SlideShare a Scribd company logo
1 of 6
Download to read offline
Introduction:	
  	
  
The	
   main	
   purpose	
   of	
   exploring	
   and	
   modelling	
   the	
   process	
  heat	
   transfer	
   of	
  heat	
   exchanger	
  would	
   be	
  
increasing	
  total	
  efficiency	
  of	
  the	
  unit.	
  In	
  this	
  project	
  we	
  would	
  like	
  investigate	
  the	
  results	
  of	
  analytical	
  
and	
  numerical	
  solution	
  with	
  the	
  results	
  of	
  modelling	
  and	
  simulation	
  process	
  of	
  a	
  tube	
  heat	
  exchanger.	
  
The	
  whole	
  process	
  of	
  this	
  project	
  would	
  be	
  creating	
  two	
  different	
  procedure	
  with	
  MATLAB	
  and	
  FLUENT.	
  
In	
  house	
  MATLAB	
  software	
  will	
  be	
  used	
  to	
  numerically	
  model	
  the	
  heat	
  transfer	
  procedure.	
  On	
  the	
  other	
  
hand,	
  the	
  tube	
  will	
  be	
  designed	
  in	
  GAMBIT	
  software	
  before	
  importing	
  in	
  FLUENT	
  commercial	
  software.	
  
Results	
  of	
  fluid	
  dynamic	
  computation	
  can	
  be	
  obtained	
  in	
  each	
  of	
  FLUENT	
  or	
  ANSYS/FLUENT	
  software.	
  	
  
Basics	
  of	
  Heat	
  Exchanger	
  Theory:	
  
The	
  current	
  geometry	
  in	
  2-­‐D	
  can	
  be	
  simplified	
  as	
  the	
  following	
  picture	
  of	
  figure.1.	
  It	
  means	
  that	
  in	
  2-­‐D	
  
we	
   can	
   have	
   a	
   similar	
   3-­‐D	
   model	
   and	
   there	
   is	
   a	
   total	
   axis-­‐symmetry	
   around	
   the	
   heat	
   exchanger.	
  
Therefore,	
  we	
  can	
  define	
  and	
  evaluate	
  our	
  model	
  in	
  longitudinal	
  and	
  peripheral	
  directions.	
  In	
  2-­‐D	
  sketch	
  
outer	
  layers	
  and	
  outer	
  walls	
  have	
  no	
  heat	
  transfers.	
  Therefore,	
  the	
  boundary	
  condition	
  of	
  Q=0	
  will	
  be	
  
applied	
  in	
  this	
  area.	
  Air	
  with	
  ambient	
  temperature	
  of	
  300o
C	
  enters	
  through	
  the	
  second	
  layer	
  between	
  
two	
  pipes	
  with	
  constant	
  velocity	
  and	
  one	
  of	
  the	
  project’s	
  targets	
  is	
  to	
  find	
  its	
  profile	
  in	
  steady-­‐state	
  
condition.	
  Wall	
  temperature	
  in	
  inner	
  pipe	
  has	
  a	
  constant	
  700o
C	
  temperature,	
  and	
  conduction	
  is	
  the	
  only	
  
way	
  of	
  heat	
  transfer.	
  	
  
	
  
Figure	
  1:	
  2D	
  sketch	
  for	
  heat	
  exchanger.	
  
In	
   order	
   to	
   model	
   the	
   process	
   in	
   2-­‐D	
   or	
   3-­‐D	
   scheme,	
   we	
   can	
   have	
   still	
   more	
   simplification	
   for	
   our	
  
geometry;	
  main	
  axis	
  at	
  the	
  middle	
  of	
  our	
  pipes	
  can	
  be	
  used	
  as	
  another	
  symmetry	
  line.	
  In	
  3-­‐D	
  modelling	
  
we	
  use	
  a	
  quarter	
  of	
  all	
  geometry,	
  it	
  contains	
  double	
  symmetry.	
  The	
  bulk	
  velocity	
  for	
  inlet	
  of	
  the	
  second-­‐
layer	
   pipe	
   can	
   be	
   easily	
   calculated.	
   With	
   respect	
   to	
   turbulent	
   Reynolds	
   number,	
   pipe’s	
   hydraulic	
  
diameter	
  and	
  required	
  fluid’s	
  properties	
  we	
  can	
  calculate	
  the	
  bulk	
  velocity	
  (Ub)	
  as	
  follows:	
  
