#+TITLE: Optimisation problems and
methods in Chemical
Engineering: a personal survey
#+AUTHOR: Eric S Fraga
Centre for Process Systems Engineering
Department of Chemical Engineering
#+INSTITUTE: University College London (UCL)
#+DATE: 6 June 2014
One Day Workshop on Applied and Numerical
Mathematics
University of Greenwich
–:–- talk.tex Top 1/42 ---------------------------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Topic
* Introduction
* Process synthesis
* Heat integration
* Carbon capture
* Power generation
* Conclusions
–:–- talk.tex 4% 2/42 [Introduction] -----------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
What is Chemical Engineering?
Chemical Engineering about changing raw materials into
useful products.
Other engineering disciplines deal with things;
Chemical Engineering deals with stuff.
–:–- talk.tex 7% 3/42 [Introduction] -----------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Modelling
Mathematical models of
systems that work with stuff
are complex:
- nonlinear and nonsmooth,
e.g.
∆Hk = w
Qk
CHW
β
Lk
m
d −γ
m ykm
- combinatorial
- significant
uncertainties in
parameters and models
350
375
400
425
6 8 10
Annualizedcost(10
3
$/y)
Operating pressure, unit 4 (atm)
f(X)
–:–- talk.tex 9% 4/42 [Introduction] -----------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Outline
Presentation will be personal survey of problems and
optimisation methods used over the past 20 years,
ranging from off-the-shelf optimisation software through
to custom programs for specific applications.
–:–- talk.tex 11% 5/42 [Introduction] -----------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Topic
* Introduction
* Process synthesis
* Heat integration
* Carbon capture
* Power generation
* Conclusions
–:–- talk.tex 14% 6/42 [Process synthesis] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Process design
Objective is to determine
unit operations and their
interconnections so as to
achieve a specific task,
usually defined by a product
specification.
?
1
2
3
4
000000
000000000000
000000000
000
111111
111111111111
111111111
111
F
F
F
P
P
P
P
P
P
H SO
2 4
Reactor D1
Fluorspar
M
D2
Vapour effluent
HF
Excess
Makeup
M
HF +
A1
Makeup
Solid
Effluent
H SO
2
H SO
2
4
4
H SO
2 4
A
B
C
B
−−
C
−−
B
A
A
B
C
–:–- talk.tex 16% 7/42 [Process synthesis] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Discrete Mathematical Approach
- Convert MINLP to discrete
problem: component flows,
stream enthalpies, unit
operations.
⇒ Search a large, but finite,
graph.
- Combine dynamic programming
with implicit enumeration:
f (s ) = min
u
cu (s ) +
np
i =1
f (pi )
ABD
AB/D A → C
AB
A→C
BC
BCD
BC/D
B/C
A B C D
ESF & K I M McKinnon (2004), Ind Eng Chem Res 43(1):144-160.
–:–- talk.tex 19% 8/42 [Process synthesis] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Example model
A short-cut distillation column model:
Nmin =
log xd
1−xd
1−xb
xb
log αavg
Rmin =
i
αi xD ,i
αi − φ
− 1
where 1 − q =
i
αi zF ,i
αi − φ
N − Nmin
N + 1
= 0.75 1 −
R − Rmin
R + 1
0.5668
to estimate N stages and R reflux ratio necessary for
costing, and where α are thermophysical properties.
–:–- talk.tex 21% 9/42 [Process synthesis] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
N -best solutions
ESF (1996), in State of the Art in Global Optimisation, Kluwer, 627-651.
–:–- talk.tex 23% 10/42 [Process synthesis] -----------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Multiple objectives
-1.8
-1.5
-1.2
2e+07
4e+07
6e+07
0
2000
4000
Annual cost (M$)
SPI (m2/year)
CTWM(kgwater/year)
10 best flowsheets
according to cost
Minimum cost
flowsheet
#2 & #3
flowsheets
by cost
#1 SPI
B
A
#1 CTWM
M A Steffens, ESF & I D L Bogle (1999), Comp Chem Eng 23(10):1455-1467.
