SlideShare a Scribd company logo
Department of Electrical Engineering
Power Electronics
Lab Manual
B.E-VI Electronics
Instructor: Engr. Jahangir Badar Soomro
Department of Electrical Engineering
Certificate
It is certified that Zeeshan Ahmed Lodro student of
BE -VI has carried out the necessary work of
Power Electronics
Lab as per course of studies prevailed in the department of
Electrical Engineering
Sukkur IBA University for Spring 2017.
____________________
Instructor’s Signature
Date: _______________
1
Lab Experiment No# 01
Single Phase Half Wave Uncontrolled Rectification using Resistive Load, Resistive-Inductive
Load, and Resistive-Capacitive Load
B. Sketch/Display the output voltage and current waveforms as displayed on the oscilloscope.
i) In case of resistive load.
Ans: R_Load Ω
ii) In case of resistive-inductive load.
Ans: RL_Load R= Ω, L= 385 mH
2
iii) In case of resistive inductive load with a freewheeling diode parallel across the load.
Ans: Free Wheeling
iv) In case of resistive-capacitive load. Attach all necessary results and discuss the effect of
increasing the capacitance value on average output voltage.
Ans: RC_Load R= Ω, C= 50 uF
1
Lab Experiment No# 02
Single Phase Full Wave Uncontrolled Rectification using Resistive Load, Resistive-Inductive
Load, and Resistive-Capacitive Load
B. Sketch/Display the output voltage and current waveforms as displayed on the oscilloscope.
i) In case of resistive load.
Ans: R_Load 3 Ω
ii) In case of resistive-inductive load. Attach all necessary results to verify that as the value of
inductance increases the average output voltage decreases.
Ans: RL_Load R= 3 Ω, L= 700 mH
2
iii) In case of resistive-capacitive load
Ans: RC_Load R= 3 Ω, C= 50 uF
1
Lab Experiment No# 03
Single Phase Half Wave Controlled Rectification using Resistive Load, Resistive-Inductive
Load, and Resistive-Capacitive Load
B. At any conduction angle sketch/display the load voltage and current waveforms as displayed on
the oscilloscope. Also, display total harmonic distortions in output voltage and current in case of
resistive load on that firing angle using power quality analyzer.
i) In case of resistive load.
Ans: Conduction angle 62°
Total Harmonic Distortions in Output Current
2
Total Harmonic Distortions in Output Voltage
ii) In case of resistive-inductive load.
3
iii) In case of resistive inductive load with a freewheeling diode parallel across the load.
iv) In case of resistive-capacitive load
4
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-80
-60
-40
-20
0
20
40
60
80
Time
Amplitude
Single Phase Halfwave Controlled Rectifier using Resistive Load
C. Design MATLAB/SIMULINK model of Single phase half wave controlled rectifier using resistive
and resistive-inductive load. Also, connect freewheeling diode with resistive-inductive load and
discuss its effect on the output. Attach all necessary snapshots of models and resulting outputs of
circuits.
a) Single Phase Halfwave Controlled Rectifier using resistive Load.
Block Diagram:
Result:
5
b) Single Phase Halfwave Controlled Rectifier using Resistive-Inductive Load.
Block Diagram:
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-80
-60
-40
-20
0
20
40
60
80
Time
Single Phase Halfwave Controlled Rectifier using Resistive-Inductive Load.
Result:
Amplitude
6
c) Single Phase Halfwave Controlled Rectifier using Resistive-Inductive Load with Freewheeling
diode.
Block Diagram:
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-80
-60
-40
-20
0
20
40
60
80
Time
Amplitude
Single Phase Halfwave Controlled Rectifier using RL Load with Freewheeling diode.
Result:
1
Lab Experiment No# 04
Single Phase Full Wave Controlled Rectification using Resistive Load, Resistive-Inductive
Load, and Resistive-Capacitive Load
A. At any firing angles sketch/display the load voltage and current waveforms as displayed on the
oscilloscope. Also, display total harmonic distortions in output voltage and current in case of
resistive-inductive load on that firing angle using power quality analyzer.
i) In case of resistive load.
Ans: Firing angle 99°
ii) In case of resistive-inductive load
2
Total Harmonic Distortions in Output Current
Total Harmonic Distortions in Output Voltage
iii) In case of resistive-capacitive load
3
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time
Amplitude
Single phase Full Wave Controlled Bridge Rectifier using Resistive load.
B. Design MATLAB/SIMULINK model of Single phase full wave controlled bridge rectifier using
resistive and resistive-inductive load. Attach all necessary snapshots of models and resulting
outputs of circuits.
a) Single phase Full Wave Controlled Bridge Rectifier using Resistive load.
Block Diagram:
Result:
4
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time
Amplitude
Single phase Full Wave Controlled Bridge Rectifier using RL load
b) Single phase Full Wave Controlled Bridge Rectifier using Resistive-Inductive load.
Block Diagram:
Result:
1
Lab Experiment No# 05
Three Phase Half Wave & Full Wave Controlled Rectification using Resistive Load, Resistive-
Inductive Load, and Resistive-Capacitive Load
A. At any firing angle sketch/display the load voltage and current waveforms of three phase half
wave rectifier with resistive load as displayed on the oscilloscope.
At a reference voltage of scale division at Ω
At a reference voltage of 8 scale division at 272 Ω
2
At a reference voltage of scale division at Ω
At a reference voltage of 4 scale division at Ω
At a reference voltage of scale division at Ω
3
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time
Amplitude
Three Phase Halfwave Controlled Rectifier using Resistive Load.
B) Simulate MATLAB/SIMULINK model of three phase Half Wave Controlled Rectifier using
Resistive and Resistive-Inductive load (firing angle should be your CMS ID). Attach all necessary
snapshots of models and resulting outputs of circuits.
a) Three Phase Halfwave Controlled Rectifier using Resistive Load.
Block Diagram:
Result:
4
b) Three Phase Halfwave Controlled Rectifier using Resistive-Inductive Load.
Block Diagram:
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-100
-80
-60
-40
-20
0
20
40
60
80
100
Time
Amplitude
Three Phase Halfwave Controlled Rectifier using Resistive-Inductive Load.
Result:
1
Lab Experiment No# 06
Speed Control of DC Shunt Motor using AC-DC Converters
A) Record the reference voltage (at any five values), speed, armature voltage and armature current
to complete the table for dc motor drive using half wave and full wave controlled rectifier.
a) Single Phase Half Wave Controlled Rectifier (DC motor speed control) (470 mH).
a)
Single
Phase
Full
Wave
Control
led
Rectifie
r (DC
motor speed control) (470 mH).
Ref voltage scale div Speed rev/min Armature voltage Armature current
1 0.7rpm 1.8mV 0
3 45.4rpm 115mV 0.096A
5 352.1rpm 29.9V 0.33A
7 1210rpm 97.7V 0.37A
9 1474rpm 118V 0.36A
Ref voltage scale div Speed rev/min Armature voltage Armature current
2 0 124mV 0.027
4 129.8 388mV 0.303
6 1340 107V 0.355
8 1857 147.5V 0.353
10 2137 167.7V 0.366
2
B) At a reference voltage of 9 scale divisions, sketch/display the load voltage and current across the
armature of dc motor drive using half wave controlled rectifier and full wave controlled rectifier.
Half wave controlled rectifier dc motor drive at 9 scale division
Full wave controlled rectifier dc motor drive at 9 scale division
1
Lab Experiment No# 7
Step Down Chopper (DC-DC Converter)
B) Simulate Buck Converter using MATLAB/SIMULINK software keeping parameters L= 0μH, C=
22μF, R_Load= Ω, F Switching=1000 KHz, D=0.4 and input voltage=62V (CMS ID). Steps to follow:
i. Display its output voltage and inductor current on scope.
Voltage Waveform:
Current Waveform:
9.228 9.229 9.23 9.231 9.232 9.233 9.234 9.235 9.236 9.237
x 10
-3
24.3149
24.3149
24.3149
24.3149
24.3149
24.3149
24.3149
24.3149
Time
Voltage
9.228 9.229 9.23 9.231 9.232 9.233 9.234 9.235 9.236 9.237
x 10
-3
4.65
4.7
4.75
4.8
4.85
4.9
4.95
5
5.05
5.1
5.15
Time
Current
2
ii. Vary the duty cycle and comment on the results.
Duty Cycle 40 %:
Duty Cycle 60 %:
9.228 9.229 9.23 9.231 9.232 9.233 9.234 9.235 9.236 9.237
x 10
-3
24.3149
24.3149
24.3149
24.3149
24.3149
24.3149
24.3149
24.3149
Time
Voltage
9.228 9.229 9.23 9.231 9.232 9.233 9.234 9.235 9.236 9.237
x 10
-3
36.8729
36.8729
36.8729
36.8729
36.8729
36.8729
36.8729
36.8729
36.8729
Time
Voltage
1
Lab Experiment No# 08
Step Up Chopper (DC-DC Converter)
Questions
Vg = 18V And Duty Cycle = 40%
1. Display the steady-state average output voltage. Also write its value (expressed in volts)?
Ans: Average output voltage = 29.887V
2
2. Display the steady-state average inductor current. Also write its value (in amps)?
Ans: Average inductor current = 1.4942A
3) What is the steady-state output power (in watts)?
Ans: 44.6571 Watts
4. What is the average power drawn out of the input source Vg during steady-state operation of the
converter (in watts)?
Ans: 47.1708 Watts
5. What is the average power consumption of the gate driver (in watts)?
Ans: 0.3554 mWatt
6. What is the converter efficiency (enter a numeric value between 0 and 1)?
Ans: 94.671%
3
7. Now change the control voltage input to the pulse-width modulator, so that it produces a control