Hydraulic Diameter = 4*(Hydraulic Radius), (1)
Hydraulic Radius = (Projection Area)/(Peripheral Length) (2)
Equate Diameter = Outer Diameter – Inner Diameter = ( Do – Di ) (3)
Re = (Ub * Density * Deq) / (Dynamic Viscosity) (4)
Required Constants: Density = 1e5/287T= 0.596 [kg/m^3] (5), (6)
&
Dynamic Viscosity=1.747*10-5
+4.404*10-5
t –1.645*10-10
t2
=29.725*10-6
[kg/ms]
Re= 50000 => Ub = 50 m/s
Equations	
  and	
  Boundary	
  Conditions:	
  	
  
Three	
  different	
  ODE	
  (Ordinary	
  Differential	
  Equations)	
  can	
  feature	
  the	
  main	
  aspects	
  of	
  turbulent	
  theory.	
  
We	
  can	
  say	
  that	
  between	
  ri<r<ro	
  the	
  following	
  equations	
  are:	
  
	
   	
   	
  
!"
!"
=
!!
µ!!!!
!!
! !!!
!!
! !!!
!
∙ (
!!
!
  )          ri<r<rm	
   	
   (7.a)
	
   	
   	
  
!"
!"
=
!!
µ!!!!
!!!!!
!
!!
!!!!
! ∙ (
!!
!
  )            rm<r<ro (7.b)	
  
	
  	
   	
   	
  
!!
!"
=
!
!(!!!!!!!)
	
   	
   	
   	
   	
   	
   (8)	
   	
  
	
   	
   	
  
!"
!"
= 𝑟𝜌𝑐! 𝑢(
!!
!"
)	
   	
   	
   	
   	
   (9)	
  
The	
  above	
  equations	
  need	
  to	
  define	
  new	
  constant	
  parameters.	
  Some	
  of	
  them	
  such	
  as	
  rm	
  (we	
  would	
  like	
  
to	
  use	
  parabolic	
  velocity	
  profile	
  for	
  our	
  assumption	
  in	
  this	
  section)	
  are	
  new	
  defined	
  parameters	
  and	
  
some	
   other	
   need	
   to	
   be	
   defined	
   as	
   constants.	
   Therefore,	
   we	
   can	
   present	
   full	
   variation	
   of	
   these	
   new	
  
constants	
   mostly	
   based	
   on	
   temperature.	
   Thermal	
   conductivity	
   and	
   specific	
   heat	
   are	
   defined	
   as	
   the	
  
following	
  information:	
  	
  
Thermal Conductivity: k = 0.0243 + (6.584*10-4
)t – (1.65*10-8
)t2
(W/mK) (10)
Specific Heat: CP = 1010.4755 + (0.115)t + (4*10-5
)t2
(J/Kg.K) (11)
Rm: Rm = [(Ro^2-Ri^2) / (2Ln(Ro/Ri))]^0.5=0.062 (m) (12)
I.Cs	
  &	
  B.Cs:	
  	
  
In	
  order	
  to	
  derive	
  initial	
  condition	
  we	
  must	
  have	
  the	
  following	
  calculation:	
  	
  
Re=50000	
  	
  =>	
  	
  	
  	
  Ub=	
  50	
  m/s	
  	
  	
  =>	
  	
  	
  fdarcy=	
  0.316/Re0.25=0.0213	
  	
  	
  =>	
  	
  H=f(L/D)(U2/2g)	
  	