–:–- talk.tex 26% 11/42 [Process synthesis] -----------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Uncertainty
A R F O’Grady, ESF, I D L Bogle (2001), Chemical Papers 55:376-381.
–:–- talk.tex 28% 12/42 [Process synthesis] -----------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Topic
* Introduction
* Process synthesis
* Heat integration
* Carbon capture
* Power generation
* Conclusions
–:–- talk.tex 30% 13/42 [Heat integration] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Process heat integration
Match
appropriate
heating and
cooling needs to
reduce costs and
environmental
impact.
P=8.1,R=11.0,S=79
P=5.6,R=0.9,S=24
P=7.8,R=5.9,S=62
P=¼.3,R=2.3,S=21
H1
H4
C4
C3C2
H2 H3
C1
Unit 3
Unit 1
Unit 2
Unit 4
n−Pentane
iso−Pentane
C3 C1 C2
Feed
Propaneiso−Butane
H4
H4
n−Butane
H4
–:–- talk.tex 33% 14/42 [Heat integration] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Simultaneous design
- Integrated process design is a nonlinear &
combinatorial problem:
minx ,y
f (x , y ) = g (x ) + h (x , y )
g (x ) base process design
h (x , y ) process heat integration
- Solve with an embedded hybrid method:
min
x
ˆf (x ) = g (x ) + min
y
h (x , y )
with gradient or direct search for x and GA for y .
ESF & A ˘Zilinskas (2003), Adv Eng Software 34:73-86.
–:–- talk.tex 35% 15/42 [Heat integration] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Model of heat exchanger
Cost model
C = α + βA γ
Area of exchanger
A =
Q
U ∆TLMTD
Driving force for heat exchange
∆TLMTD =
∆Tin − ∆Tout
log ∆Tin − log ∆Tout
and the various temperatures are the result of
thermophysical property predictions, functions of T and
P design variables.
–:–- talk.tex 38% 16/42 [Heat integration] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Outer methods for process structure
Key Code Method
PG gradproj project gradients
NP projbfgs quasi-Newton projected
ND method by Shor
NM fmins Nelder & Mead simplex
HJ hooke Hooke & Jeeves
IF imfil Implicit filtering
CS Coordinate search
using penalty functions for methods designed for
unconstrained optimisation (ND, NM, HJ, IF).
–:–- talk.tex 40% 17/42 [Heat integration] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Genetic algorithm for heat exchanges
Two implementations:
GA1 nl × nc ordered pairs (j , r ) where nl is number
of levels, nc number of cold streams,
j ∈ [0, nh ] index for hot stream and r fraction
of available heat to exchange.
GA2 vector of ne values i ∈ [0, nc × nh ] where ne
represents the number of exchanges to allow
and i the actual exchange to consider.
GA1 implements a larger and more comprehensive search
space; GA2 however is constant in length.
–:–- talk.tex 42% 18/42 [Heat integration] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Impact of embedded stochastic method
350
375
400
425
6 8 10
Annualizedcost(10
3
$/y)
Operating pressure, unit 4 (atm)
f(X,Y*
)
f(X)
–:–- talk.tex 45% 19/42 [Heat integration] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Zoomed view
342
344
7.6 8 8.4
Annualizedcost(10
3
$/y)
Operating pressure, unit 4 (atm)
f(X,Y*
)
f(X)
–:–- talk.tex 47% 20/42 [Heat integration] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Some performance results
Alg best ave std nf ninf time
(106
$) (106
$) (106
$) (s)
NM 8.40 9.35 0.813 906 13 1 472
HJ 8.39 8.39 0.001 810 78 1 594
IF 8.61 10.15 1.762 554 42 1 170
CS 8.81 10.06 1.584 170 44 244
GA-2L 8.53 8.75 0.192 814 58 1 703
GA-1L 8.39 8.51 0.122 107 399 2 239 1 239
- GA-1L solves combined problem, f (x , y ), directly for
benchmarking.
- GA-2L uses a GA for outer method.
- Hooke & Jeeves direct search algorithm is most
consistent and achieves best solution.
