
source
Plane
Wavefront
Pink Dots – Wavelets
Blue Envelope– Wavefront
Red Line – Ray
•
Huygens’ Construction or Huygens’ Principle of Secondary
Wavelets:
S
New Wavefront
(Spherical)
New
Wave-
front
(Plane)
.
.
.
.
.
.
.
.
(Wavelets - Red dots on the wavefront)
1. Each point on a wavefront acts as a fresh source of disturbance of light.
2. The new wavefront at any time later is obtained by taking the forward
envelope of all the secondary wavelets at that time.
Note: Backward wavefront is rejected. Why?
. .
.
.
..
.
.
.
Amplitude of secondary wavelet is proportional to ½ (1+cosθ). Obviously,
for the backward wavelet θ = 180° and (1+cosθ) is 0.
•
Laws of Reflection at a Plane Surface (On Huygens’ Principle):
i
i r
r
A
B
C
D
N N
AB – Incident wavefront
CD – Reflected wavefront
XY – Reflecting surface
E
F
G
If c be the speed of light, t
be the time taken by light to
go from B to C or A to D or
E to G through F, then
EF
t =
c
+
FG
c
AF sin i
t =
c
+
FC sin r
c
For rays of light from different parts on the incident wavefront, the values of
AF are different. But light from different points of the incident wavefront
should take the same time to reach the corresponding points on the
reflected wavefront.
So, t should not depend upon AF. This is possible only if sin i – sin r = 0.
i.e. sin i = sin r or i = r
X Y
AC sin r + AF (sin i – sin r)
t =
c
Laws of Refraction at a Plane Surface (On Huygens’ Principle):
i
i
r
r
A
B
C
D
N N
AB – Incident wavefront
CD – Refracted wavefront
XY – Refracting surface
E
F
G
X Y
c, μ1
v, μ2
Denser
Rarer
If c be the speed of light, t
be the time taken by light to
go from B to C or A to D or
E to G through F, then
EF
t =
c
+
FG
v
AF sin i
t =
c
+
FC sin r
v
For rays of light from different parts on the incident wavefront, the values of
AF are different. But light from different points of the incident wavefront
should take the same time to reach the corresponding points on the
refracted wavefront.
So, t should not depend upon AF. This is possible only
if
AC sin r
t =
cv
sin i
+ AF (
v
sin r
- )
c v = 0
sin i sin r
-
c v
sin i sin r
=
c
v
sin i
sin r
= = μor or
Behaviour of a Plane Wavefront in a Concave Mirror, Convex Mirror,
Convex Lens, Concave Lens and Prism:
Concave Mirror
A
C
A
B
C
D
B
D
Convex Lens
A
B
A
B
C
DConcave Lens
Convex Mirror
C
D
AB – Incident wavefront CD – Reflected / Refracted wavefront
AB – Incident wavefront CD –Refracted wavefront
Coherent Sources:
Coherent Sources of light are those sources of light which emit light waves of
same wavelength, same frequency and in same phase or having constant
phase difference.
Coherent sources can be produced by two methods:
1. By division of wavefront (Young’s Double Slit Experiment, Fresnel’s
Biprism and Lloyd’s Mirror)
2. By division of amplitude (Partial reflection or refraction)
Prism
Prism
A
B
C
D
Interference of Waves:
•
•
Constructive Interference E = E1 + E2
Destructive Interference E = E1 - E2
S1
S2
Bright Band
Dark Band
Dark Band
Bright Band
Bright Band
Crest
Trough
Bright Band
Dark Band1st
Wave (E1)
2nd
Wave
(E2) Resultant
Wave
Reference Line
E1
E2
E2
E1
The phenomenon of one wave interfering
with another and the resulting
redistribution of energy in the space
around the two sources of disturbance is
called interference of waves.
E1 + E2
E1 - E2
Theory of Interference of Waves:
E1 = a sin ωt
E2 = b sin (ωt + Φ)
The waves are with same speed, wavelength, frequency,
time period, nearly equal amplitudes, travelling in the same
direction with constant phase difference of Φ.
ω is the angular frequency of the waves, a,b are the
amplitudes and E1, E2 are the instantaneous values of
Electric displacement.
Applying superposition principle, the magnitude of the resultant displacement
of the waves is E = E1 + E2
E = a sin ωt + b sin (ωt + Φ)
E = (a + b cos Φ) sin ωt + b sin Φ cos ωt
Putting a + b cos Φ = A cos θ
