This document discusses multidimensional clustering methods for data mining and their industrial applications. It begins with an introduction to clustering, including definitions and goals. Popular clustering algorithms are described, such as K-means, fuzzy C-means, hierarchical clustering, and mixture of Gaussians. Distance measures and their importance in clustering are covered. The K-means and fuzzy C-means algorithms are explained in detail. Examples are provided to illustrate fuzzy C-means clustering. Finally, applications of clustering algorithms in fields such as marketing, biology, and earth sciences are mentioned.