–:–- talk.tex 50% 21/42 [Heat integration] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Topic
* Introduction
* Process synthesis
* Heat integration
* Carbon capture
* Power generation
* Conclusions
–:–- talk.tex 52% 22/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Efficient carbon capture
Identification
of solvent or
nanoporous
material
Detailed
process modelling
Try
again
Process
integration
Molecular modelling
and/or experiments
Done
Yes
Yes
Yes
No
No
No
Evaluation
- reduce efficiency loss
due to carbon capture.
- combined materials and
process design.
- evaluation based on
experiments, detailed
modelling and process
simulation and
optimisation.
EPSRC EP/G062129/1
–:–- talk.tex 54% 23/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Modelling I
Component mass balances (axial dispersed plug flow
model):
dc i
dt
+
1 − b
b
d¯Qi
dt
+
∂(uci )
∂z
+
∂Ji
∂z
= 0
d¯Qi
dt
= p
dc m
i
dt
+ (1 − p )
d¯qi
dt
= k p
i
Ap
Vp
(ci − c m
i )
Energy balance for the adsorbate in the gas phase:
b
dˆUf
dt
= −(1 − b )
∂ ˆUp
∂t
− b
∂(ˆHf u )
∂z
−
∂JT
∂z
−
Nc
i =1
∂(Ji ˆHi )
∂z
− hw
Ac
Vc
(Tf − Tw )
–:–- talk.tex 57% 24/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Modelling II
Energy balance for the adsorbate in the solid phase:
∂ ˆUp
∂t
= p
dˆUp ,f
dt
+ (1 − p )
dˆUp ,s
dt
= hp
Ap
Vp
(Tf − Tp )
Energy balance in the bed wall:
ρw Cp ,w
∂Tw
∂t
= −hw
Ac
Vw
(Tw − Tf ) − U αwl (Tw − T∞)
and so on.
As simulation must reach cyclic steady state,
⇒ computational effort is significant.
–:–- talk.tex 59% 25/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Behaviour of objective function
Objectivefunctionvalue
Along a line in design space
⇒ motivates use of surrogate modelling (response
surface modelling, meta-modelling, ...).
G Fiandaca, ESF & S Brandani (2009), Engineering Optimization 41(9):833-854.
–:–- talk.tex 61% 26/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Surrogate model
- a fast approximation of model’s response
y (x ) : Rp
→ R where X ⊂ Rp
is the space with p
design variables.
- suitable for black box optimisation models as the
surrogate model is non-intrusive.
- based on training data: a set of known design
points.
Most surrogates have form
ˆy (x) =
q
k =1
βk hk (x) + (x)
with regressors hi (·) and a residual random process, (·).
–:–- talk.tex 64% 27/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Kriging
A statistical interpolating approach used for
approximating deterministic models.
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1
y(x)
x
–:–- talk.tex 66% 28/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Optimisation
–:–- talk.tex 69% 29/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Optimiser
0
10
20
30
40
50
0 0.2 0.4 0.6 0.8 1
Purity(%)
λ
We use evolutionary stochastic methods to cater for
multi-modality of objective function.
–:–- talk.tex 71% 30/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Case study: 6 step, 2 bed PSA
Bed
1
Bed
2
Vaccum
Tank
V1
V2
V4
V5
V7
V3 V6
Vent tank
Vent
Feed tank
Feed
BH
BH
BH
BH
- 6 design variables.
- 3 objective functions:
recovery, purity and power
(but will illustrate 2).
- computational effort large:
30-60 minutes per objective
function evaluation.