b sin Φ = A sin θ
θΦ a
b
A
b cos Φ
b sin Φ
A cos θ
A sin θ
We get E = A sin (ωt + θ)
(where E is the
resultant
displacement, A
is the resultant
amplitude and
θ is the resultant
phase difference)
A = √ (a2
+ b2
+ 2ab cos Φ)
tan θ =
b sin Φ
a + b cos Φ
A = √ (a2
+ b2
+ 2ab cos Φ)
Intensity I is proportional to the square of the amplitude of the
wave.So, I α A2
i.e. I α (a2
+ b2
+ 2ab cos Φ)
Condition for Constructive Interference of Waves:
For constructive interference, I should be maximum which is possible
only if cos Φ = +1.
i.e. Φ = 2nπ
Corresponding path difference is ∆ = (λ / 2 π) x 2nπ
where n = 0, 1, 2, 3, …….
∆ = n λ
Condition for Destructive Interference of Waves:
For destructive interference, I should be minimum which is possible
only if cos Φ = - 1.
i.e. Φ = (2n + 1)π
Corresponding path difference is ∆ = (λ / 2 π) x (2n + 1)π
where n = 0, 1, 2, 3, …….
∆ = (2n + 1) λ / 2
Imax α (a + b)2
Iminα (a - b)2
Comparison of intensities of maxima and minima:
Imax α (a + b)2
Imin α (a - b)2
Imax
Imin
=
(a + b)2
(a - b)2
(a/b + 1)2
(a/b - 1)2
=
Imax
Imin
=
(r + 1)2
(r - 1)2
where r = a / b (ratio of the amplitudes)
Relation between Intensity (I), Amplitude (a) of the wave and
Width (w) of the slit:
I α a2
a α √w I1
I2
=
(a1)2
(a2)2
=
w1
w2
Young’s Double Slit Experiment:
•S
S• O
P
D
S1
S2
d
y
d/2
d/2
Single Slit Double Slit
Screen
The waves from S1 and S2 reach the point P with
some phase difference and hence path difference
∆ = S2P – S1P
S2P2
– S1P2
= [D2
+ {y + (d/2)}2
] - [D2
+ {y - (d/2)}2
]
(S2P – S1P) (S2P + S1P) = 2 yd ∆ (2D) = 2 yd ∆ = yd / D
Positions of Bright Fringes:
For a bright fringe at P,
∆ = yd / D = nλ
where n = 0, 1, 2, 3, …
For n = 0, y0 = 0
For n = 1, y1 = D λ / d
For n = 2, y2 = 2 D λ / d ……
For n = n, yn = n D λ / d
y = n D λ / d
Positions of Dark Fringes:
For a dark fringe at P,
∆ = yd / D = (2n+1)λ/2
where n = 0, 1, 2, 3, …
For n = 0, y0’ = D λ / 2d
For n = 1, y1’ = 3D λ / 2d
For n = 2, y2’ = 5D λ / 2d …..
For n = n, yn’ = (2n+1)D λ / 2d
y = (2n+1) D λ / 2d
Expression for Dark Fringe Width:
βD = yn – yn-1
= n D λ / d – (n – 1) D λ / d
= D λ / d
Expression for Bright Fringe Width:
βB = yn’ – yn-1’
= (2n+1) D λ / 2d – {2(n-1)+1} D λ / 2d
= D λ / d
The expressions for fringe width show that the fringes are equally spaced
on the screen.
Distribution of Intensity:
Intensity
0 yy
Suppose the two interfering waves
have same amplitude say ‘a’, then
Imax α (a+a)2
i.e. Imax α 4a2
All the bright fringes have this same
intensity.
Imin = 0
All the dark fringes have zero
intensity.
Conditions for sustained interference:
1. The two sources producing interference must be coherent.
2. The two interfering wave trains must have the same plane of
polarisation.
3. The two sources must be very close to each other and the pattern must
be observed at a larger distance to have sufficient width of the fringe.
(D λ / d)
4. The sources must be monochromatic. Otherwise, the fringes of different
colours will overlap.
5. The two waves must be having same amplitude for better contrast
between bright and dark fringes.
Colours in Thin Films:
P Q
R S
r
i
t
μ
It can be proved that the path
difference between the light partially
reflected from PQ and that from
partially transmitted and then
reflected from RS is
∆ = 2μt cos r
O
Since there is a reflection at O, the
ray OA suffers an additional phase
difference of π and hence the
corresponding path difference of
λ/2.
A
B
C
For the rays OA and BC to interfere
constructively (Bright fringe), the
path difference must be (n + ½) λ
So, 2μt cos r = (n + ½) λ
When white light from the sun falls on thin layer of oil spread over water in the
rainy season, beautiful rainbow colours are formed due to interference of light.
For the rays OA and BC to interfere
destructively (Dark fringe), the path
difference must be nλ
So, 2μt cos r = n λ
End of Wave Optics - I