signal having a duty cycle of 0.6. Run the simulation again. What is the new steady-state average
output voltage? Also, display its new steady-state average output voltage.
1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-4
-2
0
2
4
Time
Current
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-100
-50
0
50
100
Time
Voltage
Lab Experiment No# 09
Single Phase Half Bridge & Full Bridge Square Wave Inverter
A) Simulate MATLAB/SIMULINK model of single phase full bridge square wave voltage source
inverter using IGBTs with resistive load. Follow the below instructions to complete the lab report.
i) Attach the snapshot of your designed model.
ii. Attach the output voltage and current of your designed model
2
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2
0
2
Selected signal: 5 cycles. FFT window (in red): 1 cycles
Time (s)
0 100 200 300 400 500 600 700 800 900 1000
0
5
10
15
20
25
30
35
Frequency (Hz)
Fundamental (50Hz) = 4.71 , THD= 48.03%
Mag(%ofFundamental)
iii) Display the total harmonic distortions in output voltage and current of square wave inverter
using FFT analysis tool in MATLAB/SIMULINK. Why there are only odd harmonics and no even
harmonics in square wave inverter? Snapshot
THD in Output Voltage & Output Current using FFT Analysis:
Output Voltage THD:
Output Current THD:
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-2
0
2
Selected signal: 5 cycles. FFT window (in red): 1 cycles
Time (s)
0 100 200 300 400 500 600 700 800 900 1000
0
5
10
15
20
25
30
35
Frequency (Hz)
Fundamental (50Hz) = 4.71 , THD= 48.03%
Mag(%ofFundamental)
3
iv) Vary the gate pulses applied to switches in such a way that quasi square wave inverter is
obtained at output. Attach the output voltage and current.
4
Result
v) Display the total harmonic distortions in output voltage and current of quasi square inverter
using FFT analysis tool in MATLAB/SIMULINK. Compare the %THD of quasi square inverter with
square wave inverter. Which topology is better in terms of power quality?
THD in Output Voltage & Output Current of Quasi Square Wave using FFT Analysis:
Output Voltage THD:
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-10
-5
0
5
10
Time
Current
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-100
-50
0
50
100
Time
Voltage
5
Output Current THD:
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-5
0
5
Selected signal: 5 cycles. FFT window (in red): 1 cycles
Time (s)
0 100 200 300 400 500 600 700 800 900 1000
0
5
10
15
20
25
Frequency (Hz)
Fundamental (50Hz) = 7.621 , THD= 36.18%
Mag(%ofFundamental)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-50
0
50
Selected signal: 5 cycles. FFT window (in red): 1 cycles
Time (s)
0 100 200 300 400 500 600 700 800 900 1000
0
5
10
15
20
25
Frequency (Hz)
Fundamental (50Hz) = 76.21 , THD= 36.18%
Mag(%ofFundamental)
1
Lab Experiment No# 10
Single Phase Bipolar & Unipolar PWM Inverters
Using SimPower Systems toolbox of MATLAB/SIMULINK software, simulate the circuit of
single phase H-Bridge inverter with Bipolar and Unipolar PWM. Connect the dc-side to a dc
voltage source of Vdc= (Your CMS ID) and the ac-side to an RL load with R=1Ω and L=5mH.
The desired ac voltage has a fundamental of 50 Hz. Select the triangle wave with a
frequency of 500Hz+Your CMS ID.
1) Single Phase Unipolar PWM Inverter:
i. Vary the modulation index of either bipolar or unipolar topology from 0.2 to 1 (steps of
0.2) and record (attach) the voltage and current waveforms. Confirm that the amplitude of
fundamental component of load voltage has a linear relationship with the modulation index
(you can confirm by measuring the amplitude of load current).
Block Diagram:
2
Result: At m= 0.2
At m=0.4
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-20
-10
0
10
20Current
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-100
-50
0
50
100
Time
Voltage
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-40
-20
0
20
40
Current
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-100
-50
0
50
100
Time
Voltage
3
At m=0.6
At m=0.8
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-40
-20
0
20
40
Current
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-100
-50
0
50
100
Time
Voltage
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-40
-20
0
20
40
Current
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-100
-50
0
50
100
Time
Voltage
4
At m=1
ii) Single Phase Unipolar PWM Inverter THD:
Voltage THD:
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-50
0
50
Current
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-100
-50
0
50
100
Time
Voltage
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-50
0
50
Selected signal: 5 cycles. FFT window (in red): 1 cycles
Time (s)
0 100 200 300 400 500 600 700 800 900 1000
0
10
20
30
40
50
Frequency (Hz)
Fundamental (50Hz) = 73.75 , THD= 100.03%
Mag(%ofFundamental)
5
Current THD:
iii) Output Currents & THD at different Switching Frequencies:
A. At Fc= 1562 Hz.
Output Current & THD:
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-40
-20
0
20
40
Selected signal: 5 cycles. FFT window (in red): 1 cycles
Time (s)
0 100 200 300 400 500 600 700 800 900 1000
0
2
4
6
8
10
12
14
16
Frequency (Hz)
Fundamental (50Hz) = 40.2 , THD= 18.40%
Mag(%ofFundamental)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-40
-20
0
20
40
Selected signal: 5 cycles. FFT window (in red): 1 cycles
Time (s)
0 100 200 300 400 500 600 700 800 900 1000
0
2
4
6
8
10
12
14
16
18
20
Frequency (Hz)
Fundamental (50Hz) = 39.59 , THD= 19.14%
Mag(%ofFundamental)
6
B. At Fc= 262 Hz.
Output Current & THD:
Bipolar Output Current & THD:
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-40
-20
0
20
40
Selected signal: 5 cycles. FFT window (in red): 1 cycles
Time (s)
0 100 200 300 400 500 600 700 800 900 1000
0
5
10
15
Frequency (Hz)
Fundamental (50Hz) = 38.57 , THD= 23.13%
Mag(%ofFundamental)
0 0.02 0.04 0.06 0.08 0.1
-40
-20
0
20
40
Selected signal: 5 cycles. FFT window (in red): 1 cycles
Time (s)
0 200 400 600 800 1000
0
5
10
15
Frequency (Hz)
Fundamental (50Hz) = 40.7 , THD= 19.28%
Mag(%ofFundamental)
1
Lab Experiment No# 11
Single Phase to Single Phase(1Ø-1Ø) Cycloconverter
A. Simulate MATLAB/SIMULINK model of single Single-phase to Single-phase Step Down
Cycloconverter. Follow the below instructions to complete the lab report.
i. Attach the snapshot of your designed model.
ii. Keeping any frequency select (F, F/2, F/3, F/4), verify that the model works as step down
cycloconverter. Attach the output voltage and input voltage waveforms.
Frequency Fin = 50 Hz Fout = 50Hz :
Input Voltage Waveform:
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-80
-60
-40
-20
0
20
40
60
80
Time
2
Output Voltage Waveform:
Frequency Fin = 50 Hz Fout/2= 25Hz :
Input Voltage Waveform:
Output Voltage Waveform:
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-40
-30
-20
-10
0
10
20
30
40
Time
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-80
-60
-40
-20
0
20
40
60
80
Time
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-40
-30
-20
-10
0
10
20
30
40
Time
3
Frequency Fin = 50 Hz Fout/3= 16.66Hz :
Input Voltage Waveform:
Output Voltage Waveform:
Frequency Fin = 50 Hz Fout/4= 12.5Hz :
Input Voltage Waveform:
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-80
-60
-40
-20
0
20
40
60
80
Time
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-40
-30
-20
-10
0
10
20
30
40
Time
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-80
-60
-40
-20
0
20
40
60
80
Time
4
Output Voltage Waveform:
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-40
-30
-20
-10
0
10
20
30
40
Time
1
Lab Experiment No# 12
Single Phase Full Wave AC Voltage Controller using Resistive Load, Resistive-Inductive Load
and Resistive-Capacitive Load
A) At any firing angles sketch/display the load voltage and current waveforms as displayed on
the oscilloscope. Also, display total harmonic distortions in output voltage and current on that
firing angle using resistive load. What is the effect on total harmonic distortions if firing angle is
increased?
i) In case of resistive load. With firing angle 140.4° and R_Load 8 Ω
Total Harmonic Distortion in output Current
2
Total Harmonic Distortion in output Voltage
ii) In case of resistive-Inductive load. With firing angle 140.4° and RL_Load 8 Ω and L= 5 mH
3
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-200
-150
-100
-50
0
50
100
150
200
Time
Amplitude
Single Phase Full Wave Bidirectional Ac Voltage Controller using SCRs with Resistive load
B) Simulate MATLAB/SIMULINK model of single phase full wave bidirectional ac voltage
controller using SCRs with resistive and resistive-inductive load. Using FFT analysis tool
calculate the total harmonic distortions at that firing angle in case of resistive load only. Attach
all necessary snapshots of model and results.
a) Single Phase Full Wave Bidirectional Ac Voltage Controller using SCRs with Resistive load.
Block Diagram:
Result:
4
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-200
-150
-100
-50
0
50
100
150
200
Time
Amplitude
Single Phase Full wave Bidirectional Ac Voltage Controller using SCRs with RL load
b) Single Phase Full Wave Bidirectional Ac Voltage Controller using SCRs with Resistive-
Inductive load.
Block Diagram:
Result:
5
c) Total Harmonic Distortion Using Resistive Load only