  	
  =>	
  	
  
dP/dx	
  =	
  (Delta	
  P)/(Delta	
  L)	
  =	
  fdarcy(Density)(U)2/2D	
  =	
  312.2	
  N/m^3	
  	
  	
  
The	
  initial	
  conditions	
  (I.Cs)	
  and	
  boundary	
  conditions	
  (B.Cs)	
  are	
  highly	
  affecting	
  in	
  solution	
  process	
  of	
  the	
  
numerical	
  methods.	
  If	
  we	
  consider	
  more	
  in	
  these	
  items,	
  we	
  will	
  have	
  easier	
  path	
  to	
  the	
  results.	
  
For	
  inner	
  wall	
  r	
  =	
  ri	
  :	
   	
   U	
  =	
  0,	
   T=Tw=cte=700+273.15	
  	
  	
  	
  	
  	
  	
  &	
   Z	
  =	
  -­‐(H*ri)	
  
For	
  outer	
  wall	
  r	
  =	
  ro:	
   	
   U	
  =	
  0,	
   dT/dr=0	
  	
  
For	
  x	
  =	
  0:	
   2𝜋𝑟! 𝜏! = 𝜋 ∗
!"
!"
∗ 𝑟!
!
−   𝑟!
!
→ 𝜏! = 4.34    𝑁/𝑚!
	
   	
   	
   	
   	
   	
   2𝜋𝑟! 𝜏! =   𝜋 ∗
!"
!"
∗ 𝑟!
!
−   𝑟!
!
→ 𝜏! = 3.79  𝑁/𝑚!
	
  
Runge-­‐Kutta	
  Method	
  with	
  MATLAB	
  in-­‐house	
  software:	
  
In	
  this	
  section	
  we	
  would	
  like	
  to	
  describe	
  4th
	
  order	
  of	
  Runge-­‐Kutta	
  technique	
  for	
  solving	
  the	
  ordinary	
  
differential	
  equations.	
  Initial	
  values	
  need	
  to	
  be	
  chosen	
  carefully	
  in	
  all	
  numerical	
  methods.	
  The	
  set	
  of	
  
equation	
  for	
  this	
  method	
  is	
  presented	
  as	
  below:	
  	
  
Regarded	
  to:	
   𝑦 = 𝑓(𝑥, 𝑦),	
  	
  &	
  	
   𝑦! = 𝑓(𝑥!),	
  	
  we	
  use	
  4	
  auxiliary	
  points	
  and	
  therefore,	
  error	
  would	
  be	
  from	
  
5th
	
  order	
  (	
  	
  …+O(h)5	
  
):	
  
𝑘! = ℎ𝑓(𝑥!, 𝑦!),𝑘! = ℎ𝑓(𝑥! + 1/2ℎ, 1/2𝑘!),𝑘! = ℎ𝑓(𝑥! + 1/2ℎ, 1/2𝑘!),𝑘! = ℎ𝑓(𝑥! + 1/2ℎ, 1/2𝑘!)	
  
𝑥!!! = 𝑥! + ℎ,	
  	
  	
   &	
   	
  	
   𝑦!!! = 𝑦! + 1/6(𝑘! + 2𝑘! + 2𝑘! + 𝑘!),	
  
4th
	
  order	
  Rung-­‐Kutta	
  method	
  would	
  be	
  a	
  recursive	
  technique.	
  At	
  first	
  it	
  is	
  needed	
  to	
  initialize	
  T,	
  Z,	
  u	
  and	
  
other	
  needed	
  constants,	
  and	
  then	
  it	
  is	
  required	
  to	
  construct	
  three	
  parallel	
  solvers	
  for	
  each	
  of	
  variables.	
  