J Beck, D Friedrich, S Brandani & ESF (2012),
Proc 22nd ESCAPE, Elsevier, 1217-1221
–:–- talk.tex 73% 31/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Pareto front: n = 64
0
20
40
60
80
100
0 20 40 60 80 100
Purity(%)
Recovery (%)
NSGA-II
SbNSGA-II
SbNSGA-II ALM
–:–- talk.tex 76% 32/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Pareto front: n = 96
0
20
40
60
80
100
0 20 40 60 80 100
Purity(%)
Recovery (%)
NSGA-II
SbNSGA-II
SbNSGA-II ALM
–:–- talk.tex 78% 33/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Pareto front: n = 176
0
20
40
60
80
100
0 20 40 60 80 100
Purity(%)
Recovery (%)
NSGA-II
SbNSGA-II
SbNSGA-II ALM
–:–- talk.tex 80% 34/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Pareto front: n = 256
0
20
40
60
80
100
0 20 40 60 80 100
Purity(%)
Recovery (%)
NSGA-II
SbNSGA-II
SbNSGA-II ALM
–:–- talk.tex 83% 35/42 [Carbon capture] --------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Topic
* Introduction
* Process synthesis
* Heat integration
* Carbon capture
* Power generation
* Conclusions
–:–- talk.tex 85% 36/42 [Power generation] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
The problem
Determine power schedule
for minimum fuel cost for
set of online thermal
units subject to a number
of issues:
- prohibited operating
zones
- transmission losses
- valve point loadings
using mathematical
programming toolbox.
min
Pi
z =
i
Fi (Pi )
4000
6000
8000
10000
12000
150 200 250 300 350 400 450
F(P1)
P1 [MW]
Fi (Pi ) = ai P 2
i +bi Pi +ci +|ei sin (fi (Pi ,min − Pi ))|
L Yang, ESF & L G Papageorgiou (2013), Elec Power Sys Res 95:302-308.
–:–- talk.tex 88% 37/42 [Power generation] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Results
Mean Cost Best Cost Method Year
CSOMA 121,415.05 121,414.70 Cultural algorithm 2010
FAPSO-VDE 121,412.61 121,412.56 Particle swarm 2011
DE 121,422.72 121,416.29 Differential Evolution 2008
SOMA 121,449.88 121,418.79 Self-org migration 2000
EP-SQP 122,379.63 122,323.97 Genetic Algorithm 2008
CDEMD 121,526.73 121,423.40 Differential Evolution 2009
BBO 121,512.06 121,418.27 Biogeography 2010
HGA 121,784.04 121,418.27 Genetic Algorithm 2008
HDE 122,304.30 121,698.51 Differential Evolution 2009
MTS 121,798.51 121,532.10 Tabu search 2011
UHGA 121,602.81 121,424.48 Genetic Algorithm 2008
MDE 121,418.44 121,414.79 Differential Evolution 2010
VLEMIQP 121,412.54 121,412.54 Mathematical Prog 2013
–:–- talk.tex 90% 38/42 [Power generation] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Caveat: modelling
Chemical
Engineering
problems are
based on models
of the
transformation
of stuff. These
models are
difficult to
obtain and
sometimes the
results are not
correct.
0
500
1000
1500
2000
2500
3000
20 60 100
0
F(P7)
dF/dP
P7 [MW]
valve effects
no effects
dF/dP
–:–- talk.tex 92% 39/42 [Power generation] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Restricted search
Problem Demand DVLMILP Excess DVLMILP Best Gap
output output cost known
(MW) (MW) (%) cost (%)
13 units 1800 1802 0.11 17964 17960 0.02
13 units 2520 2525 0.20 24174 24164 0.04
40 units 10500 10501 0.01 121986 121413 0.47
–:–- talk.tex 95% 40/42 [Power generation] ------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Topic
* Introduction
* Process synthesis
* Heat integration
* Carbon capture
* Power generation
* Conclusions
–:–- talk.tex 97% 41/42 [Conclusions] -----------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >
Summary
market
objective
process
structure
bespoke
software
optimised
operation
direct
search
process
scheduling
mathematical
programming
heat
integration
DS
+ GA
dynamic
operation
MOGA +
surrogate
Thanks to Dr Joakim Beck,
Professor David Bogle, Dr Rob
O’Grady, Professor Lazaros
Papageorgiou, Dr Mark Steffens
and Dr Lingjiang Yang at UCL;
Professor Stefano Brandani
(Edinburgh), Dr Daniel Friedrich
(Edinburgh), Professor Ken
McKinnon (Edinburgh) and
Professor Antanas ˘Zilinskas
(Lithuania).
http://www.ucl.ac.uk/~ucecesf/
–:–- talk.tex Bot 42/42 [Conclusions] -----------------------------
<[ ]> <[[]]> <**> < ** > «» < ? >

Optimisation problems and methods in Chemical Engineering: a personal survey

  • 1.