More Related Content

What's hot

RADAR X band
RADAR X bandRADAR X band
RADAR X band
shahbaaz lokhandwala
 
Risc cisc Difference
Risc cisc DifferenceRisc cisc Difference
Risc cisc Difference
Sehrish Asif
 
INDUSTRIAL ELECTRONICS,POWER ELECTRONICS,ELEARNING
INDUSTRIAL ELECTRONICS,POWER ELECTRONICS,ELEARNINGINDUSTRIAL ELECTRONICS,POWER ELECTRONICS,ELEARNING
INDUSTRIAL ELECTRONICS,POWER ELECTRONICS,ELEARNING
arulbarathi kandhi
 
Function generator
Function generatorFunction generator
Function generator
Bhavin Mangukiya
 
Quantum Magnetism
Quantum MagnetismQuantum Magnetism
Quantum Magnetism
oriolespinal
 
Maxwell's equations 3rd 2
Maxwell's equations 3rd 2Maxwell's equations 3rd 2
Maxwell's equations 3rd 2
HIMANSHU DIWAKAR
 
Thevenin and norton
Thevenin and nortonThevenin and norton
Thevenin and norton
JeyaMangalam
 
DAC , Digital to analog Converter
DAC , Digital to analog ConverterDAC , Digital to analog Converter
DAC , Digital to analog Converter
Hossam Zein
 
Microcontroller pic 16f877 architecture and basics
Microcontroller pic 16f877 architecture and basicsMicrocontroller pic 16f877 architecture and basics
Microcontroller pic 16f877 architecture and basics
Nilesh Bhaskarrao Bahadure
 
Transistor Fundamentals
Transistor FundamentalsTransistor Fundamentals
Transistor Fundamentals
Jay Baria
 
Chapter 6 register
Chapter 6 registerChapter 6 register
Chapter 6 register
CT Sabariah Salihin
 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTER
NIT MEGHALAYA
 
Magnetic circuits
Magnetic circuitsMagnetic circuits
Magnetic circuits
Dr. Selvarasu Ranganathan
 
