METODE SIMPLEX
LINEAR PROGRAMMING (LP)
Latar Belakang
• Sulitnya menggambarkan grafik berdimensi banyak atau
kombinasi lebih dari dua variabel.
• Metode grafik tidak mungkin dapat dilakukan untuk
menyelesaikan masalah program linear yang melibatkan lebih
dari dua variable.
• Dalam keadaan ini (variabel lebih dari dua) dibutuhkan metode
lain yang sering disebut sebagai metode algoritma simplex.
• Metode ini diperkenalkan oleh George B Dantzig pada tahun
1947.
Metode Simplex
• Metode simpleks merupakan prosedur iterasi
yang bergerak bertahap dan berulang.
• Jumlah variabel tidak terbatas
• Penyelesaian masalah LP dengan metode
simplex harus menggunakan bentuk standar.
Persyaratan Metode Simpleks
1) Semua kendala pertidaksamaan harus
dinyatakan sebagai persamaan.
2) Sisi kanan (the right side) dari sebuah kendala
tidak boleh ada yang negatif.
3) Nilai kanan (NK/RHS) fungsi tujuan harus nol
(0).
4) Semua variabel dibatasi pada nilai-nilai non-
negatif.
FLOW CHART ALGORITM SIMPLEX
CONTOH PEMECAHAN KASUS MAKSIMISASI
• SEBUAH PERUSAHAAN MEUBEL MEMBUAT DUA MACAM
KURSI TAMU, YAKNI TYPE X1 DAN TYPE X2.HARGA JUAL DAN
PENGGUNAAN SUMBER DAYA, SERTA BIAYA VARIABEL SATUAN
SETIAP PRODUK ADALAH HARGA JUAL UNIT X1 DAN X2
MASING-MASING Rp. 50.000 DAN RP. 70.000.BIAYA VARIABEL
SATUAN PRODUK ITU MASING-MASING RP. 30.000 dan Rp.
40.000. PEMAKAIAN SUMBER DAYA UNTUK SETIAP PRODUK
DAN SEDIAAN KAPASITAS SETIAP SUMBER DAYA DISAJIKAN
DALAM TABEL BERIKUT :
•
Jenis Produk Pemotongan dan
Penghalusan
(Kendala 1)
Perakitan dan
Pemasangan
Atribut (Kendala 2)
Pemsangan
Formika (kendala 3)
X1
X2
1 JAM
2 JAM
1 JAM
0,75 JAM
0 JAM
1 JAM
SEDIAAN WAKTU
OPERASI
400 JAM 240 JAM 180 JAM
DIMINTA :
NYATAKAN KELUARAN X1 DAN X2 PADA TINGKAT LABA (KONTRIBUSI) MAKSIMUM
DINYATAKAN PULA JUMLAH SETIAP KELUARAN PADA OPTIMAL TERSEBUT.
Langkah Pertama
• Lebih dahulu menentukan fungsi tujuan dan fungsi kendala yang sesuai .
• Fungsi Tujuan :
• Maksimumkan Z = 20.000X1 + 30.000X2
• Fungsi Kendala : X1 + X2 ≤ 400
• X1 + 0,751 ≤ 240
• 0X1 + X2 ≤ 180
• Dengan Syarat Ikatan X1 ≥ 0
•
Langkah Kedua
• Mengubah fungsi tujuan dan fungsi kendala menjadi bentuk implisit
dengan jalan menggeser fungsi tujuan ke Z, yaitu
• Z - 20.000X1 - 30.000X2 = 0. Sedangkan fungsi kendala (selain kendala
non negatif) dirubah menjadi bentuk persamaan dengan menambah
variabel slack, yaitu suatu variabel yang mewakili tingkat
pengangguran kapasitas yang merupakan batasan.
