Polymerase Chain Reaction and
its Variants
Presented bye: Irfanullah
Reg No: CUI Atd /SP21/RBT/003
Presented to: Dr Amjid Hassan
1
Outline
• Definition
• Background
• Principle
• Processes
• Applications
• limitations
2
Definition
• PCR is a technique used in the lab to make
millions of copies of a particular section of
DNA.
(Sylvia,et al,2012)
3
History of PCR
• PCR is coping machine for DNA molecule
• Invented by Kary Mullis and his colleague in
1983.
• Nobel price in 1993
4
Principle of PCR
• Purpose
• Component
• Steps
5
Component of PCR
• DNA template
• Primers
• Nucleotides (dNTPs or deoxynucleotide
triphosphates.
• DNA polymerase
• Mgcl2
• Buffer
6
There are three main steps:
• Denaturing
• Annealing
• Extending
https://www.yourgenome.org/sites/default/fil
es/illustrations/process/pcr_cycle_yourgenom
e.png 7
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.youtube.com%
2Fwatch%3Fv%3Dvi7MeqD2_FY&psig=AOvVaw2dEP5H6hAlQWqf8knqFuRD&u
st=1638898630467000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCPCWys
vbz_QCFQAAAAAdAAAAABAV
8
Advantages
• Valuable for detecting specific pathogens.
• Significantly more rapid in providing results.
• Valuable screening tool.
(Yang,et al ,2004)
9
Limitations of PCR
• PCR cannot be used to amplify unknown
targets.
• DNA polymerases are prone to error.
• PCR is very sensitive to contamination.
( Yang , et al ,2004)
10
Variants of the PCR
https://www.google.com/url?sa=i&url=https%3A%2F%2Fg
eneticeducation.co.in%2Fwhat-is-nested-
pcr%2F&psig=AOvVaw3e_lhRS3kQpjptbXdhmyKg&ust=1
638900145776000&source=images&cd=vfe&ved=0CAsQj
RxqFwoTCLioup7hz_QCFQAAAAAdAAAAABAU
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.yo
utube.com%2Fwatch%3Fv%3D1Wth5zGOEEM&psig=AOvVaw0
rl1kKbvTsh8fT2uctmXat&ust=1638900434409000&source=imag
es&cd=vfe&ved=0CAsQjRxqFwoTCJDJyqbiz_QCFQAAAAAdAA
AAABAD
11
Multiplex PCR Inverse PCR
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.yo
utube.com%2Fwatch%3Fv%3DNQioXNtZFBY&psig=AOvVaw0cr
KcNKbGkT-
5laqpogfCK&ust=1638900940102000&source=images&cd=vfe&
ved=0CAsQjRxqFwoTCKDdk53kz_QCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fsli
detodoc.com%2Fpolymerase-chain-reaction-genetics-
course-dr-shagufta-naz%2F&psig=AOvVaw1sX3fZlkBB-
2HvdK-
IbAXO&ust=1638900708040000&source=images&cd=vfe&
ved=0CAsQjRxqFwoTCIji-ajjz_QCFQAAAAAdAAAAABAe
12
Reverse transcriptase PCR Hot start PCR
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.iae
a.org%2Fbulletin%2Finfectious-diseases%2Fhow-is-the-covid-
19-virus-detected-using-real-time-rt-
pcr&psig=AOvVaw2Lvi3kqbUmtSZRyPdpiI6P&ust=16389011286
16000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCMDmtZ
_lz_QCFQAAAAAdAAAAABASa
https://www.google.com/url?sa=i&url=https%3A%2F%2Fge
neticeducation.co.in%2Fwhat-is-a-hot-start-
pcr%2F&psig=AOvVaw3OdNbi5korQqSsjJ-
YTymh&ust=1638901500612000&source=images&cd=vfe&
ved=0CAsQjRxqFwoTCKCk_6Pmz_QCFQAAAAAdAAAAA
BAW
13
In situ PCR Long PCR
https://www.google.com/url?sa=i&url=https%3A%2F%2Fge
neticeducation.co.in%2Fwhat-is-a-long-range-
pcr%2F&psig=AOvVaw1VQZcco4FfR2q1VaEUg1kH&ust=1
638901819449000&source=images&cd=vfe&ved=0CAsQjR
xqFwoTCNi90b3nz_QCFQAAAAAdAAAAABAJ
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.nature.