Class 16 floating and proportional control mode
Class 16   floating and proportional control modeClass 16   floating and proportional control mode
Class 16 floating and proportional control mode
Manipal Institute of Technology
 
Transformers
TransformersTransformers
Transformers
Yimam Alemu
 
2.Opamp parameters
2.Opamp parameters2.Opamp parameters
2.Opamp parameters
INDIAN NAVY
 
14827 shift registers
14827 shift registers14827 shift registers
14827 shift registers
Sandeep Kumar
 
LISSAJOUS PATTERNS Experiment 3
LISSAJOUS PATTERNS Experiment 3LISSAJOUS PATTERNS Experiment 3
LISSAJOUS PATTERNS Experiment 3
Karimi LordRamza
 
Universal gates ppt jatin 1_st_sem[1]
Universal gates ppt jatin 1_st_sem[1]Universal gates ppt jatin 1_st_sem[1]
Universal gates ppt jatin 1_st_sem[1]
JatinMahato1
 
Unit 1 Numerical Problems on PN Junction Diode
Unit 1 Numerical Problems on PN Junction DiodeUnit 1 Numerical Problems on PN Junction Diode
Unit 1 Numerical Problems on PN Junction Diode
Dr Piyush Charan
 

What's hot (20)

RADAR X band
RADAR X bandRADAR X band
RADAR X band
 
Risc cisc Difference
Risc cisc DifferenceRisc cisc Difference
Risc cisc Difference
 
INDUSTRIAL ELECTRONICS,POWER ELECTRONICS,ELEARNING
INDUSTRIAL ELECTRONICS,POWER ELECTRONICS,ELEARNINGINDUSTRIAL ELECTRONICS,POWER ELECTRONICS,ELEARNING
INDUSTRIAL ELECTRONICS,POWER ELECTRONICS,ELEARNING
 
Function generator
Function generatorFunction generator
Function generator
 
Quantum Magnetism
Quantum MagnetismQuantum Magnetism
Quantum Magnetism
 
Maxwell's equations 3rd 2
Maxwell's equations 3rd 2Maxwell's equations 3rd 2
Maxwell's equations 3rd 2
 
Thevenin and norton
Thevenin and nortonThevenin and norton
Thevenin and norton
 
DAC , Digital to analog Converter
DAC , Digital to analog ConverterDAC , Digital to analog Converter
DAC , Digital to analog Converter
 
Microcontroller pic 16f877 architecture and basics
Microcontroller pic 16f877 architecture and basicsMicrocontroller pic 16f877 architecture and basics
Microcontroller pic 16f877 architecture and basics
 
Transistor Fundamentals
Transistor FundamentalsTransistor Fundamentals
Transistor Fundamentals
 
Chapter 6 register
Chapter 6 registerChapter 6 register
Chapter 6 register
 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTER
 
Magnetic circuits
Magnetic circuitsMagnetic circuits
Magnetic circuits
 
Class 16 floating and proportional control mode
Class 16   floating and proportional control modeClass 16   floating and proportional control mode
Class 16 floating and proportional control mode
 
Transformers
TransformersTransformers
Transformers
 
2.Opamp parameters
2.Opamp parameters2.Opamp parameters
2.Opamp parameters
 
14827 shift registers
14827 shift registers14827 shift registers
14827 shift registers
 
LISSAJOUS PATTERNS Experiment 3
LISSAJOUS PATTERNS Experiment 3LISSAJOUS PATTERNS Experiment 3
LISSAJOUS PATTERNS Experiment 3
 
Universal gates ppt jatin 1_st_sem[1]
Universal gates ppt jatin 1_st_sem[1]Universal gates ppt jatin 1_st_sem[1]
Universal gates ppt jatin 1_st_sem[1]
 
Unit 1 Numerical Problems on PN Junction Diode
Unit 1 Numerical Problems on PN Junction DiodeUnit 1 Numerical Problems on PN Junction Diode
Unit 1 Numerical Problems on PN Junction Diode
 

Similar to Power Electronics Lab Manual Spring 2017

report of power electronics
report of power electronicsreport of power electronics
report of power electronics
Mohamad Nur Afham Shamsudin
 
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
IRJET Journal
 
PEQPAU.pdf
PEQPAU.pdfPEQPAU.pdf
PEQPAU.pdf
thamizmani s
 
Lightning Characteristics and Impulse Voltage.
Lightning Characteristics and Impulse Voltage.Lightning Characteristics and Impulse Voltage.
Lightning Characteristics and Impulse Voltage.
Milton Sarker
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
Sarah Krystelle
 
Electronics Lab Manual by Er. Swapnil V. Kaware
Electronics Lab Manual by Er. Swapnil V. KawareElectronics Lab Manual by Er. Swapnil V. Kaware
Electronics Lab Manual by Er. Swapnil V. Kaware
Prof. Swapnil V. Kaware
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
Chirag Shetty
 
ENHANCEMENT OF ACTIVE POWER FLOW CAPACITY OF A TRANSMISSION LINE USING MSC‐TC...
ENHANCEMENT OF ACTIVE POWER FLOW CAPACITY OF A TRANSMISSION LINE USING MSC‐TC...ENHANCEMENT OF ACTIVE POWER FLOW CAPACITY OF A TRANSMISSION LINE USING MSC‐TC...
ENHANCEMENT OF ACTIVE POWER FLOW CAPACITY OF A TRANSMISSION LINE USING MSC‐TC...
ijiert bestjournal
 
Assignment & solution (selected)
Assignment & solution (selected)Assignment & solution (selected)
Assignment & solution (selected)
efrataderebe
 
2nd year iv sem emi lab manual
2nd year iv sem emi lab manual2nd year iv sem emi lab manual
2nd year iv sem emi lab manual
HARISH KUMAR MAHESHWARI
 
امتحان جهد عالي 2016
امتحان  جهد عالي  2016امتحان  جهد عالي  2016
امتحان جهد عالي 2016
Eslam Elfayoumy
 
امتحان جهد عالي 2015-2016
امتحان جهد عالي 2015-2016امتحان جهد عالي 2015-2016
امتحان جهد عالي 2015-2016
eslam elfayoumy
 
E&e lab manual
E&e lab manualE&e lab manual
E&e lab manual
Sugunakar Mamidala
 
Electrical Design Package
Electrical Design PackageElectrical Design Package
Electrical Design Package
Dante Moore
 
Ee 791 drives lab maual
Ee 791 drives lab maualEe 791 drives lab maual
Ee 791 drives lab maual
Divya15121983
 
Exp f1 maycen
Exp f1 maycenExp f1 maycen
Exp f1 maycen
Sarah Krystelle
 
Lab 2 Report More Linear Operational Amplifiers
Lab 2 Report More Linear Operational AmplifiersLab 2 Report More Linear Operational Amplifiers
Lab 2 Report More Linear Operational Amplifiers
Katrina Little
 
Ee6503(r 13) qb-2013_regulation
Ee6503(r 13) qb-2013_regulationEe6503(r 13) qb-2013_regulation
Ee6503(r 13) qb-2013_regulation
Marimuthu Balasubramaniam
 
lecture13.ppt
lecture13.pptlecture13.ppt
lecture13.ppt
kumarjha16
 
RC Circuit Transfer Functions with Bode Diagrams
RC Circuit Transfer Functions with Bode Diagrams RC Circuit Transfer Functions with Bode Diagrams
RC Circuit Transfer Functions with Bode Diagrams
Katrina Little
 

Similar to Power Electronics Lab Manual Spring 2017 (20)

report of power electronics
report of power electronicsreport of power electronics
report of power electronics
 
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
Simulation and Experimental Verification of Single-Phase Pwm Boost -Rectifier...
 