Using	
  MATLAB	
  we	
  can	
  easily	
  handle	
  the	
  iteration	
  process.	
  It	
  needs	
  to	
  update	
  the	
  values	
  after	
  calculating	
  
the	
  weighted	
  averages.	
  Consequently,	
  calculating	
  for	
  4	
  functional	
  points	
  and	
  updating	
  variables	
  through	
  
new	
  deltas	
  finalize	
  each	
  of	
  iterations.	
  The	
  main	
  point	
  would	
  be	
  that	
  with	
  x	
  increment	
  equation	
  variables	
  
such	
  as	
  u,	
  Z,	
  T,	
  and	
  dT/dx	
  will	
  have	
  new	
  values.	
  This	
  procedure	
  contains	
  up	
  to	
  results	
  convergence	
  and	
  
consequently	
  repetition	
  for	
  values.	
  	
  
Obtained	
  Results	
  from	
  MATLAB:	
  
Optimization	
   results	
   obtained	
   from	
  
MATLAB	
   software	
   presents	
   variation	
   of	
  
targeted	
   parameters	
   in	
   following	
   figures.	
  
Outlet	
   velocity	
   profile	
   and	
   steady-­‐state	
  
profile	
  of	
  temperature	
  are	
  more	
  important.	
  
Radius	
   variation	
   from	
   0.05	
   to	
   0.075	
   meter	
  
shows	
  the	
  maximum	
  velocity	
  lower	
  than	
  60	
  
m/s.	
   However,	
   for	
   outer	
   wall	
   final	
  
temperature	
   is	
   lower	
   than	
   300o
C.	
   In	
  
figure.3a	
   velocity	
   profile	
   shows	
   a	
   fully	
  
turbulent	
   case	
   were	
   studied	
   and	
   very	
   low	
  
velocity	
  values	
  next	
  to	
  wall	
  confirms	
  it.	
  	
  	
  	
  	
  
0.05 0.06 0.07 0.08
-5000
-4000
-3000
-2000
-1000
0
1000
Z(w/m)
r(m)
Z=-Hþr
i
& H:heat flux
Figure	
  2:	
  Z	
  variation	
  regarded	
  to	
  inner	
  radius	
  and	
  Heat	
  Flux	
  
 
Part2:	
  Using	
  FLUENT	
  as	
  CFD	
  Software	
  	
  
The	
   main	
   concept	
   of	
   parallel	
   computing	
   with	
   FLUENT	
   relates	
   to	
   using	
   computational	
   fluid	
   dynamic	
  
software.	
  Therefore,	
  we	
  can	
  compare	
  the	
  results	
  of	
  numerical	
  solution	
  with	
  RK4	
  via	
  MATLAB	
  and	
  with	
  
ANSYS/FLUENT.	
  The	
  theory	
  of	
  the	
  problem	
  in	
  the	
  second	
  part	
  is	
  exactly	
  as	
  it	
  provided	
  with	
  the	
  first	
  part	
  
and	
  consequently	
  we	
  can	
  define	
  the	
  same	
  results	
  from	
  simulated	
  model.	
  Boundary	
  conditions	
  and	
  initial	
  
conditions	
   are	
   very	
   important	
   in	
   our	
   model,	
   and	
   steps	
   of	
   using	
   ANSYS/FLUENT	
   differ	
   with	
   In-­‐house	
  
software.	
  The	
  following	
  steps	
  regularly	
  required	
  for	
  any	
  CFD	
  project	
  worked	
  with	
  ANSYS/FLUENT.	
  