    #+TITLE: Optimisation problemsand methods in Chemical Engineering: a personal survey #+AUTHOR: Eric S Fraga Centre for Process Systems Engineering Department of Chemical Engineering #+INSTITUTE: University College London (UCL) #+DATE: 6 June 2014 One Day Workshop on Applied and Numerical Mathematics University of Greenwich –:–- talk.tex Top 1/42 --------------------------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 2.
    Topic * Introduction * Processsynthesis * Heat integration * Carbon capture * Power generation * Conclusions –:–- talk.tex 4% 2/42 [Introduction] ----------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 3.
    What is ChemicalEngineering? Chemical Engineering about changing raw materials into useful products. Other engineering disciplines deal with things; Chemical Engineering deals with stuff. –:–- talk.tex 7% 3/42 [Introduction] ----------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 4.
    Modelling Mathematical models of systemsthat work with stuff are complex: - nonlinear and nonsmooth, e.g. ∆Hk = w Qk CHW β Lk m d −γ m ykm - combinatorial - significant uncertainties in parameters and models 350 375 400 425 6 8 10 Annualizedcost(10 3 $/y) Operating pressure, unit 4 (atm) f(X) –:–- talk.tex 9% 4/42 [Introduction] ----------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 5.
    Outline Presentation will bepersonal survey of problems and optimisation methods used over the past 20 years, ranging from off-the-shelf optimisation software through to custom programs for specific applications. –:–- talk.tex 11% 5/42 [Introduction] ----------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 6.
    Topic * Introduction * Processsynthesis * Heat integration * Carbon capture * Power generation * Conclusions –:–- talk.tex 14% 6/42 [Process synthesis] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 7.
    Process design Objective isto determine unit operations and their interconnections so as to achieve a specific task, usually defined by a product specification. ? 1 2 3 4 000000 000000000000 000000000 000 111111 111111111111 111111111 111 F F F P P P P P P H SO 2 4 Reactor D1 Fluorspar M D2 Vapour effluent HF Excess Makeup M HF + A1 Makeup Solid Effluent H SO 2 H SO 2 4 4 H SO 2 4 A B C B −− C −− B A A B C –:–- talk.tex 16% 7/42 [Process synthesis] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 8.
    Discrete Mathematical Approach -Convert MINLP to discrete problem: component flows, stream enthalpies, unit operations. ⇒ Search a large, but finite, graph. - Combine dynamic programming with implicit enumeration: f (s ) = min u cu (s ) + np i =1 f (pi ) ABD AB/D A → C AB A→C BC BCD BC/D B/C A B C D ESF & K I M McKinnon (2004), Ind Eng Chem Res 43(1):144-160. –:–- talk.tex 19% 8/42 [Process synthesis] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 9.
    Example model A short-cutdistillation column model: Nmin = log xd 1−xd 1−xb xb log αavg Rmin = i αi xD ,i αi − φ − 1 where 1 − q = i αi zF ,i αi − φ N − Nmin N + 1 = 0.75 1 − R − Rmin R + 1 0.5668 to estimate N stages and R reflux ratio necessary for costing, and where α are thermophysical properties. –:–- talk.tex 21% 9/42 [Process synthesis] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 10.
    N -best solutions ESF(1996), in State of the Art in Global Optimisation, Kluwer, 627-651. –:–- talk.tex 23% 10/42 [Process synthesis] ----------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 11.
    Multiple objectives -1.8 -1.5 -1.2 2e+07 4e+07 6e+07 0 2000 4000 Annual cost(M$) SPI (m2/year) CTWM(kgwater/year) 10 best flowsheets according to cost Minimum cost flowsheet #2 & #3 flowsheets by cost #1 SPI B A #1 CTWM M A Steffens, ESF & I D L Bogle (1999), Comp Chem Eng 23(10):1455-1467. –:–- talk.tex 26% 11/42 [Process synthesis] ----------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 12.