More Related Content

What's hot

Ray Optics Class 12 Part-1
Ray Optics Class 12 Part-1Ray Optics Class 12 Part-1
Ray Optics Class 12 Part-1Self-employed
 
Magnetic Effects Of Current Class 12 Part-2
Magnetic Effects Of Current Class 12 Part-2Magnetic Effects Of Current Class 12 Part-2
Magnetic Effects Of Current Class 12 Part-2Self-employed
 
Nuclei And Atoms Class 12
Nuclei And Atoms Class 12Nuclei And Atoms Class 12
Nuclei And Atoms Class 12Self-employed
 
Dual nature of radiation and matter class 12
Dual nature of radiation and matter class 12Dual nature of radiation and matter class 12
Dual nature of radiation and matter class 12Lovedeep Singh
 
CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics Pooja M
 
Electromagnetic Induction Class 12
Electromagnetic Induction Class 12 Electromagnetic Induction Class 12
Electromagnetic Induction Class 12 Self-employed
 
Class 12th physics magnetism ppt
Class 12th physics magnetism pptClass 12th physics magnetism ppt
Class 12th physics magnetism pptArpit Meena
 
ray optics class 12 ppt part 2 slideshare
ray optics class 12 ppt part 2 slideshareray optics class 12 ppt part 2 slideshare
ray optics class 12 ppt part 2 slideshareArpit Meena
 
Class 12th Physics Photoelectric effect dual nature of matter radiations
Class 12th Physics Photoelectric effect dual nature of matter radiationsClass 12th Physics Photoelectric effect dual nature of matter radiations
Class 12th Physics Photoelectric effect dual nature of matter radiationsArpit Meena
 
Semiconductor Devices Class 12 Part-1
Semiconductor Devices Class 12 Part-1Semiconductor Devices Class 12 Part-1
Semiconductor Devices Class 12 Part-1Self-employed
 
Electrostatics Class 12- Part 1
Electrostatics Class 12- Part 1Electrostatics Class 12- Part 1
Electrostatics Class 12- Part 1Self-employed
 
Class 12th Physics Atom nuclei PPt
Class 12th Physics Atom nuclei PPtClass 12th Physics Atom nuclei PPt
Class 12th Physics Atom nuclei PPtArpit Meena
 
Magnetic Effects Of Current Class 12 Part-1
Magnetic Effects Of Current Class 12 Part-1Magnetic Effects Of Current Class 12 Part-1
Magnetic Effects Of Current Class 12 Part-1Self-employed
 
ray optics class 12 ppt slideshare
ray optics class 12 ppt slideshareray optics class 12 ppt slideshare
ray optics class 12 ppt slideshareArpit Meena
 
Current Electricity Class 12 Part-2
Current Electricity Class 12 Part-2Current Electricity Class 12 Part-2
Current Electricity Class 12 Part-2Self-employed
 
PHY PUC 2 MOVING CHARGE AND MAGNETISM
PHY PUC 2 MOVING CHARGE AND MAGNETISMPHY PUC 2 MOVING CHARGE AND MAGNETISM
PHY PUC 2 MOVING CHARGE AND MAGNETISMstudy material
 
Dual nature of Radiation and Matter - MR. RAJA DURAI APS
Dual nature of Radiation and Matter - MR. RAJA DURAI APSDual nature of Radiation and Matter - MR. RAJA DURAI APS
Dual nature of Radiation and Matter - MR. RAJA DURAI APSRajaDuraiDurai4
 
Class 12th physics current electricity ppt
Class 12th physics current electricity ppt Class 12th physics current electricity ppt
Class 12th physics current electricity ppt Arpit Meena
 
Electrostatic potential and capacitance
Electrostatic potential and capacitanceElectrostatic potential and capacitance
Electrostatic potential and capacitanceEdigniteNGO
 

What's hot (20)

Ray Optics Class 12 Part-1
Ray Optics Class 12 Part-1Ray Optics Class 12 Part-1
Ray Optics Class 12 Part-1
 
Magnetic Effects Of Current Class 12 Part-2
Magnetic Effects Of Current Class 12 Part-2Magnetic Effects Of Current Class 12 Part-2
Magnetic Effects Of Current Class 12 Part-2
 
Nuclei And Atoms Class 12
Nuclei And Atoms Class 12Nuclei And Atoms Class 12
Nuclei And Atoms Class 12
 
Dual nature of radiation and matter class 12
Dual nature of radiation and matter class 12Dual nature of radiation and matter class 12
Dual nature of radiation and matter class 12
 
CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics
 
Electromagnetic Induction Class 12
Electromagnetic Induction Class 12 Electromagnetic Induction Class 12
Electromagnetic Induction Class 12
 
Class 12th physics magnetism ppt
Class 12th physics magnetism pptClass 12th physics magnetism ppt
Class 12th physics magnetism ppt
 
ray optics class 12 ppt part 2 slideshare
ray optics class 12 ppt part 2 slideshareray optics class 12 ppt part 2 slideshare
ray optics class 12 ppt part 2 slideshare
 