-­‐ Creating	
  the	
  geometry	
  2-­‐D	
  or	
  3-­‐D	
  (Using	
  Gambit	
  or	
  ANSYS	
  design	
  modeler)	
  
-­‐ Determining	
   the	
   state	
   of	
   the	
   problem	
   (such	
   as	
   steady-­‐state	
   or	
   transient,	
   Newtonian,	
  
compressibility,	
  …	
  )	
  	
  
-­‐ Applying	
  initial	
  conditions	
  on	
  relevant	
  walls,	
  inlets,	
  outlets,	
  symmetry	
  lines,	
  …	
  
-­‐ Setting	
  needed	
  constants	
  and	
  defining	
  proper	
  values	
  for	
  them	
  	
  
-­‐ Using	
  appropriate	
  size	
  control	
  for	
  mesh	
  and	
  consequently	
  define	
  a	
  systematic	
  mesh	
  generator	
  
-­‐ Define	
  a	
  calculation	
  method	
  and	
  algorithm	
  which	
  might	
  be	
  important	
  in	
  fluid	
  dynamic	
  cases	
  
-­‐ Deriving	
  the	
  required	
  results	
  from	
  the	
  pool	
  of	
  solutions	
  
Simply	
  this	
  project	
  enjoyed	
  a	
  k-­‐epsilon	
  turbulent	
  model	
  in	
  FLUENT	
  software.	
  And	
  directional	
  velocity	
  of	
  
Ub=	
  50	
  m/s	
  launched	
  inside	
  the	
  pipes	
  between	
  ri=50 mm	
  &	
  ro=75 mm.	
  Results	
  of	
  temperature	
  profile	
  in	
  
outlet	
   face	
   and	
   also	
   the	
   results	
   of	
   velocity	
   profile	
   after	
   fully-­‐developed	
   length	
   can	
   be	
   illustrated	
   in	
  
figure4.	
  In	
  this	
  figure	
  we	
  can	
  find	
  that	
  there	
  would	
  be	
  a	
  viscous	
  sublayer	
  area	
  in	
  leass	
  than	
  5%	
  of	
  fluid	
  
domain	
  from	
  each	
  wall	
  with	
  very	
  low	
  magnitude	
  for	
  the	
  velocity.	
  And	
  the	
  maximum	
  value	
  for	
  velocity	
  
0 20 40 60
0.05
0.055
0.06
0.065
0.07
0.075
velocity(m/s)
r(m)
u-velocity profile
200 300 400 500 600 700
0.05
0.055
0.06
0.065
0.07
0.075
0.08
r(m)
T(° C)
Temperature profile
Figure	
  3a:	
  Velocity	
  profile	
  at	
  fully-­‐developed	
  level	
  of	
  annular	
  space	
   Figure	
  3b:	
  Temperature	
  profile	
  for	
  steady-­‐state	
  condition	
  
hardly	
  reaches	
  to	
  60	
  m/s.	
  Again	
  as	
  it	
  is	
  obvious	
  from	
  the	
  boundary	
  conditions	
  we	
  have	
  dT/dx=0	
  at	
  the	
  
outer	
  surface	
  and	
  the	
  minimum	
  temperature	
  of	
  460o
C	
  released	
  for	
  outer	
  wall	
  in	
  fully	
  developed	
  case.	
  	
  	
  
	
  
Figure	
  4:	
  Results	
  of	
  temperature	
  profile	
  (right)	
  and	
  velocity	
  profile	
  (left)	
  by	
  FLUENT	
  plotted	
  against	
  various	
  radiuses.	
  	
  
Discussion:	
  
There	
  would	
  be	
  various	
  problems	
  in	
  using	
  numerical	
  methods	
  in	
  engineering.	
  In	
  this	
  project	
  we	
  assumed	
  
to	
  define	
  a	
  turbulence	
  fluid	
  for	
  inlet	
  air	
  and	
  consequently	
  the	
  other	
  constants	
  calculated	
  based	
  on	
  this	
  
assumption.	
  We	
  also	
  selected	
  initial	
  
values	
  for	
  U,	
  Z	
  and	
  T	
  for	
  launching	
  
of	
   RK4	
   method.	
   We	
   know	
   that	
  
efficiency	
   of	
   these	
   numerical	
  
methods	
   highly	
   depends	
   on	
  
estimating	
  true	
  initialization.	
  	