com%2Farticles%2Fnprot.2007.395&psig=AOvVaw2DlET1ExNgZgK9u9
4rlJzW&ust=1638901922437000&source=images&cd=vfe&ved=0CAsQ
jRxqFwoTCJjI9u7nz_QCFQAAAAAdAAAAABAK 14
Advantages
Colony PCR
• Rapid and cost- effective
• Accuracy & specificity is higher
• Set up is simple
• cDNA library screening
(Zhang,et al,2019)
Nested PCR
• Very low probability of
nonspecific amplification
(Yamamoto,et el, 2019)
15
Advantages
Multiplex PCR
• Technique is rapid,
• Time-saving
• Forensic Studies
• Set of primers used as
internal control.
• Needs less consumables,
chemicals and other
utilities.
(Poritz,et al,2011)
Inverse PCR
• Used to identified flanking
sequence around gnomic
insert.
• Identified and amplify
transposable element.
(Yang,et al,2012)
16
Advantages
Reverse Transcriptase PCR
• it is used for gene
expression studies.
• easy to use, rapid and cost-
effective.
(Kucirka,et al,2020)
Hot start PCR
• prevent primer-dimer
formation
• requires less handling
• reduces the risk of
contamination.
(Tang,et al,2021)
17
Advantages
In situ PCR
• Single copy of DNA can be
measured or amplified.
• Localizing and visualizing
the amplicon within the cell
(Zagklavara,et al,2021)
Long PCR
• cost effective tool for
detecting genetic variations
• To clone large genes not
possible with conventional
pcr.
(Min Hu,et al,2007)
18
Limitations
Multiplex PCR
• High risk of contamination
• lack of detection of a single
target sequence
• the chances of non-specific
bindings
• It can’t amplify longer
templates effectively
(Poritz,et al,2011)
Inverse PCR
• many enzymatic steps.
• The cost of the overall
experiment is higher
• it cannot be used into the
routine genetic diagnostic
labs.
(Yang,et al,2012)
19
limitations
Colony PCR
• High risk of contamination
• It can't give us sequence
information
• very high chance false-
positive results .
(Zhang,et al,2019)
Nested PCR
• time-consuming
• Required more reagents
• an increased risk of
contamination
(Yamamoto,et el, 2019)
20
Limitations
Reverse transcriptase PCR
• Extremely sensitive
• Huge experience and
expertise are required
(Kucirka,et al,2020)
Hot start PCR
• The overall cost of the
reaction is increased due to
the use antibody.
• can not amplify the larger
DNA templates more than
2kb.
• Due toDNA can damage or
break down badly.
(Tang,et al,2021)
21
Limitations
In situ PCR
• Higher the chance of non-
specific binding .
• The precision of the
reaction is also low.
(Zagklavara,et al,2021)
Long PCR
• Time-consuming.
• The success rate is also very
low.
• The chance of
misincorporation of dNTPs
is high.
• The technique is not
suitable for routine use.
(Min Hu,et al,2007)
22
References
• Yeh, S. H., & Mink, C. M. (2012). Bordetella pertussis and Pertussis (Whooping
Cough). In Netter’s Infectious Diseases (pp. 11-14). WB Saunders.
• Yang, S. and R.E. Rothman. 2004. PCR-based diagnostics for infectious diseases:
uses, limitations, and future applications in acute-care settings.
https://www.academia.edu/3577385/PCR-based_Diagnostic_for_Infectious_Diseases
• Guidance for Clinicians on the Use of RT-PCR and Other Molecular Assays for
Diagnosis of Influenza Virus Infection.
http://www.cdc.gov/flu/professionals/diagnosis/molecularassays.htm
• Yang, S., & Rothman, R. E. (2004). PCR-based diagnostics for infectious diseases:
uses, limitations, and future applications in acute-care settings. The Lancet infectious
diseases, 4(6), 337-348.