Class 12th Physics Photoelectric effect dual nature of matter radiations
Class 12th Physics Photoelectric effect dual nature of matter radiationsClass 12th Physics Photoelectric effect dual nature of matter radiations
Class 12th Physics Photoelectric effect dual nature of matter radiations
 
Semiconductor Devices Class 12 Part-1
Semiconductor Devices Class 12 Part-1Semiconductor Devices Class 12 Part-1
Semiconductor Devices Class 12 Part-1
 
Electrostatics Class 12- Part 1
Electrostatics Class 12- Part 1Electrostatics Class 12- Part 1
Electrostatics Class 12- Part 1
 
Class 12th Physics Atom nuclei PPt
Class 12th Physics Atom nuclei PPtClass 12th Physics Atom nuclei PPt
Class 12th Physics Atom nuclei PPt
 
Magnetic Effects Of Current Class 12 Part-1
Magnetic Effects Of Current Class 12 Part-1Magnetic Effects Of Current Class 12 Part-1
Magnetic Effects Of Current Class 12 Part-1
 
ray optics class 12 ppt slideshare
ray optics class 12 ppt slideshareray optics class 12 ppt slideshare
ray optics class 12 ppt slideshare
 
Current Electricity Class 12 Part-2
Current Electricity Class 12 Part-2Current Electricity Class 12 Part-2
Current Electricity Class 12 Part-2
 
PHY PUC 2 MOVING CHARGE AND MAGNETISM
PHY PUC 2 MOVING CHARGE AND MAGNETISMPHY PUC 2 MOVING CHARGE AND MAGNETISM
PHY PUC 2 MOVING CHARGE AND MAGNETISM
 
Dual nature of Radiation and Matter - MR. RAJA DURAI APS
Dual nature of Radiation and Matter - MR. RAJA DURAI APSDual nature of Radiation and Matter - MR. RAJA DURAI APS
Dual nature of Radiation and Matter - MR. RAJA DURAI APS
 
Class 12th physics current electricity ppt
Class 12th physics current electricity ppt Class 12th physics current electricity ppt
Class 12th physics current electricity ppt
 
Electrostatic potential and capacitance
Electrostatic potential and capacitanceElectrostatic potential and capacitance
Electrostatic potential and capacitance
 
Ph 101-2
Ph 101-2Ph 101-2
Ph 101-2
 

Similar to Wave Optics Class 12 Part-1

ch-10 ( wave optics).pptx
ch-10 ( wave optics).pptxch-10 ( wave optics).pptx
ch-10 ( wave optics).pptxbablivashisht
 
3_Wave_Optics_1.pptx
3_Wave_Optics_1.pptx3_Wave_Optics_1.pptx
3_Wave_Optics_1.pptxjnvldh2000
 
12330707_0ad850b3-72c9-43d9-9690-b0f996c54dd3.pdf
12330707_0ad850b3-72c9-43d9-9690-b0f996c54dd3.pdf12330707_0ad850b3-72c9-43d9-9690-b0f996c54dd3.pdf
12330707_0ad850b3-72c9-43d9-9690-b0f996c54dd3.pdfsayanduttaclass10bro
 
Interference-Aug-2023 ( Students Copy).pdf
Interference-Aug-2023 ( Students Copy).pdfInterference-Aug-2023 ( Students Copy).pdf
Interference-Aug-2023 ( Students Copy).pdfDravyaShah
 
Ch 7 physical optics final
Ch 7 physical optics finalCh 7 physical optics final
Ch 7 physical optics finalanimesh samundh
 
Interference diffraction and polarization.pptx
Interference diffraction and polarization.pptxInterference diffraction and polarization.pptx
Interference diffraction and polarization.pptxbagadeamit1
 
Magnetic effect of_current
Magnetic effect of_currentMagnetic effect of_current
Magnetic effect of_currentjoseherbertraj
 
Magnetic effect of_current
Magnetic effect of_currentMagnetic effect of_current
Magnetic effect of_currentjoseherbertraj
 
A parallel-polarized uniform plane wave is incident obliquely on a lo.pdf
A parallel-polarized uniform plane wave is incident obliquely on a lo.pdfA parallel-polarized uniform plane wave is incident obliquely on a lo.pdf
A parallel-polarized uniform plane wave is incident obliquely on a lo.pdfaroraenterprisesmbd
 
AN INTRODUCTION TO ENGINEERRING Optics.pptx
AN INTRODUCTION TO ENGINEERRING Optics.pptxAN INTRODUCTION TO ENGINEERRING Optics.pptx
AN INTRODUCTION TO ENGINEERRING Optics.pptxPrasannaKumar770581
 