    Uncertainty A R FO’Grady, ESF, I D L Bogle (2001), Chemical Papers 55:376-381. –:–- talk.tex 28% 12/42 [Process synthesis] ----------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 13.
    Topic * Introduction * Processsynthesis * Heat integration * Carbon capture * Power generation * Conclusions –:–- talk.tex 30% 13/42 [Heat integration] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 14.
    Process heat integration Match appropriate heatingand cooling needs to reduce costs and environmental impact. P=8.1,R=11.0,S=79 P=5.6,R=0.9,S=24 P=7.8,R=5.9,S=62 P=¼.3,R=2.3,S=21 H1 H4 C4 C3C2 H2 H3 C1 Unit 3 Unit 1 Unit 2 Unit 4 n−Pentane iso−Pentane C3 C1 C2 Feed Propaneiso−Butane H4 H4 n−Butane H4 –:–- talk.tex 33% 14/42 [Heat integration] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 15.
    Simultaneous design - Integratedprocess design is a nonlinear & combinatorial problem: minx ,y f (x , y ) = g (x ) + h (x , y ) g (x ) base process design h (x , y ) process heat integration - Solve with an embedded hybrid method: min x ˆf (x ) = g (x ) + min y h (x , y ) with gradient or direct search for x and GA for y . ESF & A ˘Zilinskas (2003), Adv Eng Software 34:73-86. –:–- talk.tex 35% 15/42 [Heat integration] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 16.
    Model of heatexchanger Cost model C = α + βA γ Area of exchanger A = Q U ∆TLMTD Driving force for heat exchange ∆TLMTD = ∆Tin − ∆Tout log ∆Tin − log ∆Tout and the various temperatures are the result of thermophysical property predictions, functions of T and P design variables. –:–- talk.tex 38% 16/42 [Heat integration] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 17.
    Outer methods forprocess structure Key Code Method PG gradproj project gradients NP projbfgs quasi-Newton projected ND method by Shor NM fmins Nelder & Mead simplex HJ hooke Hooke & Jeeves IF imfil Implicit filtering CS Coordinate search using penalty functions for methods designed for unconstrained optimisation (ND, NM, HJ, IF). –:–- talk.tex 40% 17/42 [Heat integration] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 18.
    Genetic algorithm forheat exchanges Two implementations: GA1 nl × nc ordered pairs (j , r ) where nl is number of levels, nc number of cold streams, j ∈ [0, nh ] index for hot stream and r fraction of available heat to exchange. GA2 vector of ne values i ∈ [0, nc × nh ] where ne represents the number of exchanges to allow and i the actual exchange to consider. GA1 implements a larger and more comprehensive search space; GA2 however is constant in length. –:–- talk.tex 42% 18/42 [Heat integration] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 19.
    Impact of embeddedstochastic method 350 375 400 425 6 8 10 Annualizedcost(10 3 $/y) Operating pressure, unit 4 (atm) f(X,Y* ) f(X) –:–- talk.tex 45% 19/42 [Heat integration] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 20.
    Zoomed view 342 344 7.6 88.4 Annualizedcost(10 3 $/y) Operating pressure, unit 4 (atm) f(X,Y* ) f(X) –:–- talk.tex 47% 20/42 [Heat integration] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 21.
    Some performance results Algbest ave std nf ninf time (106 $) (106 $) (106 $) (s) NM 8.40 9.35 0.813 906 13 1 472 HJ 8.39 8.39 0.001 810 78 1 594 IF 8.61 10.15 1.762 554 42 1 170 CS 8.81 10.06 1.584 170 44 244 GA-2L 8.53 8.75 0.192 814 58 1 703 GA-1L 8.39 8.51 0.122 107 399 2 239 1 239 - GA-1L solves combined problem, f (x , y ), directly for benchmarking. - GA-2L uses a GA for outer method. - Hooke & Jeeves direct search algorithm is most consistent and achieves best solution. –:–- talk.tex 50% 21/42 [Heat integration] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 22.