PEQPAU.pdf
PEQPAU.pdfPEQPAU.pdf
PEQPAU.pdf
 
Lightning Characteristics and Impulse Voltage.
Lightning Characteristics and Impulse Voltage.Lightning Characteristics and Impulse Voltage.
Lightning Characteristics and Impulse Voltage.
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
 
Electronics Lab Manual by Er. Swapnil V. Kaware
Electronics Lab Manual by Er. Swapnil V. KawareElectronics Lab Manual by Er. Swapnil V. Kaware
Electronics Lab Manual by Er. Swapnil V. Kaware
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
ENHANCEMENT OF ACTIVE POWER FLOW CAPACITY OF A TRANSMISSION LINE USING MSC‐TC...
ENHANCEMENT OF ACTIVE POWER FLOW CAPACITY OF A TRANSMISSION LINE USING MSC‐TC...ENHANCEMENT OF ACTIVE POWER FLOW CAPACITY OF A TRANSMISSION LINE USING MSC‐TC...
ENHANCEMENT OF ACTIVE POWER FLOW CAPACITY OF A TRANSMISSION LINE USING MSC‐TC...
 
Assignment & solution (selected)
Assignment & solution (selected)Assignment & solution (selected)
Assignment & solution (selected)
 
2nd year iv sem emi lab manual
2nd year iv sem emi lab manual2nd year iv sem emi lab manual
2nd year iv sem emi lab manual
 
امتحان جهد عالي 2016
امتحان  جهد عالي  2016امتحان  جهد عالي  2016
امتحان جهد عالي 2016
 
امتحان جهد عالي 2015-2016
امتحان جهد عالي 2015-2016امتحان جهد عالي 2015-2016
امتحان جهد عالي 2015-2016
 
E&e lab manual
E&e lab manualE&e lab manual
E&e lab manual
 
Electrical Design Package
Electrical Design PackageElectrical Design Package
Electrical Design Package
 
Ee 791 drives lab maual
Ee 791 drives lab maualEe 791 drives lab maual
Ee 791 drives lab maual
 
Exp f1 maycen
Exp f1 maycenExp f1 maycen
Exp f1 maycen
 
Lab 2 Report More Linear Operational Amplifiers
Lab 2 Report More Linear Operational AmplifiersLab 2 Report More Linear Operational Amplifiers
Lab 2 Report More Linear Operational Amplifiers
 
Ee6503(r 13) qb-2013_regulation
Ee6503(r 13) qb-2013_regulationEe6503(r 13) qb-2013_regulation
Ee6503(r 13) qb-2013_regulation
 
lecture13.ppt
lecture13.pptlecture13.ppt
lecture13.ppt
 
RC Circuit Transfer Functions with Bode Diagrams
RC Circuit Transfer Functions with Bode Diagrams RC Circuit Transfer Functions with Bode Diagrams
RC Circuit Transfer Functions with Bode Diagrams
 

More from Zeeshan Ahmed

Lecture 05 NOP and Stack Group of Instructions
Lecture 05 NOP and Stack Group of InstructionsLecture 05 NOP and Stack Group of Instructions
Lecture 05 NOP and Stack Group of Instructions
Zeeshan Ahmed
 
Lecture 04 Logical Group of Instructions
Lecture 04 Logical Group of InstructionsLecture 04 Logical Group of Instructions
Lecture 04 Logical Group of Instructions
Zeeshan Ahmed
 
Lecture 03 Arithmetic Group of Instructions
Lecture 03 Arithmetic Group of InstructionsLecture 03 Arithmetic Group of Instructions
Lecture 03 Arithmetic Group of Instructions
Zeeshan Ahmed
 
Lecture 02 Data Group of Instructions
Lecture 02 Data Group of InstructionsLecture 02 Data Group of Instructions
Lecture 02 Data Group of Instructions
Zeeshan Ahmed
 
Lecture1 The 8085 Microprocessor
Lecture1 The 8085 MicroprocessorLecture1 The 8085 Microprocessor
Lecture1 The 8085 Microprocessor
Zeeshan Ahmed
 
Lecture 0 History of Microprocessors and Microcontrollers
Lecture 0 History of Microprocessors and Microcontrollers Lecture 0 History of Microprocessors and Microcontrollers
Lecture 0 History of Microprocessors and Microcontrollers
Zeeshan Ahmed
 
Digital Signal Processing Lab Manual
Digital Signal Processing Lab ManualDigital Signal Processing Lab Manual
Digital Signal Processing Lab Manual
Zeeshan Ahmed
 
Tera Hertz Electromagnetic Waves
Tera Hertz Electromagnetic WavesTera Hertz Electromagnetic Waves
Tera Hertz Electromagnetic Waves
Zeeshan Ahmed
 
Industrial Electronics Lab Manual
Industrial Electronics Lab Manual Industrial Electronics Lab Manual
Industrial Electronics Lab Manual
Zeeshan Ahmed
 
48 Laws of Power
48 Laws of Power 48 Laws of Power
48 Laws of Power
Zeeshan Ahmed
 
Synchronous Motor
Synchronous MotorSynchronous Motor
Synchronous Motor
Zeeshan Ahmed
 
networking topology
networking topologynetworking topology
networking topology
Zeeshan Ahmed
 
Audio amplifier
Audio amplifier Audio amplifier
Audio amplifier
Zeeshan Ahmed
 
Signed numbers in 8051
Signed numbers in 8051Signed numbers in 8051
Signed numbers in 8051
Zeeshan Ahmed
 
Bio—chip ] sensor
Bio—chip ] sensorBio—chip ] sensor
Bio—chip ] sensor
Zeeshan Ahmed
 

More from Zeeshan Ahmed (15)

Lecture 05 NOP and Stack Group of Instructions
Lecture 05 NOP and Stack Group of InstructionsLecture 05 NOP and Stack Group of Instructions
Lecture 05 NOP and Stack Group of Instructions
 
Lecture 04 Logical Group of Instructions
Lecture 04 Logical Group of InstructionsLecture 04 Logical Group of Instructions
Lecture 04 Logical Group of Instructions
 
Lecture 03 Arithmetic Group of Instructions
Lecture 03 Arithmetic Group of InstructionsLecture 03 Arithmetic Group of Instructions
Lecture 03 Arithmetic Group of Instructions
 
Lecture 02 Data Group of Instructions
Lecture 02 Data Group of InstructionsLecture 02 Data Group of Instructions
Lecture 02 Data Group of Instructions
 