Magnetic effect of current
Magnetic effect of currentMagnetic effect of current
Magnetic effect of currentjoseherbertraj
 

Similar to Wave Optics Class 12 Part-1 (20)

ch-10 ( wave optics).pptx
ch-10 ( wave optics).pptxch-10 ( wave optics).pptx
ch-10 ( wave optics).pptx
 
6.wave_optics_1.ppt
6.wave_optics_1.ppt6.wave_optics_1.ppt
6.wave_optics_1.ppt
 
3_Wave_Optics_1.pptx
3_Wave_Optics_1.pptx3_Wave_Optics_1.pptx
3_Wave_Optics_1.pptx
 
4_wave_optics_2.ppt
4_wave_optics_2.ppt4_wave_optics_2.ppt
4_wave_optics_2.ppt
 
12330707_0ad850b3-72c9-43d9-9690-b0f996c54dd3.pdf
12330707_0ad850b3-72c9-43d9-9690-b0f996c54dd3.pdf12330707_0ad850b3-72c9-43d9-9690-b0f996c54dd3.pdf
12330707_0ad850b3-72c9-43d9-9690-b0f996c54dd3.pdf
 
#1 interference
#1 interference#1 interference
#1 interference
 
Interference
InterferenceInterference
Interference
 
Interference-Aug-2023 ( Students Copy).pdf
Interference-Aug-2023 ( Students Copy).pdfInterference-Aug-2023 ( Students Copy).pdf
Interference-Aug-2023 ( Students Copy).pdf
 
wave pro.....
wave pro.....wave pro.....
wave pro.....
 
Ch 7 physical optics final
Ch 7 physical optics finalCh 7 physical optics final
Ch 7 physical optics final
 
Interference of light B.Sc. Sem IV
Interference of light B.Sc. Sem IV Interference of light B.Sc. Sem IV
Interference of light B.Sc. Sem IV
 
Interference diffraction and polarization.pptx
Interference diffraction and polarization.pptxInterference diffraction and polarization.pptx
Interference diffraction and polarization.pptx
 
Chapter 4a interference
Chapter 4a interferenceChapter 4a interference
Chapter 4a interference
 
light waves
light waveslight waves
light waves
 
Magnetic effect of_current
Magnetic effect of_currentMagnetic effect of_current
Magnetic effect of_current
 
Magnetic effect of_current
Magnetic effect of_currentMagnetic effect of_current
Magnetic effect of_current
 
A parallel-polarized uniform plane wave is incident obliquely on a lo.pdf
A parallel-polarized uniform plane wave is incident obliquely on a lo.pdfA parallel-polarized uniform plane wave is incident obliquely on a lo.pdf
A parallel-polarized uniform plane wave is incident obliquely on a lo.pdf
 
Diffraction of light
Diffraction of lightDiffraction of light
Diffraction of light
 
AN INTRODUCTION TO ENGINEERRING Optics.pptx
AN INTRODUCTION TO ENGINEERRING Optics.pptxAN INTRODUCTION TO ENGINEERRING Optics.pptx
AN INTRODUCTION TO ENGINEERRING Optics.pptx
 
Magnetic effect of current
Magnetic effect of currentMagnetic effect of current
Magnetic effect of current
 

More from Self-employed

Computer Science Investigatory Project Class 12
Computer Science Investigatory Project Class 12Computer Science Investigatory Project Class 12
Computer Science Investigatory Project Class 12Self-employed
 
Chemistry Investigatory Project Class 12
Chemistry Investigatory Project Class 12Chemistry Investigatory Project Class 12
Chemistry Investigatory Project Class 12Self-employed
 
Physics Investigatory Project Class 12
Physics Investigatory Project Class 12Physics Investigatory Project Class 12
Physics Investigatory Project Class 12Self-employed
 
Communication - Laser Class 12 Part-7
Communication - Laser Class 12 Part-7Communication - Laser Class 12 Part-7
Communication - Laser Class 12 Part-7Self-employed
 
Communication - Line Communication Class 12 Part-6
Communication - Line Communication Class 12 Part-6Communication - Line Communication Class 12 Part-6
Communication - Line Communication Class 12 Part-6Self-employed
 
Communication - Amplitude Modulation Class 12 Part-1
Communication - Amplitude Modulation Class 12 Part-1Communication - Amplitude Modulation Class 12 Part-1
Communication - Amplitude Modulation Class 12 Part-1Self-employed
 
Communication - Space Communication Class 12 Part-5
Communication - Space Communication Class 12 Part-5Communication - Space Communication Class 12 Part-5
Communication - Space Communication Class 12 Part-5Self-employed
 