    Topic * Introduction * Processsynthesis * Heat integration * Carbon capture * Power generation * Conclusions –:–- talk.tex 52% 22/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 23.
    Efficient carbon capture Identification ofsolvent or nanoporous material Detailed process modelling Try again Process integration Molecular modelling and/or experiments Done Yes Yes Yes No No No Evaluation - reduce efficiency loss due to carbon capture. - combined materials and process design. - evaluation based on experiments, detailed modelling and process simulation and optimisation. EPSRC EP/G062129/1 –:–- talk.tex 54% 23/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 24.
    Modelling I Component massbalances (axial dispersed plug flow model): dc i dt + 1 − b b d¯Qi dt + ∂(uci ) ∂z + ∂Ji ∂z = 0 d¯Qi dt = p dc m i dt + (1 − p ) d¯qi dt = k p i Ap Vp (ci − c m i ) Energy balance for the adsorbate in the gas phase: b dˆUf dt = −(1 − b ) ∂ ˆUp ∂t − b ∂(ˆHf u ) ∂z − ∂JT ∂z − Nc i =1 ∂(Ji ˆHi ) ∂z − hw Ac Vc (Tf − Tw ) –:–- talk.tex 57% 24/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 25.
    Modelling II Energy balancefor the adsorbate in the solid phase: ∂ ˆUp ∂t = p dˆUp ,f dt + (1 − p ) dˆUp ,s dt = hp Ap Vp (Tf − Tp ) Energy balance in the bed wall: ρw Cp ,w ∂Tw ∂t = −hw Ac Vw (Tw − Tf ) − U αwl (Tw − T∞) and so on. As simulation must reach cyclic steady state, ⇒ computational effort is significant. –:–- talk.tex 59% 25/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 26.
    Behaviour of objectivefunction Objectivefunctionvalue Along a line in design space ⇒ motivates use of surrogate modelling (response surface modelling, meta-modelling, ...). G Fiandaca, ESF & S Brandani (2009), Engineering Optimization 41(9):833-854. –:–- talk.tex 61% 26/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 27.
    Surrogate model - afast approximation of model’s response y (x ) : Rp → R where X ⊂ Rp is the space with p design variables. - suitable for black box optimisation models as the surrogate model is non-intrusive. - based on training data: a set of known design points. Most surrogates have form ˆy (x) = q k =1 βk hk (x) + (x) with regressors hi (·) and a residual random process, (·). –:–- talk.tex 64% 27/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 28.
    Kriging A statistical interpolatingapproach used for approximating deterministic models. -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 y(x) x –:–- talk.tex 66% 28/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 29.
    Optimisation –:–- talk.tex 69%29/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 30.
    Optimiser 0 10 20 30 40 50 0 0.2 0.40.6 0.8 1 Purity(%) λ We use evolutionary stochastic methods to cater for multi-modality of objective function. –:–- talk.tex 71% 30/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 31.
    Case study: 6step, 2 bed PSA Bed 1 Bed 2 Vaccum Tank V1 V2 V4 V5 V7 V3 V6 Vent tank Vent Feed tank Feed BH BH BH BH - 6 design variables. - 3 objective functions: recovery, purity and power (but will illustrate 2). - computational effort large: 30-60 minutes per objective function evaluation. J Beck, D Friedrich, S Brandani & ESF (2012), Proc 22nd ESCAPE, Elsevier, 1217-1221 –:–- talk.tex 73% 31/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 32.
    Pareto front: n= 64 0 20 40 60 80 100 0 20 40 60 80 100 Purity(%) Recovery (%) NSGA-II SbNSGA-II SbNSGA-II ALM –:–- talk.tex 76% 32/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 33.
    Pareto front: n= 96 0 20 40 60 80 100 0 20 40 60 80 100 Purity(%) Recovery (%) NSGA-II SbNSGA-II SbNSGA-II ALM –:–- talk.tex 78% 33/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 34.