•
• Fungsi kendala tersebut diatas diubah menjadi :
• Fungsi Kendala : X1 + X2 + 1S1 + OS2 + OS3 = 400
• X1 + 0,75X2 + 0S1 + 1S2 + OS3 = 240
• 0X1 + X2 + 0S1 + 0S2 + 1S3 = 180
• Dengan Syarat Ikatan X1, X2, S1,S2,S3 ≥ 0
•
LANGKAH KETIGA
Mentabulasi Persamaan-persamaan Fungsi Tujuan dan
Kendala Yang telah dirubah seperti pada langkah 2
diatas.
Basis Z X1 X2 S1 S2 S3 NK Index
Z 1 -20.000 -30.000 0 0 0 0
S1 0 1 2 1 0 0 400
S2 0 1 0.75 0 1 0 240
S3 0 0 1 0 0 1 180
LANGKAH KEEMPAT
Menentukan kolom pivot(entering variabel) dipilih dari baris Z
dengan angka negatif terbesar untuk masalah maksimisasi.
Basis Z X1 X2 S1 S2 S3 NK Index
Z 1 -20.000 -30.000 0 0 0 0 0
S1 0 1 2 1 0 0 400 200
S2 0 1 0.75 0 1 0 240 320
S3 0 0 1 0 0 1 180 180
LANGKAH KELIMA
Menentukan baris pivot(leaving variabel). Untuk menentukan baris mana yang
dipilih dapat dilakukan dengan membagi kolom solusi dengan kolom pivot pada
setiap baris, kemudian dipilih angka yang terkecil.
Basis Z X1 X2 S1 S2 S3 NK Index
Z 1 -20.000 -30.000 0 0 0 0
S1 0 1 2 1 0 0 200
S2 0 1 0.75 0 1 0 320
S3 0 0 1 0 0 1 180
LANGKAH KEENAM
Menentukan persamaan pivot baru adalah = baris pivotlama : elemen pivot.
Elemen pivot adalah perpotongan antara kolom pivot dengan baris pivot.
Sehingga dihasilkan persamaman pivot baru.
Basis Z X1 X2 S1 S2 S3 NK Index
Z 1
S1 0
S2 0
X2 0 0 1 0 0 1 180
6. Membuat baris baru dengan mengubah nilai-nilai baris (selain
baris kunci) sehingga nilai-nilai kolom kunci = 0, dengan mengikuti
perhitungan sbb. :
NBBK = Nilai baris baru kunci
• Baris Z
Baris lama [−20.000 −30.000 0 0 0 0]
NBBK = -30.000 [ 0 1 0 0 1 180]
Baris baru -20.000 0 0 0 30.000 5.400.000
LANGKAH KETUJUH
LANGKAH KETUJUH
Baris S1
Baris lama [ 1 2 1 0 0 400 ]
NBBK = 2 [ 0 1 0 0 1 180 ]
Baris baru 1 0 1 0 -2 40
Baris S 2
Baris lama [ 1 0,75 0 1 0 240 ]
NBBK = 0,75 [ 0 1 0 0 1 180 ]
Baris baru 1 0 0 1 -0,75 105
Var. Dsr Z X1 x2 s1 s2 s3 NK Index
Z 1 −20.000 0 0 0 30.000
5.400
.000
s1 0 1 0 1 0 -2 40 40
x2 0 1 0 0 1 -0.75 105 105
S3 0 0 1 0 0 1 180
Masukkan nilai baris baru Z, s1, dan s3 ke dalam tabel, sehingga
tabel menjadi seperti berikut:
Var. Dsr Z X1 x2 s1 s2 s3 NK Index
Z 1
X1 0 1 0 1 0 -2 40 40
x2 0
Baris Z
Baris lama [−20.000 0 0 0 30.000 5.400.000]
NBBK = -20.000 [ 1 0 1 0 -2 40 ]
Baris baru 0 0 20.000 0 -10.000 6.200.000
Baris S2
Baris lama [ 1 0 0 1 -0,75 105 ]
NBBK x 1 [ 1 0 1 0 -2 40 ]
Baris baru 0 0 -1 1 1,25 65
Baris X2