Lecture1 The 8085 Microprocessor
Lecture1 The 8085 MicroprocessorLecture1 The 8085 Microprocessor
Lecture1 The 8085 Microprocessor
 
Lecture 0 History of Microprocessors and Microcontrollers
Lecture 0 History of Microprocessors and Microcontrollers Lecture 0 History of Microprocessors and Microcontrollers
Lecture 0 History of Microprocessors and Microcontrollers
 
Digital Signal Processing Lab Manual
Digital Signal Processing Lab ManualDigital Signal Processing Lab Manual
Digital Signal Processing Lab Manual
 
Tera Hertz Electromagnetic Waves
Tera Hertz Electromagnetic WavesTera Hertz Electromagnetic Waves
Tera Hertz Electromagnetic Waves
 
Industrial Electronics Lab Manual
Industrial Electronics Lab Manual Industrial Electronics Lab Manual
Industrial Electronics Lab Manual
 
48 Laws of Power
48 Laws of Power 48 Laws of Power
48 Laws of Power
 
Synchronous Motor
Synchronous MotorSynchronous Motor
Synchronous Motor
 
networking topology
networking topologynetworking topology
networking topology
 
Audio amplifier
Audio amplifier Audio amplifier
Audio amplifier
 
Signed numbers in 8051
Signed numbers in 8051Signed numbers in 8051
Signed numbers in 8051
 
Bio—chip ] sensor
Bio—chip ] sensorBio—chip ] sensor
Bio—chip ] sensor
 

Recently uploaded

官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
Seminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptxSeminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptx
Madan Karki
 
AI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptxAI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptx
architagupta876
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
shadow0702a
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
gowrishankartb2005
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
AjmalKhan50578
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
PKavitha10
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
VANDANAMOHANGOUDA
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
21UME003TUSHARDEB
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
ElakkiaU
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
RamonNovais6
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
LAXMAREDDY22
 

Recently uploaded (20)

官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
Seminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptxSeminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptx
 
AI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptxAI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptx
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
 

