This document summarizes recent developments in organic solar cell technology. It discusses how organic solar cells work by generating electron-hole pairs called excitons when light is absorbed. Excitons must dissociate at donor-acceptor interfaces to generate free charges. There is ongoing research to better understand the mechanism of exciton dissociation. Computational methods like time-dependent density functional theory are being used to simulate charge transfer processes. Experimental research focuses on spectroscopic analysis to study conversion processes in picosecond timescales. Recent efficiency improvements and new device architectures are driving the commercial potential of organic solar cells.