• Zhang, D., Lu, X., Liao, Y., Xia, Z., Peng, Z., Yang, X., & Yang, R. (2019). Rapid and
Simple Detection of Trichosporon asahii by Optimized Colony PCR. BioMed research
international, 2019.
• Yamamoto, M., Kashiwamura, S., Ohuchi, A., & Furukawa, M. (2008). Large-scale DNA
memory based on the nested PCR. Natural Computing, 7(3), 335-346.
23
• Poritz, M. A., Blaschke, A. J., Byington, C. L., Meyers, L., Nilsson, K., Jones, D. E., ...
& Ririe, K. M. (2011). FilmArray, an automated nested multiplex PCR system for
multi-pathogen detection: development and application to respiratory tract
infection. PloS one, 6(10), e26047.
• Yang, J. J., Marschalek, R., Meyer, C., & Park, T. S. (2012). Diagnostic usefulness of
genomic breakpoint analysis of various gene rearrangements in acute leukemias: a
perspective of long distance-or long distance inverse-PCR-based approaches. Annals
of laboratory medicine, 32(4), 316-318.
• Kucirka, L. M., Lauer, S. A., Laeyendecker, O., Boon, D., & Lessler, J. (2020).
Variation in false-negative rate of reverse transcriptase polymerase chain reaction–
based SARS-CoV-2 tests by time since exposure. Annals of internal
medicine, 173(4), 262-267.
• Tang, Y., Chen, X., Zhang, J., Wang, J., Hu, W., Liu, S., ... & Xu, H. (2021).
Generation and Characterization of Monoclonal Antibodies Against Tth DNA
Polymerase and its Application to Hot-Start PCR. Protein and Peptide Letters.
24
• Zagklavara, F., Jimack, P. K., Kapur, N., Querin, O. M., & Thompson, H. M. (2021).
Numerical Modelling and Analysis of a Microfluidic PCR Device. In Proceedings of the
6th World Congress on Momentum, Heat and Mass Transfer (MHMT'21), Lisbon,
Portugal Virtual Conference–June (pp. 17-19).
• Hu, M., Jex, A. R., Campbell, B. E., & Gasser, R. B. (2007). Long PCR amplification
of the entire mitochondrial genome from individual helminths for direct
sequencing. Nature protocols, 2(10), 2339-234
25
Thank You
26

Polymerase chain reaction(PCR).presentation

  • 1.
    Polymerase Chain Reactionand its Variants Presented bye: Irfanullah Reg No: CUI Atd /SP21/RBT/003 Presented to: Dr Amjid Hassan 1
  • 2.
    Outline • Definition • Background •Principle • Processes • Applications • limitations 2
  • 3.
    Definition • PCR isa technique used in the lab to make millions of copies of a particular section of DNA. (Sylvia,et al,2012) 3
  • 4.
    History of PCR •PCR is coping machine for DNA molecule • Invented by Kary Mullis and his colleague in 1983. • Nobel price in 1993 4
  • 5.
    Principle of PCR •Purpose • Component • Steps 5
  • 6.
    Component of PCR •DNA template • Primers • Nucleotides (dNTPs or deoxynucleotide triphosphates. • DNA polymerase • Mgcl2 • Buffer 6
  • 7.
    There are threemain steps: • Denaturing • Annealing • Extending https://www.yourgenome.org/sites/default/fil es/illustrations/process/pcr_cycle_yourgenom e.png 7
  • 8.
  • 9.
    Advantages • Valuable fordetecting specific pathogens. • Significantly more rapid in providing results. • Valuable screening tool. (Yang,et al ,2004) 9
  • 10.
    Limitations of PCR •PCR cannot be used to amplify unknown targets. • DNA polymerases are prone to error. • PCR is very sensitive to contamination. ( Yang , et al ,2004) 10
  • 11.