Power Electronics Lab Manual Spring 2017

  • 1. Department of Electrical Engineering Power Electronics Lab Manual B.E-VI Electronics Instructor: Engr. Jahangir Badar Soomro
  • 2. Department of Electrical Engineering Certificate It is certified that Zeeshan Ahmed Lodro student of BE -VI has carried out the necessary work of Power Electronics Lab as per course of studies prevailed in the department of Electrical Engineering Sukkur IBA University for Spring 2017. ____________________ Instructor’s Signature Date: _______________
  • 3. 1 Lab Experiment No# 01 Single Phase Half Wave Uncontrolled Rectification using Resistive Load, Resistive-Inductive Load, and Resistive-Capacitive Load B. Sketch/Display the output voltage and current waveforms as displayed on the oscilloscope. i) In case of resistive load. Ans: R_Load Ω ii) In case of resistive-inductive load. Ans: RL_Load R= Ω, L= 385 mH
  • 4. 2 iii) In case of resistive inductive load with a freewheeling diode parallel across the load. Ans: Free Wheeling iv) In case of resistive-capacitive load. Attach all necessary results and discuss the effect of increasing the capacitance value on average output voltage. Ans: RC_Load R= Ω, C= 50 uF
  • 5. 1 Lab Experiment No# 02 Single Phase Full Wave Uncontrolled Rectification using Resistive Load, Resistive-Inductive Load, and Resistive-Capacitive Load B. Sketch/Display the output voltage and current waveforms as displayed on the oscilloscope. i) In case of resistive load. Ans: R_Load 3 Ω ii) In case of resistive-inductive load. Attach all necessary results to verify that as the value of inductance increases the average output voltage decreases. Ans: RL_Load R= 3 Ω, L= 700 mH
  • 6. 2 iii) In case of resistive-capacitive load Ans: RC_Load R= 3 Ω, C= 50 uF
  • 7. 1 Lab Experiment No# 03 Single Phase Half Wave Controlled Rectification using Resistive Load, Resistive-Inductive Load, and Resistive-Capacitive Load B. At any conduction angle sketch/display the load voltage and current waveforms as displayed on the oscilloscope. Also, display total harmonic distortions in output voltage and current in case of resistive load on that firing angle using power quality analyzer. i) In case of resistive load. Ans: Conduction angle 62° Total Harmonic Distortions in Output Current
  • 8. 2 Total Harmonic Distortions in Output Voltage ii) In case of resistive-inductive load.
  • 9. 3 iii) In case of resistive inductive load with a freewheeling diode parallel across the load. iv) In case of resistive-capacitive load
  • 10. 4 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -80 -60 -40 -20 0 20 40 60 80 Time Amplitude Single Phase Halfwave Controlled Rectifier using Resistive Load C. Design MATLAB/SIMULINK model of Single phase half wave controlled rectifier using resistive and resistive-inductive load. Also, connect freewheeling diode with resistive-inductive load and discuss its effect on the output. Attach all necessary snapshots of models and resulting outputs of circuits. a) Single Phase Halfwave Controlled Rectifier using resistive Load. Block Diagram: Result:
  • 11. 5 b) Single Phase Halfwave Controlled Rectifier using Resistive-Inductive Load. Block Diagram: 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -80 -60 -40 -20 0 20 40 60 80 Time Single Phase Halfwave Controlled Rectifier using Resistive-Inductive Load. Result: Amplitude
  • 12. 6 c) Single Phase Halfwave Controlled Rectifier using Resistive-Inductive Load with Freewheeling diode. Block Diagram: 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -80 -60 -40 -20 0 20 40 60 80 Time Amplitude Single Phase Halfwave Controlled Rectifier using RL Load with Freewheeling diode. Result:
  • 13. 1 Lab Experiment No# 04 Single Phase Full Wave Controlled Rectification using Resistive Load, Resistive-Inductive Load, and Resistive-Capacitive Load A. At any firing angles sketch/display the load voltage and current waveforms as displayed on the oscilloscope. Also, display total harmonic distortions in output voltage and current in case of resistive-inductive load on that firing angle using power quality analyzer. i) In case of resistive load. Ans: Firing angle 99° ii) In case of resistive-inductive load
  • 14. 2 Total Harmonic Distortions in Output Current Total Harmonic Distortions in Output Voltage iii) In case of resistive-capacitive load
  • 15. 3 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time Amplitude Single phase Full Wave Controlled Bridge Rectifier using Resistive load. B. Design MATLAB/SIMULINK model of Single phase full wave controlled bridge rectifier using resistive and resistive-inductive load. Attach all necessary snapshots of models and resulting outputs of circuits. a) Single phase Full Wave Controlled Bridge Rectifier using Resistive load. Block Diagram: Result:
  • 16. 4 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time Amplitude Single phase Full Wave Controlled Bridge Rectifier using RL load b) Single phase Full Wave Controlled Bridge Rectifier using Resistive-Inductive load. Block Diagram: Result:
  • 17. 1 Lab Experiment No# 05 Three Phase Half Wave & Full Wave Controlled Rectification using Resistive Load, Resistive- Inductive Load, and Resistive-Capacitive Load A. At any firing angle sketch/display the load voltage and current waveforms of three phase half wave rectifier with resistive load as displayed on the oscilloscope. At a reference voltage of scale division at Ω At a reference voltage of 8 scale division at 272 Ω
  • 18. 2 At a reference voltage of scale division at Ω At a reference voltage of 4 scale division at Ω At a reference voltage of scale division at Ω
  • 19. 3 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time Amplitude Three Phase Halfwave Controlled Rectifier using Resistive Load. B) Simulate MATLAB/SIMULINK model of three phase Half Wave Controlled Rectifier using Resistive and Resistive-Inductive load (firing angle should be your CMS ID). Attach all necessary snapshots of models and resulting outputs of circuits. a) Three Phase Halfwave Controlled Rectifier using Resistive Load. Block Diagram: Result:
  • 20. 4 b) Three Phase Halfwave Controlled Rectifier using Resistive-Inductive Load. Block Diagram: 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time Amplitude Three Phase Halfwave Controlled Rectifier using Resistive-Inductive Load. Result:
  • 21. 1 Lab Experiment No# 06 Speed Control of DC Shunt Motor using AC-DC Converters A) Record the reference voltage (at any five values), speed, armature voltage and armature current to complete the table for dc motor drive using half wave and full wave controlled rectifier. a) Single Phase Half Wave Controlled Rectifier (DC motor speed control) (470 mH). a) Single Phase Full Wave Control led Rectifie r (DC motor speed control) (470 mH). Ref voltage scale div Speed rev/min Armature voltage Armature current 1 0.7rpm 1.8mV 0 3 45.4rpm 115mV 0.096A 5 352.1rpm 29.9V 0.33A 7 1210rpm 97.7V 0.37A 9 1474rpm 118V 0.36A Ref voltage scale div Speed rev/min Armature voltage Armature current 2 0 124mV 0.027 4 129.8 388mV 0.303 6 1340 107V 0.355 8 1857 147.5V 0.353 10 2137 167.7V 0.366
  • 22. 2 B) At a reference voltage of 9 scale divisions, sketch/display the load voltage and current across the armature of dc motor drive using half wave controlled rectifier and full wave controlled rectifier. Half wave controlled rectifier dc motor drive at 9 scale division Full wave controlled rectifier dc motor drive at 9 scale division
  • 23. 1 Lab Experiment No# 7 Step Down Chopper (DC-DC Converter) B) Simulate Buck Converter using MATLAB/SIMULINK software keeping parameters L= 0μH, C= 22μF, R_Load= Ω, F Switching=1000 KHz, D=0.4 and input voltage=62V (CMS ID). Steps to follow: i. Display its output voltage and inductor current on scope. Voltage Waveform: Current Waveform: 9.228 9.229 9.23 9.231 9.232 9.233 9.234 9.235 9.236 9.237 x 10 -3 24.3149 24.3149 24.3149 24.3149 24.3149 24.3149 24.3149 24.3149 Time Voltage 9.228 9.229 9.23 9.231 9.232 9.233 9.234 9.235 9.236 9.237 x 10 -3 4.65 4.7 4.75 4.8 4.85 4.9 4.95 5 5.05 5.1 5.15 Time Current
  • 24. 2 ii. Vary the duty cycle and comment on the results. Duty Cycle 40 %: Duty Cycle 60 %: 9.228 9.229 9.23 9.231 9.232 9.233 9.234 9.235 9.236 9.237 x 10 -3 24.3149 24.3149 24.3149 24.3149 24.3149 24.3149 24.3149 24.3149 Time Voltage 9.228 9.229 9.23 9.231 9.232 9.233 9.234 9.235 9.236 9.237 x 10 -3 36.8729 36.8729 36.8729 36.8729 36.8729 36.8729 36.8729 36.8729 36.8729 Time Voltage
  • 25. 1 Lab Experiment No# 08 Step Up Chopper (DC-DC Converter) Questions Vg = 18V And Duty Cycle = 40% 1. Display the steady-state average output voltage. Also write its value (expressed in volts)? Ans: Average output voltage = 29.887V
  • 26. 2 2. Display the steady-state average inductor current. Also write its value (in amps)? Ans: Average inductor current = 1.4942A 3) What is the steady-state output power (in watts)? Ans: 44.6571 Watts 4. What is the average power drawn out of the input source Vg during steady-state operation of the converter (in watts)? Ans: 47.1708 Watts 5. What is the average power consumption of the gate driver (in watts)? Ans: 0.3554 mWatt 6. What is the converter efficiency (enter a numeric value between 0 and 1)? Ans: 94.671%
