The document discusses melanoma skin cancer detection using a computer-aided diagnosis system based on dermoscopic images. It begins with an introduction to skin cancer and melanoma. It then reviews existing literature on automated melanoma detection systems that use techniques like image preprocessing, segmentation, feature extraction and classification. Features extracted in other studies include asymmetry, border irregularity, color, diameter and texture-based features. The proposed system collects dermoscopic images and performs preprocessing, segmentation, extracts 9 features based on the ABCD rule, and classifies images using a neural network classifier to detect melanoma. It aims to develop an automated diagnosis system to eliminate invasive biopsy procedures.