  
Some	
   sorts	
   of	
   similarities	
   can	
   be	
  
easily	
  obvious	
  between	
  the	
  results	
  
of	
   RK4	
   in	
   MATLAB	
   software	
   and	
  
CFD	
   modelling	
   process	
   using	
  
FLUENT.	
  	
  	
  
Figure	
  5:	
  Grid	
  dependency	
  for	
  CFD	
  analysis	
  
References:	
  
1. F.	
  M.	
  White,	
  Fluid	
  Mechanics,	
  McGraw-­‐Hill.	
  
2. http://Wikipedia.org/ODE45	
  
3. ANSYS	
  CFX	
  Toturial	
  	
  
4. http://www.mbs-­‐europe.com/eng/webproduct.php?idarticolo=10	
  
5. Project	
  Brief/	
  Professor	
  Wyszinsky,	
  University	
  of	
  Birmingham	
  
6. Christie,	
  Ignas	
  S.	
  (Clay,	
  NY),	
  “Multi-­‐tube	
  heat	
  exchanger	
  with	
  annular	
  spaces”,	
  United	
  States	
  
Patent	
  6626235,	
  Publication	
  Date:	
  09/30/2003	
  
	
  
1.2 1.3 1.4 1.5 1.6 1.7 1.8
x	
  10
-­‐9
0.16
0.18
0.2
0.22
2D	
  cell	
  volume
Y-­‐pluse
grid	
  independency
Extra	
  task	
  (PART	
  III):	
  Investigate	
  flows	
  around	
  a	
  2-­‐d	
  circular	
  rod	
  immersed	
  in	
  flow	
  (using	
  ANSYS-­‐
FLUENT.)	
  	
  	
  	
  
Contents:	
  	
  In	
  this	
  part	
  we	
  are	
  interested	
  to	
  investigate	
  the	
  effects	
  of	
  variation	
  in	
  Reynolds	
  number	
  
in	
  stream	
  lines	
  and	
  flow	
  path	
  for	
  laminar	
  and	
  turbulent	
  flows.	
  	
  For	
  this	
  purpose	
  a	
  2-­‐dimensional	
  
circle	
  is	
  modeled	
  at	
  the	
  middle	
  of	
  a	
  plate	
  which	
  demonstrates	
  a	
  rod	
  immersed	
  in	
  various	
  types	
  of	
  
flow.	
  	
  The	
  aim	
  of	
  the	
  project	
  was	
  to	
  examine	
  the	
  type	
  of	
  flow,	
  wake,	
  velocity	
  profile,	
  and	
  path	
  of	
  
stream	
  lines	
  against	
  different	
  number	
  of	
  Reynolds.	
  In	
  this	
  case	
  we	
  modeled	
  flow	
  with	
  7	
  different	
  
Reynolds	
  numbers.	
  In	
  a	
  constant	
  geometry,	
  from	
  Re=1	
  to	
  Re=106	
  with	
  exponential	
  increment,	
  the	
  
following	
   results	
   derived	
   in	
   figure6.	
   	
   The	
  
obtained	
   results	
   show	
   different	
   aspects	
   of	
  
velocity	
  profile	
  in	
  outlet	
  wall	
  and	
  different	
  
types	
   secondary	
   flows	
   and	
   vortices	
   in	
  
upper	
   and	
   lower	
   walls	
   and	
   in	
   the	
   wake	
  
space.	
  	
  
Generally,	
  from	
  the	
  velocity	
  profiles	
  at	
  the	
  
outlet	
   we	
   can	
   easily	
   find	
   the	
   Re	
   number.	
  
For	
  first	
  three	
  figures	
  there	
  are	
  smooth	
  and	
  
parabolic	
   shape	
   for	
   velocity	
   profile	
   and	
   it	
  
leads	
   to	
   laminar	
   flow	
   and	
   consequently	
  
Newtonian	
  and	
  inviscid	
  fluid.	
  For	
  Re=1000	
  
the	
   fluids	
   flows	
   in	
   laminar	
   model	
   but	
  
neighboring	
   walls	
   affects	
   velocity	
   profile.	
  