Baris lama [ 0 1 0 0 1 180 ]
NBBK = x 0 [ 1 0 1 0 -2 40 ]
Baris baru 0 1 0 0 1 180
Var. Dsr Z X1 x2 s1 s2 s3 NK Index
Z 1 0 0 20.000 0 -10.000 6.200.000
X1 0 1 0 1 0 -2 40 40
S2 0 0 0 -1 1 1,25 65
X2 0 0 1 0 0 1 180
Var. Dsr Z X1 x2 s1 s2 s3 NK Index
Z
X1 0 1 0 1 0 -2 40 40
S3 0 0 0 - 0,8 0,8 1 52
X2
Baris Z
Baris lama [ 0 0 20.000 0 -10.000 5.400.000]
BBK = -10.000 [ 0 0 -0,8 0,8 1 52 ]
Baris baru 0 0 12.000 8.000 0 6.720.000
Baris X1
Baris lama [ 1 0 1 0 -2 40 ]
BBK = - 2 [ 0 0 -0,8 0,8 1 52 ]
Baris baru 1 0 -0.6 1,6 0 144
Baris X2
Baris lama [ 0 1 0 0 1 180 ]
BBK = 1 [ 0 0 -0,8 0,8 1 52 ]
Baris baru 0 0 0.8 -0,8 0 128
Var. Dsr Z X1 x2 s1 s2 s3 NK Index
Z 0 0 0 12.000 8.000 0
6.720.000
X1 0 1 0 -0,6 1,6 0 144 40
S3 0 0 0 - 0,8 0,8 1 52
X2 0 0 1 0,8 -0,8 0 128
1
1
1
Karena nilai Z sudah tidak ada yang (−), maka sudah dapat
diperoleh hasil solusi maksimum, yaitu:
x1 = 144 ; x2 = 128 ; Zmax = 6.720.000 dan S3 = 52

Pertemuan 5 lp metode simplex

  • 1.
  • 2.
    Latar Belakang • Sulitnyamenggambarkan grafik berdimensi banyak atau kombinasi lebih dari dua variabel. • Metode grafik tidak mungkin dapat dilakukan untuk menyelesaikan masalah program linear yang melibatkan lebih dari dua variable. • Dalam keadaan ini (variabel lebih dari dua) dibutuhkan metode lain yang sering disebut sebagai metode algoritma simplex. • Metode ini diperkenalkan oleh George B Dantzig pada tahun 1947.
  • 3.
    Metode Simplex • Metodesimpleks merupakan prosedur iterasi yang bergerak bertahap dan berulang. • Jumlah variabel tidak terbatas • Penyelesaian masalah LP dengan metode simplex harus menggunakan bentuk standar.
  • 4.
    Persyaratan Metode Simpleks 1)Semua kendala pertidaksamaan harus dinyatakan sebagai persamaan. 2) Sisi kanan (the right side) dari sebuah kendala tidak boleh ada yang negatif. 3) Nilai kanan (NK/RHS) fungsi tujuan harus nol (0). 4) Semua variabel dibatasi pada nilai-nilai non- negatif.
  • 5.
  • 6.
    CONTOH PEMECAHAN KASUSMAKSIMISASI • SEBUAH PERUSAHAAN MEUBEL MEMBUAT DUA MACAM KURSI TAMU, YAKNI TYPE X1 DAN TYPE X2.HARGA JUAL DAN PENGGUNAAN SUMBER DAYA, SERTA BIAYA VARIABEL SATUAN SETIAP PRODUK ADALAH HARGA JUAL UNIT X1 DAN X2 MASING-MASING Rp. 50.000 DAN RP. 70.000.BIAYA VARIABEL SATUAN PRODUK ITU MASING-MASING RP. 30.000 dan Rp. 40.000. PEMAKAIAN SUMBER DAYA UNTUK SETIAP PRODUK DAN SEDIAAN KAPASITAS SETIAP SUMBER DAYA DISAJIKAN DALAM TABEL BERIKUT : •
  • 7.