    Variants of thePCR https://www.google.com/url?sa=i&url=https%3A%2F%2Fg eneticeducation.co.in%2Fwhat-is-nested- pcr%2F&psig=AOvVaw3e_lhRS3kQpjptbXdhmyKg&ust=1 638900145776000&source=images&cd=vfe&ved=0CAsQj RxqFwoTCLioup7hz_QCFQAAAAAdAAAAABAU https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.yo utube.com%2Fwatch%3Fv%3D1Wth5zGOEEM&psig=AOvVaw0 rl1kKbvTsh8fT2uctmXat&ust=1638900434409000&source=imag es&cd=vfe&ved=0CAsQjRxqFwoTCJDJyqbiz_QCFQAAAAAdAA AAABAD 11
  • 12.
    Multiplex PCR InversePCR https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.yo utube.com%2Fwatch%3Fv%3DNQioXNtZFBY&psig=AOvVaw0cr KcNKbGkT- 5laqpogfCK&ust=1638900940102000&source=images&cd=vfe& ved=0CAsQjRxqFwoTCKDdk53kz_QCFQAAAAAdAAAAABAD https://www.google.com/url?sa=i&url=https%3A%2F%2Fsli detodoc.com%2Fpolymerase-chain-reaction-genetics- course-dr-shagufta-naz%2F&psig=AOvVaw1sX3fZlkBB- 2HvdK- IbAXO&ust=1638900708040000&source=images&cd=vfe& ved=0CAsQjRxqFwoTCIji-ajjz_QCFQAAAAAdAAAAABAe 12
  • 13.
    Reverse transcriptase PCRHot start PCR https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.iae a.org%2Fbulletin%2Finfectious-diseases%2Fhow-is-the-covid- 19-virus-detected-using-real-time-rt- pcr&psig=AOvVaw2Lvi3kqbUmtSZRyPdpiI6P&ust=16389011286 16000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCMDmtZ _lz_QCFQAAAAAdAAAAABASa https://www.google.com/url?sa=i&url=https%3A%2F%2Fge neticeducation.co.in%2Fwhat-is-a-hot-start- pcr%2F&psig=AOvVaw3OdNbi5korQqSsjJ- YTymh&ust=1638901500612000&source=images&cd=vfe& ved=0CAsQjRxqFwoTCKCk_6Pmz_QCFQAAAAAdAAAAA BAW 13
  • 14.
    In situ PCRLong PCR https://www.google.com/url?sa=i&url=https%3A%2F%2Fge neticeducation.co.in%2Fwhat-is-a-long-range- pcr%2F&psig=AOvVaw1VQZcco4FfR2q1VaEUg1kH&ust=1 638901819449000&source=images&cd=vfe&ved=0CAsQjR xqFwoTCNi90b3nz_QCFQAAAAAdAAAAABAJ https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.nature. com%2Farticles%2Fnprot.2007.395&psig=AOvVaw2DlET1ExNgZgK9u9 4rlJzW&ust=1638901922437000&source=images&cd=vfe&ved=0CAsQ jRxqFwoTCJjI9u7nz_QCFQAAAAAdAAAAABAK 14
  • 15.
    Advantages Colony PCR • Rapidand cost- effective • Accuracy & specificity is higher • Set up is simple • cDNA library screening (Zhang,et al,2019) Nested PCR • Very low probability of nonspecific amplification (Yamamoto,et el, 2019) 15
  • 16.
    Advantages Multiplex PCR • Techniqueis rapid, • Time-saving • Forensic Studies • Set of primers used as internal control. • Needs less consumables, chemicals and other utilities. (Poritz,et al,2011) Inverse PCR • Used to identified flanking sequence around gnomic insert. • Identified and amplify transposable element. (Yang,et al,2012) 16
  • 17.
    Advantages Reverse Transcriptase PCR •it is used for gene expression studies. • easy to use, rapid and cost- effective. (Kucirka,et al,2020) Hot start PCR • prevent primer-dimer formation • requires less handling • reduces the risk of contamination. (Tang,et al,2021) 17
  • 18.
    Advantages In situ PCR •Single copy of DNA can be measured or amplified. • Localizing and visualizing the amplicon within the cell (Zagklavara,et al,2021) Long PCR • cost effective tool for detecting genetic variations • To clone large genes not possible with conventional pcr. (Min Hu,et al,2007) 18
  • 19.