Semiconductor Devices Class 12 Part-3
Semiconductor Devices Class 12 Part-3Semiconductor Devices Class 12 Part-3
Semiconductor Devices Class 12 Part-3Self-employed
 
Semiconductor Devices Class 12 Part-4
Semiconductor Devices Class 12 Part-4Semiconductor Devices Class 12 Part-4
Semiconductor Devices Class 12 Part-4Self-employed
 
Electromagnetic Waves Class 12
Electromagnetic Waves Class 12 Electromagnetic Waves Class 12
Electromagnetic Waves Class 12 Self-employed
 
Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Self-employed
 
Current Electricity Class 12 Part-1
Current Electricity Class 12 Part-1Current Electricity Class 12 Part-1
Current Electricity Class 12 Part-1Self-employed
 
Current Electricity Class 12 Part-3
Current Electricity Class 12 Part-3Current Electricity Class 12 Part-3
Current Electricity Class 12 Part-3Self-employed
 
Electrostatics Class 12- Part 4
Electrostatics Class 12- Part 4Electrostatics Class 12- Part 4
Electrostatics Class 12- Part 4Self-employed
 
Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3Self-employed
 
Electrostatics Class 12- Part 2
Electrostatics Class 12- Part 2Electrostatics Class 12- Part 2
Electrostatics Class 12- Part 2Self-employed
 

More from Self-employed (17)

Computer Science Investigatory Project Class 12
Computer Science Investigatory Project Class 12Computer Science Investigatory Project Class 12
Computer Science Investigatory Project Class 12
 
Chemistry Investigatory Project Class 12
Chemistry Investigatory Project Class 12Chemistry Investigatory Project Class 12
Chemistry Investigatory Project Class 12
 
Physics Investigatory Project Class 12
Physics Investigatory Project Class 12Physics Investigatory Project Class 12
Physics Investigatory Project Class 12
 
Communication - Laser Class 12 Part-7
Communication - Laser Class 12 Part-7Communication - Laser Class 12 Part-7
Communication - Laser Class 12 Part-7
 
Communication - Line Communication Class 12 Part-6
Communication - Line Communication Class 12 Part-6Communication - Line Communication Class 12 Part-6
Communication - Line Communication Class 12 Part-6
 
Communication - Amplitude Modulation Class 12 Part-1
Communication - Amplitude Modulation Class 12 Part-1Communication - Amplitude Modulation Class 12 Part-1
Communication - Amplitude Modulation Class 12 Part-1
 
Communication - Space Communication Class 12 Part-5
Communication - Space Communication Class 12 Part-5Communication - Space Communication Class 12 Part-5
Communication - Space Communication Class 12 Part-5
 
Semiconductor Devices Class 12 Part-3
Semiconductor Devices Class 12 Part-3Semiconductor Devices Class 12 Part-3
Semiconductor Devices Class 12 Part-3
 
Semiconductor Devices Class 12 Part-4
Semiconductor Devices Class 12 Part-4Semiconductor Devices Class 12 Part-4
Semiconductor Devices Class 12 Part-4
 
Electromagnetic Waves Class 12
Electromagnetic Waves Class 12 Electromagnetic Waves Class 12
Electromagnetic Waves Class 12
 
Magnetism
MagnetismMagnetism
Magnetism
 
Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3Magnetic Effects Of Current Class 12 Part-3
Magnetic Effects Of Current Class 12 Part-3
 
Current Electricity Class 12 Part-1
Current Electricity Class 12 Part-1Current Electricity Class 12 Part-1
Current Electricity Class 12 Part-1
 
Current Electricity Class 12 Part-3
Current Electricity Class 12 Part-3Current Electricity Class 12 Part-3
Current Electricity Class 12 Part-3
 
Electrostatics Class 12- Part 4
Electrostatics Class 12- Part 4Electrostatics Class 12- Part 4
Electrostatics Class 12- Part 4
 
Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3
 
Electrostatics Class 12- Part 2
Electrostatics Class 12- Part 2Electrostatics Class 12- Part 2
Electrostatics Class 12- Part 2
 

Recently uploaded

Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxdhanalakshmis0310
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 

Recently uploaded (20)

Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 

Wave Optics Class 12 Part-1

  • 1. WAVE OPTICS - I 1. Electromagnetic Wave 2. Wavefront 3. Huygens’ Principle 4. Reflection of Light based on Huygens’ Principle 5. Refraction of Light based on Huygens’ Principle 6. Behaviour of Wavefront in a Mirror, Lens and Prism 7. Coherent Sources 8. Interference 9. Young’s Double Slit Experiment 10.Colours in Thin Films Created by C. Mani, Principal, K V No.1, AFS, Jalahalli West, Bangalore
  • 2. 0 Electromagnetic Wave: X E0 B0 Y Z Wave is propagating along X – axis with speed c = 1 / √μ0ε0 For discussion of optical property of EM wave, more significance is given to Electric Field, E. Therefore, Electric Field is called ‘light vector’. 1. Variations in both electric and magnetic fields occur simultaneously. Therefore, they attain their maxima and minima at the same place and at the same time. 2. The direction of electric and magnetic fields are mutually perpendicular to each other and as well as to the direction of propagation of wave. 3. The speed of electromagnetic wave depends entirely on the electric and magnetic properties of the medium, in which the wave travels and not on the amplitudes of their variations.
  • 3. Wavefront: A wavelet is the point of disturbance due to propagation of light. A wavefront is the locus of points (wavelets) having the same phase of oscillations. A line perpendicular to a wavefront is called a ‘ray’. Spherical Wavefront from a point source Cylindrical Wavefront from a linear source Plane Wavefront Pink Dots – Wavelets Blue Envelope– Wavefront Red Line – Ray •
  • 4. Huygens’ Construction or Huygens’ Principle of Secondary Wavelets: S New Wavefront (Spherical) New Wave- front (Plane) . . . . . . . . (Wavelets - Red dots on the wavefront) 1. Each point on a wavefront acts as a fresh source of disturbance of light. 2. The new wavefront at any time later is obtained by taking the forward envelope of all the secondary wavelets at that time. Note: Backward wavefront is rejected. Why? . . . . .. . . . Amplitude of secondary wavelet is proportional to ½ (1+cosθ). Obviously, for the backward wavelet θ = 180° and (1+cosθ) is 0. •
  • 5. Laws of Reflection at a Plane Surface (On Huygens’ Principle): i i r r A B C D N N AB – Incident wavefront CD – Reflected wavefront XY – Reflecting surface E F G If c be the speed of light, t be the time taken by light to go from B to C or A to D or E to G through F, then EF t = c + FG c AF sin i t = c + FC sin r c For rays of light from different parts on the incident wavefront, the values of AF are different. But light from different points of the incident wavefront should take the same time to reach the corresponding points on the reflected wavefront. So, t should not depend upon AF. This is possible only if sin i – sin r = 0. i.e. sin i = sin r or i = r X Y AC sin r + AF (sin i – sin r) t = c
  • 6. Laws of Refraction at a Plane Surface (On Huygens’ Principle): i i r r A B C D N N AB – Incident wavefront CD – Refracted wavefront XY – Refracting surface E F G X Y c, μ1 v, μ2 Denser Rarer If c be the speed of light, t be the time taken by light to go from B to C or A to D or E to G through F, then EF t = c + FG v AF sin i t = c + FC sin r v For rays of light from different parts on the incident wavefront, the values of AF are different. But light from different points of the incident wavefront should take the same time to reach the corresponding points on the refracted wavefront. So, t should not depend upon AF. This is possible only if AC sin r t = cv sin i + AF ( v sin r - ) c v = 0 sin i sin r - c v sin i sin r = c v sin i sin r = = μor or
  • 7. Behaviour of a Plane Wavefront in a Concave Mirror, Convex Mirror, Convex Lens, Concave Lens and Prism: Concave Mirror A C A B C D B D Convex Lens A B A B C DConcave Lens Convex Mirror C D AB – Incident wavefront CD – Reflected / Refracted wavefront
  • 8. AB – Incident wavefront CD –Refracted wavefront Coherent Sources: Coherent Sources of light are those sources of light which emit light waves of same wavelength, same frequency and in same phase or having constant phase difference. Coherent sources can be produced by two methods: 1. By division of wavefront (Young’s Double Slit Experiment, Fresnel’s Biprism and Lloyd’s Mirror) 2. By division of amplitude (Partial reflection or refraction) Prism Prism A B C D
  • 9. Interference of Waves: • • Constructive Interference E = E1 + E2 Destructive Interference E = E1 - E2 S1 S2 Bright Band Dark Band Dark Band Bright Band Bright Band Crest Trough Bright Band Dark Band1st Wave (E1) 2nd Wave (E2) Resultant Wave Reference Line E1 E2 E2 E1 The phenomenon of one wave interfering with another and the resulting redistribution of energy in the space around the two sources of disturbance is called interference of waves. E1 + E2 E1 - E2