  • 27. 3 7. Now change the control voltage input to the pulse-width modulator, so that it produces a control signal having a duty cycle of 0.6. Run the simulation again. What is the new steady-state average output voltage? Also, display its new steady-state average output voltage.
  • 28. 1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -4 -2 0 2 4 Time Current 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -100 -50 0 50 100 Time Voltage Lab Experiment No# 09 Single Phase Half Bridge & Full Bridge Square Wave Inverter A) Simulate MATLAB/SIMULINK model of single phase full bridge square wave voltage source inverter using IGBTs with resistive load. Follow the below instructions to complete the lab report. i) Attach the snapshot of your designed model. ii. Attach the output voltage and current of your designed model
  • 29. 2 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -2 0 2 Selected signal: 5 cycles. FFT window (in red): 1 cycles Time (s) 0 100 200 300 400 500 600 700 800 900 1000 0 5 10 15 20 25 30 35 Frequency (Hz) Fundamental (50Hz) = 4.71 , THD= 48.03% Mag(%ofFundamental) iii) Display the total harmonic distortions in output voltage and current of square wave inverter using FFT analysis tool in MATLAB/SIMULINK. Why there are only odd harmonics and no even harmonics in square wave inverter? Snapshot THD in Output Voltage & Output Current using FFT Analysis: Output Voltage THD: Output Current THD: 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -2 0 2 Selected signal: 5 cycles. FFT window (in red): 1 cycles Time (s) 0 100 200 300 400 500 600 700 800 900 1000 0 5 10 15 20 25 30 35 Frequency (Hz) Fundamental (50Hz) = 4.71 , THD= 48.03% Mag(%ofFundamental)
  • 30. 3 iv) Vary the gate pulses applied to switches in such a way that quasi square wave inverter is obtained at output. Attach the output voltage and current.
  • 31. 4 Result v) Display the total harmonic distortions in output voltage and current of quasi square inverter using FFT analysis tool in MATLAB/SIMULINK. Compare the %THD of quasi square inverter with square wave inverter. Which topology is better in terms of power quality? THD in Output Voltage & Output Current of Quasi Square Wave using FFT Analysis: Output Voltage THD: 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -10 -5 0 5 10 Time Current 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -100 -50 0 50 100 Time Voltage
  • 32. 5 Output Current THD: 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -5 0 5 Selected signal: 5 cycles. FFT window (in red): 1 cycles Time (s) 0 100 200 300 400 500 600 700 800 900 1000 0 5 10 15 20 25 Frequency (Hz) Fundamental (50Hz) = 7.621 , THD= 36.18% Mag(%ofFundamental) 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -50 0 50 Selected signal: 5 cycles. FFT window (in red): 1 cycles Time (s) 0 100 200 300 400 500 600 700 800 900 1000 0 5 10 15 20 25 Frequency (Hz) Fundamental (50Hz) = 76.21 , THD= 36.18% Mag(%ofFundamental)
  • 33. 1 Lab Experiment No# 10 Single Phase Bipolar & Unipolar PWM Inverters Using SimPower Systems toolbox of MATLAB/SIMULINK software, simulate the circuit of single phase H-Bridge inverter with Bipolar and Unipolar PWM. Connect the dc-side to a dc voltage source of Vdc= (Your CMS ID) and the ac-side to an RL load with R=1Ω and L=5mH. The desired ac voltage has a fundamental of 50 Hz. Select the triangle wave with a frequency of 500Hz+Your CMS ID. 1) Single Phase Unipolar PWM Inverter: i. Vary the modulation index of either bipolar or unipolar topology from 0.2 to 1 (steps of 0.2) and record (attach) the voltage and current waveforms. Confirm that the amplitude of fundamental component of load voltage has a linear relationship with the modulation index (you can confirm by measuring the amplitude of load current). Block Diagram:
  • 34. 2 Result: At m= 0.2 At m=0.4 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -20 -10 0 10 20Current 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -100 -50 0 50 100 Time Voltage 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -40 -20 0 20 40 Current 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -100 -50 0 50 100 Time Voltage
  • 35. 3 At m=0.6 At m=0.8 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -40 -20 0 20 40 Current 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -100 -50 0 50 100 Time Voltage 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -40 -20 0 20 40 Current 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -100 -50 0 50 100 Time Voltage
  • 36. 4 At m=1 ii) Single Phase Unipolar PWM Inverter THD: Voltage THD: 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -50 0 50 Current 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -100 -50 0 50 100 Time Voltage 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -50 0 50 Selected signal: 5 cycles. FFT window (in red): 1 cycles Time (s) 0 100 200 300 400 500 600 700 800 900 1000 0 10 20 30 40 50 Frequency (Hz) Fundamental (50Hz) = 73.75 , THD= 100.03% Mag(%ofFundamental)
  • 37. 5 Current THD: iii) Output Currents & THD at different Switching Frequencies: A. At Fc= 1562 Hz. Output Current & THD: 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -40 -20 0 20 40 Selected signal: 5 cycles. FFT window (in red): 1 cycles Time (s) 0 100 200 300 400 500 600 700 800 900 1000 0 2 4 6 8 10 12 14 16 Frequency (Hz) Fundamental (50Hz) = 40.2 , THD= 18.40% Mag(%ofFundamental) 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -40 -20 0 20 40 Selected signal: 5 cycles. FFT window (in red): 1 cycles Time (s) 0 100 200 300 400 500 600 700 800 900 1000 0 2 4 6 8 10 12 14 16 18 20 Frequency (Hz) Fundamental (50Hz) = 39.59 , THD= 19.14% Mag(%ofFundamental)
  • 38. 6 B. At Fc= 262 Hz. Output Current & THD: Bipolar Output Current & THD: 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -40 -20 0 20 40 Selected signal: 5 cycles. FFT window (in red): 1 cycles Time (s) 0 100 200 300 400 500 600 700 800 900 1000 0 5 10 15 Frequency (Hz) Fundamental (50Hz) = 38.57 , THD= 23.13% Mag(%ofFundamental) 0 0.02 0.04 0.06 0.08 0.1 -40 -20 0 20 40 Selected signal: 5 cycles. FFT window (in red): 1 cycles Time (s) 0 200 400 600 800 1000 0 5 10 15 Frequency (Hz) Fundamental (50Hz) = 40.7 , THD= 19.28% Mag(%ofFundamental)
  • 39. 1 Lab Experiment No# 11 Single Phase to Single Phase(1Ø-1Ø) Cycloconverter A. Simulate MATLAB/SIMULINK model of single Single-phase to Single-phase Step Down Cycloconverter. Follow the below instructions to complete the lab report. i. Attach the snapshot of your designed model. ii. Keeping any frequency select (F, F/2, F/3, F/4), verify that the model works as step down cycloconverter. Attach the output voltage and input voltage waveforms. Frequency Fin = 50 Hz Fout = 50Hz : Input Voltage Waveform: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -80 -60 -40 -20 0 20 40 60 80 Time
  • 40. 2 Output Voltage Waveform: Frequency Fin = 50 Hz Fout/2= 25Hz : Input Voltage Waveform: Output Voltage Waveform: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -40 -30 -20 -10 0 10 20 30 40 Time 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -80 -60 -40 -20 0 20 40 60 80 Time 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -40 -30 -20 -10 0 10 20 30 40 Time
  • 41. 3 Frequency Fin = 50 Hz Fout/3= 16.66Hz : Input Voltage Waveform: Output Voltage Waveform: Frequency Fin = 50 Hz Fout/4= 12.5Hz : Input Voltage Waveform: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -80 -60 -40 -20 0 20 40 60 80 Time 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -40 -30 -20 -10 0 10 20 30 40 Time 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -80 -60 -40 -20 0 20 40 60 80 Time
  • 42. 4 Output Voltage Waveform: 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -40 -30 -20 -10 0 10 20 30 40 Time
  • 43. 1 Lab Experiment No# 12 Single Phase Full Wave AC Voltage Controller using Resistive Load, Resistive-Inductive Load and Resistive-Capacitive Load A) At any firing angles sketch/display the load voltage and current waveforms as displayed on the oscilloscope. Also, display total harmonic distortions in output voltage and current on that firing angle using resistive load. What is the effect on total harmonic distortions if firing angle is increased? i) In case of resistive load. With firing angle 140.4° and R_Load 8 Ω Total Harmonic Distortion in output Current
  • 44. 2 Total Harmonic Distortion in output Voltage ii) In case of resistive-Inductive load. With firing angle 140.4° and RL_Load 8 Ω and L= 5 mH
  • 45. 3 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -200 -150 -100 -50 0 50 100 150 200 Time Amplitude Single Phase Full Wave Bidirectional Ac Voltage Controller using SCRs with Resistive load B) Simulate MATLAB/SIMULINK model of single phase full wave bidirectional ac voltage controller using SCRs with resistive and resistive-inductive load. Using FFT analysis tool calculate the total harmonic distortions at that firing angle in case of resistive load only. Attach all necessary snapshots of model and results. a) Single Phase Full Wave Bidirectional Ac Voltage Controller using SCRs with Resistive load. Block Diagram: Result:
  • 46. 4 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -200 -150 -100 -50 0 50 100 150 200 Time Amplitude Single Phase Full wave Bidirectional Ac Voltage Controller using SCRs with RL load b) Single Phase Full Wave Bidirectional Ac Voltage Controller using SCRs with Resistive- Inductive load. Block Diagram: Result:
  • 47. 5 c) Total Harmonic Distortion Using Resistive Load only