    Limitations Multiplex PCR • Highrisk of contamination • lack of detection of a single target sequence • the chances of non-specific bindings • It can’t amplify longer templates effectively (Poritz,et al,2011) Inverse PCR • many enzymatic steps. • The cost of the overall experiment is higher • it cannot be used into the routine genetic diagnostic labs. (Yang,et al,2012) 19
  • 20.
    limitations Colony PCR • Highrisk of contamination • It can't give us sequence information • very high chance false- positive results . (Zhang,et al,2019) Nested PCR • time-consuming • Required more reagents • an increased risk of contamination (Yamamoto,et el, 2019) 20
  • 21.
    Limitations Reverse transcriptase PCR •Extremely sensitive • Huge experience and expertise are required (Kucirka,et al,2020) Hot start PCR • The overall cost of the reaction is increased due to the use antibody. • can not amplify the larger DNA templates more than 2kb. • Due toDNA can damage or break down badly. (Tang,et al,2021) 21
  • 22.
    Limitations In situ PCR •Higher the chance of non- specific binding . • The precision of the reaction is also low. (Zagklavara,et al,2021) Long PCR • Time-consuming. • The success rate is also very low. • The chance of misincorporation of dNTPs is high. • The technique is not suitable for routine use. (Min Hu,et al,2007) 22
  • 23.
    References • Yeh, S.H., & Mink, C. M. (2012). Bordetella pertussis and Pertussis (Whooping Cough). In Netter’s Infectious Diseases (pp. 11-14). WB Saunders. • Yang, S. and R.E. Rothman. 2004. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. https://www.academia.edu/3577385/PCR-based_Diagnostic_for_Infectious_Diseases • Guidance for Clinicians on the Use of RT-PCR and Other Molecular Assays for Diagnosis of Influenza Virus Infection. http://www.cdc.gov/flu/professionals/diagnosis/molecularassays.htm • Yang, S., & Rothman, R. E. (2004). PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet infectious diseases, 4(6), 337-348. • Zhang, D., Lu, X., Liao, Y., Xia, Z., Peng, Z., Yang, X., & Yang, R. (2019). Rapid and Simple Detection of Trichosporon asahii by Optimized Colony PCR. BioMed research international, 2019. • Yamamoto, M., Kashiwamura, S., Ohuchi, A., & Furukawa, M. (2008). Large-scale DNA memory based on the nested PCR. Natural Computing, 7(3), 335-346. 23
  • 24.
    • Poritz, M.A., Blaschke, A. J., Byington, C. L., Meyers, L., Nilsson, K., Jones, D. E., ... & Ririe, K. M. (2011). FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PloS one, 6(10), e26047. • Yang, J. J., Marschalek, R., Meyer, C., & Park, T. S. (2012). Diagnostic usefulness of genomic breakpoint analysis of various gene rearrangements in acute leukemias: a perspective of long distance-or long distance inverse-PCR-based approaches. Annals of laboratory medicine, 32(4), 316-318. • Kucirka, L. M., Lauer, S. A., Laeyendecker, O., Boon, D., & Lessler, J. (2020). Variation in false-negative rate of reverse transcriptase polymerase chain reaction– based SARS-CoV-2 tests by time since exposure. Annals of internal medicine, 173(4), 262-267. • Tang, Y., Chen, X., Zhang, J., Wang, J., Hu, W., Liu, S., ... & Xu, H. (2021). Generation and Characterization of Monoclonal Antibodies Against Tth DNA Polymerase and its Application to Hot-Start PCR. Protein and Peptide Letters. 24
  • 25.
    • Zagklavara, F.,Jimack, P. K., Kapur, N., Querin, O. M., & Thompson, H. M. (2021). Numerical Modelling and Analysis of a Microfluidic PCR Device. In Proceedings of the 6th World Congress on Momentum, Heat and Mass Transfer (MHMT'21), Lisbon, Portugal Virtual Conference–June (pp. 17-19). • Hu, M., Jex, A. R., Campbell, B. E., & Gasser, R. B. (2007). Long PCR amplification of the entire mitochondrial genome from individual helminths for direct sequencing. Nature protocols, 2(10), 2339-234 25
  • 26.