    Jenis Produk Pemotongandan Penghalusan (Kendala 1) Perakitan dan Pemasangan Atribut (Kendala 2) Pemsangan Formika (kendala 3) X1 X2 1 JAM 2 JAM 1 JAM 0,75 JAM 0 JAM 1 JAM SEDIAAN WAKTU OPERASI 400 JAM 240 JAM 180 JAM DIMINTA : NYATAKAN KELUARAN X1 DAN X2 PADA TINGKAT LABA (KONTRIBUSI) MAKSIMUM DINYATAKAN PULA JUMLAH SETIAP KELUARAN PADA OPTIMAL TERSEBUT.
  • 8.
    Langkah Pertama • Lebihdahulu menentukan fungsi tujuan dan fungsi kendala yang sesuai . • Fungsi Tujuan : • Maksimumkan Z = 20.000X1 + 30.000X2 • Fungsi Kendala : X1 + X2 ≤ 400 • X1 + 0,751 ≤ 240 • 0X1 + X2 ≤ 180 • Dengan Syarat Ikatan X1 ≥ 0 •
  • 9.
    Langkah Kedua • Mengubahfungsi tujuan dan fungsi kendala menjadi bentuk implisit dengan jalan menggeser fungsi tujuan ke Z, yaitu • Z - 20.000X1 - 30.000X2 = 0. Sedangkan fungsi kendala (selain kendala non negatif) dirubah menjadi bentuk persamaan dengan menambah variabel slack, yaitu suatu variabel yang mewakili tingkat pengangguran kapasitas yang merupakan batasan. •
  • 10.
    • Fungsi kendalatersebut diatas diubah menjadi : • Fungsi Kendala : X1 + X2 + 1S1 + OS2 + OS3 = 400 • X1 + 0,75X2 + 0S1 + 1S2 + OS3 = 240 • 0X1 + X2 + 0S1 + 0S2 + 1S3 = 180 • Dengan Syarat Ikatan X1, X2, S1,S2,S3 ≥ 0 •
  • 11.
    LANGKAH KETIGA Mentabulasi Persamaan-persamaanFungsi Tujuan dan Kendala Yang telah dirubah seperti pada langkah 2 diatas. Basis Z X1 X2 S1 S2 S3 NK Index Z 1 -20.000 -30.000 0 0 0 0 S1 0 1 2 1 0 0 400 S2 0 1 0.75 0 1 0 240 S3 0 0 1 0 0 1 180
  • 12.
    LANGKAH KEEMPAT Menentukan kolompivot(entering variabel) dipilih dari baris Z dengan angka negatif terbesar untuk masalah maksimisasi. Basis Z X1 X2 S1 S2 S3 NK Index Z 1 -20.000 -30.000 0 0 0 0 0 S1 0 1 2 1 0 0 400 200 S2 0 1 0.75 0 1 0 240 320 S3 0 0 1 0 0 1 180 180
  • 13.
    LANGKAH KELIMA Menentukan barispivot(leaving variabel). Untuk menentukan baris mana yang dipilih dapat dilakukan dengan membagi kolom solusi dengan kolom pivot pada setiap baris, kemudian dipilih angka yang terkecil. Basis Z X1 X2 S1 S2 S3 NK Index Z 1 -20.000 -30.000 0 0 0 0 S1 0 1 2 1 0 0 200 S2 0 1 0.75 0 1 0 320 S3 0 0 1 0 0 1 180
  • 14.
    LANGKAH KEENAM Menentukan persamaanpivot baru adalah = baris pivotlama : elemen pivot. Elemen pivot adalah perpotongan antara kolom pivot dengan baris pivot. Sehingga dihasilkan persamaman pivot baru. Basis Z X1 X2 S1 S2 S3 NK Index Z 1 S1 0 S2 0 X2 0 0 1 0 0 1 180
  • 15.
