This document provides an overview of several clustering algorithms. It begins by defining clustering and its importance in data mining. It then categorizes clustering algorithms into four main types: partitional, hierarchical, grid-based, and density-based. For each type, some representative algorithms are described briefly. The document also reviews several popular clustering algorithms like k-means, CLARA, PAM, CLARANS, and BIRCH in more detail. It discusses aspects like the algorithms' time complexity, types of data handled, ability to detect clusters of different shapes, required input parameters, and advantages/disadvantages. Overall, the document aims to guide selection of suitable clustering algorithms for specific applications by surveying their key characteristics.