    Pareto front: n= 176 0 20 40 60 80 100 0 20 40 60 80 100 Purity(%) Recovery (%) NSGA-II SbNSGA-II SbNSGA-II ALM –:–- talk.tex 80% 34/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 35.
    Pareto front: n= 256 0 20 40 60 80 100 0 20 40 60 80 100 Purity(%) Recovery (%) NSGA-II SbNSGA-II SbNSGA-II ALM –:–- talk.tex 83% 35/42 [Carbon capture] -------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 36.
    Topic * Introduction * Processsynthesis * Heat integration * Carbon capture * Power generation * Conclusions –:–- talk.tex 85% 36/42 [Power generation] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 37.
    The problem Determine powerschedule for minimum fuel cost for set of online thermal units subject to a number of issues: - prohibited operating zones - transmission losses - valve point loadings using mathematical programming toolbox. min Pi z = i Fi (Pi ) 4000 6000 8000 10000 12000 150 200 250 300 350 400 450 F(P1) P1 [MW] Fi (Pi ) = ai P 2 i +bi Pi +ci +|ei sin (fi (Pi ,min − Pi ))| L Yang, ESF & L G Papageorgiou (2013), Elec Power Sys Res 95:302-308. –:–- talk.tex 88% 37/42 [Power generation] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 38.
    Results Mean Cost BestCost Method Year CSOMA 121,415.05 121,414.70 Cultural algorithm 2010 FAPSO-VDE 121,412.61 121,412.56 Particle swarm 2011 DE 121,422.72 121,416.29 Differential Evolution 2008 SOMA 121,449.88 121,418.79 Self-org migration 2000 EP-SQP 122,379.63 122,323.97 Genetic Algorithm 2008 CDEMD 121,526.73 121,423.40 Differential Evolution 2009 BBO 121,512.06 121,418.27 Biogeography 2010 HGA 121,784.04 121,418.27 Genetic Algorithm 2008 HDE 122,304.30 121,698.51 Differential Evolution 2009 MTS 121,798.51 121,532.10 Tabu search 2011 UHGA 121,602.81 121,424.48 Genetic Algorithm 2008 MDE 121,418.44 121,414.79 Differential Evolution 2010 VLEMIQP 121,412.54 121,412.54 Mathematical Prog 2013 –:–- talk.tex 90% 38/42 [Power generation] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 39.
    Caveat: modelling Chemical Engineering problems are basedon models of the transformation of stuff. These models are difficult to obtain and sometimes the results are not correct. 0 500 1000 1500 2000 2500 3000 20 60 100 0 F(P7) dF/dP P7 [MW] valve effects no effects dF/dP –:–- talk.tex 92% 39/42 [Power generation] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 40.
    Restricted search Problem DemandDVLMILP Excess DVLMILP Best Gap output output cost known (MW) (MW) (%) cost (%) 13 units 1800 1802 0.11 17964 17960 0.02 13 units 2520 2525 0.20 24174 24164 0.04 40 units 10500 10501 0.01 121986 121413 0.47 –:–- talk.tex 95% 40/42 [Power generation] ------------------------ <[ ]> <[[]]> <**> < ** > «» < ? >
  • 41.
    Topic * Introduction * Processsynthesis * Heat integration * Carbon capture * Power generation * Conclusions –:–- talk.tex 97% 41/42 [Conclusions] ----------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >
  • 42.
    Summary market objective process structure bespoke software optimised operation direct search process scheduling mathematical programming heat integration DS + GA dynamic operation MOGA + surrogate Thanksto Dr Joakim Beck, Professor David Bogle, Dr Rob O’Grady, Professor Lazaros Papageorgiou, Dr Mark Steffens and Dr Lingjiang Yang at UCL; Professor Stefano Brandani (Edinburgh), Dr Daniel Friedrich (Edinburgh), Professor Ken McKinnon (Edinburgh) and Professor Antanas ˘Zilinskas (Lithuania). http://www.ucl.ac.uk/~ucecesf/ –:–- talk.tex Bot 42/42 [Conclusions] ----------------------------- <[ ]> <[[]]> <**> < ** > «» < ? >