    6. Membuat barisbaru dengan mengubah nilai-nilai baris (selain baris kunci) sehingga nilai-nilai kolom kunci = 0, dengan mengikuti perhitungan sbb. : NBBK = Nilai baris baru kunci • Baris Z Baris lama [−20.000 −30.000 0 0 0 0] NBBK = -30.000 [ 0 1 0 0 1 180] Baris baru -20.000 0 0 0 30.000 5.400.000 LANGKAH KETUJUH
  • 16.
    LANGKAH KETUJUH Baris S1 Barislama [ 1 2 1 0 0 400 ] NBBK = 2 [ 0 1 0 0 1 180 ] Baris baru 1 0 1 0 -2 40 Baris S 2 Baris lama [ 1 0,75 0 1 0 240 ] NBBK = 0,75 [ 0 1 0 0 1 180 ] Baris baru 1 0 0 1 -0,75 105
  • 17.
    Var. Dsr ZX1 x2 s1 s2 s3 NK Index Z 1 −20.000 0 0 0 30.000 5.400 .000 s1 0 1 0 1 0 -2 40 40 x2 0 1 0 0 1 -0.75 105 105 S3 0 0 1 0 0 1 180 Masukkan nilai baris baru Z, s1, dan s3 ke dalam tabel, sehingga tabel menjadi seperti berikut:
  • 18.
    Var. Dsr ZX1 x2 s1 s2 s3 NK Index Z 1 X1 0 1 0 1 0 -2 40 40 x2 0
  • 19.
    Baris Z Baris lama[−20.000 0 0 0 30.000 5.400.000] NBBK = -20.000 [ 1 0 1 0 -2 40 ] Baris baru 0 0 20.000 0 -10.000 6.200.000 Baris S2 Baris lama [ 1 0 0 1 -0,75 105 ] NBBK x 1 [ 1 0 1 0 -2 40 ] Baris baru 0 0 -1 1 1,25 65
  • 20.
    Baris X2 Baris lama[ 0 1 0 0 1 180 ] NBBK = x 0 [ 1 0 1 0 -2 40 ] Baris baru 0 1 0 0 1 180 Var. Dsr Z X1 x2 s1 s2 s3 NK Index Z 1 0 0 20.000 0 -10.000 6.200.000 X1 0 1 0 1 0 -2 40 40 S2 0 0 0 -1 1 1,25 65 X2 0 0 1 0 0 1 180
  • 21.
    Var. Dsr ZX1 x2 s1 s2 s3 NK Index Z X1 0 1 0 1 0 -2 40 40 S3 0 0 0 - 0,8 0,8 1 52 X2 Baris Z Baris lama [ 0 0 20.000 0 -10.000 5.400.000] BBK = -10.000 [ 0 0 -0,8 0,8 1 52 ] Baris baru 0 0 12.000 8.000 0 6.720.000
  • 22.
    Baris X1 Baris lama[ 1 0 1 0 -2 40 ] BBK = - 2 [ 0 0 -0,8 0,8 1 52 ] Baris baru 1 0 -0.6 1,6 0 144 Baris X2 Baris lama [ 0 1 0 0 1 180 ] BBK = 1 [ 0 0 -0,8 0,8 1 52 ] Baris baru 0 0 0.8 -0,8 0 128
  • 23.
    Var. Dsr ZX1 x2 s1 s2 s3 NK Index Z 0 0 0 12.000 8.000 0 6.720.000 X1 0 1 0 -0,6 1,6 0 144 40 S3 0 0 0 - 0,8 0,8 1 52 X2 0 0 1 0,8 -0,8 0 128 1 1 1 Karena nilai Z sudah tidak ada yang (−), maka sudah dapat diperoleh hasil solusi maksimum, yaitu: x1 = 144 ; x2 = 128 ; Zmax = 6.720.000 dan S3 = 52