  • 10. Theory of Interference of Waves: E1 = a sin ωt E2 = b sin (ωt + Φ) The waves are with same speed, wavelength, frequency, time period, nearly equal amplitudes, travelling in the same direction with constant phase difference of Φ. ω is the angular frequency of the waves, a,b are the amplitudes and E1, E2 are the instantaneous values of Electric displacement. Applying superposition principle, the magnitude of the resultant displacement of the waves is E = E1 + E2 E = a sin ωt + b sin (ωt + Φ) E = (a + b cos Φ) sin ωt + b sin Φ cos ωt Putting a + b cos Φ = A cos θ b sin Φ = A sin θ θΦ a b A b cos Φ b sin Φ A cos θ A sin θ We get E = A sin (ωt + θ) (where E is the resultant displacement, A is the resultant amplitude and θ is the resultant phase difference) A = √ (a2 + b2 + 2ab cos Φ) tan θ = b sin Φ a + b cos Φ
  • 11. A = √ (a2 + b2 + 2ab cos Φ) Intensity I is proportional to the square of the amplitude of the wave.So, I α A2 i.e. I α (a2 + b2 + 2ab cos Φ) Condition for Constructive Interference of Waves: For constructive interference, I should be maximum which is possible only if cos Φ = +1. i.e. Φ = 2nπ Corresponding path difference is ∆ = (λ / 2 π) x 2nπ where n = 0, 1, 2, 3, ……. ∆ = n λ Condition for Destructive Interference of Waves: For destructive interference, I should be minimum which is possible only if cos Φ = - 1. i.e. Φ = (2n + 1)π Corresponding path difference is ∆ = (λ / 2 π) x (2n + 1)π where n = 0, 1, 2, 3, ……. ∆ = (2n + 1) λ / 2 Imax α (a + b)2 Iminα (a - b)2
  • 12. Comparison of intensities of maxima and minima: Imax α (a + b)2 Imin α (a - b)2 Imax Imin = (a + b)2 (a - b)2 (a/b + 1)2 (a/b - 1)2 = Imax Imin = (r + 1)2 (r - 1)2 where r = a / b (ratio of the amplitudes) Relation between Intensity (I), Amplitude (a) of the wave and Width (w) of the slit: I α a2 a α √w I1 I2 = (a1)2 (a2)2 = w1 w2
  • 13. Young’s Double Slit Experiment: •S S• O P D S1 S2 d y d/2 d/2 Single Slit Double Slit Screen The waves from S1 and S2 reach the point P with some phase difference and hence path difference ∆ = S2P – S1P S2P2 – S1P2 = [D2 + {y + (d/2)}2 ] - [D2 + {y - (d/2)}2 ] (S2P – S1P) (S2P + S1P) = 2 yd ∆ (2D) = 2 yd ∆ = yd / D
  • 14. Positions of Bright Fringes: For a bright fringe at P, ∆ = yd / D = nλ where n = 0, 1, 2, 3, … For n = 0, y0 = 0 For n = 1, y1 = D λ / d For n = 2, y2 = 2 D λ / d …… For n = n, yn = n D λ / d y = n D λ / d Positions of Dark Fringes: For a dark fringe at P, ∆ = yd / D = (2n+1)λ/2 where n = 0, 1, 2, 3, … For n = 0, y0’ = D λ / 2d For n = 1, y1’ = 3D λ / 2d For n = 2, y2’ = 5D λ / 2d ….. For n = n, yn’ = (2n+1)D λ / 2d y = (2n+1) D λ / 2d Expression for Dark Fringe Width: βD = yn – yn-1 = n D λ / d – (n – 1) D λ / d = D λ / d Expression for Bright Fringe Width: βB = yn’ – yn-1’ = (2n+1) D λ / 2d – {2(n-1)+1} D λ / 2d = D λ / d The expressions for fringe width show that the fringes are equally spaced on the screen.
  • 15. Distribution of Intensity: Intensity 0 yy Suppose the two interfering waves have same amplitude say ‘a’, then Imax α (a+a)2 i.e. Imax α 4a2 All the bright fringes have this same intensity. Imin = 0 All the dark fringes have zero intensity. Conditions for sustained interference: 1. The two sources producing interference must be coherent. 2. The two interfering wave trains must have the same plane of polarisation. 3. The two sources must be very close to each other and the pattern must be observed at a larger distance to have sufficient width of the fringe. (D λ / d) 4. The sources must be monochromatic. Otherwise, the fringes of different colours will overlap. 5. The two waves must be having same amplitude for better contrast between bright and dark fringes.
  • 16. Colours in Thin Films: P Q R S r i t μ It can be proved that the path difference between the light partially reflected from PQ and that from partially transmitted and then reflected from RS is ∆ = 2μt cos r O Since there is a reflection at O, the ray OA suffers an additional phase difference of π and hence the corresponding path difference of λ/2. A B C For the rays OA and BC to interfere constructively (Bright fringe), the path difference must be (n + ½) λ So, 2μt cos r = (n + ½) λ When white light from the sun falls on thin layer of oil spread over water in the rainy season, beautiful rainbow colours are formed due to interference of light. For the rays OA and BC to interfere destructively (Dark fringe), the path difference must be nλ So, 2μt cos r = n λ End of Wave Optics - I