From	
   10000	
   to	
   1000000	
   we	
   can	
   see	
   that	
  
viscous	
   sub-­‐layer	
   created	
   near	
   the	
   walls.	
  
Viscous	
  sub-­‐layer	
  includes	
  less	
  than	
  5%	
  of	
  
the	
   area	
   at	
   outlet	
   wall	
   or	
   totally	
   in	
   fully-­‐
developed	
   condition.	
   And	
   velocity	
   profile	
  
approximately	
   takes	
   a	
   uniform	
   shape	
   in	
  
middle	
  areas	
  of	
  outlet	
  wall.	
  	
  
One	
  of	
  the	
  main	
  points	
  which	
  is	
  completely	
  
obvious	
  in	
  these	
  figures	
  can	
  be	
  mentioned	
  
in	
   Re	
   number	
   between	
   1000	
   and	
   10000.	
  
This	
   area	
   can	
   be	
   regarded	
   as	
   transition	
  
between	
   laminar	
   and	
   turbulent	
   flows	
  
which	
   contains	
   highest	
   amount	
   of	
   viscous	
  
wake.	
   Separation	
   points	
   have	
   different	
  
locations	
   circular	
   wall	
   and	
   it	
   completely	
  
depends	
   on	
   Re	
   number.	
   Stagnation	
   points	
  
at	
   the	
   start	
   and	
   end	
   of	
   circular	
   path	
   are	
  
also	
  obvious	
  and	
  can	
  be	
  marginally	
  	
  

More Related Content

What's hot

Aircraft refrigeration system (air cooling system)
Aircraft refrigeration system (air cooling system)Aircraft refrigeration system (air cooling system)
Aircraft refrigeration system (air cooling system)Ripuranjan Singh
 
GAS DYNAMICS AND JET PROPULSION
GAS DYNAMICS AND JET PROPULSIONGAS DYNAMICS AND JET PROPULSION
GAS DYNAMICS AND JET PROPULSIONDheenathayalan P
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercoolingNihal Senanayake
 
Atkinson Cycle, Ericsson Cycle And Stirling Cycle
Atkinson Cycle, Ericsson Cycle And Stirling CycleAtkinson Cycle, Ericsson Cycle And Stirling Cycle
Atkinson Cycle, Ericsson Cycle And Stirling CycleDhaval Shukla
 
Basics of Gas Turbine Power Plant
Basics of Gas Turbine Power PlantBasics of Gas Turbine Power Plant
Basics of Gas Turbine Power PlantS.Vijaya Bhaskar
 
Gas Turbine PPT
Gas Turbine PPTGas Turbine PPT
Gas Turbine PPTA M
 
. Gas turbine presentation
. Gas turbine presentation. Gas turbine presentation
. Gas turbine presentationimtiaz brohi
 
Air compressor
Air compressorAir compressor
Air compressorsureshkcet
 
Dynamics of multiple degree of freedom linear systems
Dynamics of multiple degree of freedom linear systemsDynamics of multiple degree of freedom linear systems
Dynamics of multiple degree of freedom linear systemsUniversity of Glasgow
 
Vapor Compression Refrigeration System
Vapor Compression Refrigeration System Vapor Compression Refrigeration System
Vapor Compression Refrigeration System Abduljalil Al-Abidi
 
Design of flywheel
Design of flywheelDesign of flywheel
Design of flywheelDhiren Patel
 
Hybrid Electric Vehicles.pptx
Hybrid Electric Vehicles.pptxHybrid Electric Vehicles.pptx
Hybrid Electric Vehicles.pptxBhaveshBorse7
 
Acutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-IAcutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-IS.Vijaya Bhaskar
 
Machine design possible interview questions
Machine design possible interview questionsMachine design possible interview questions
Machine design possible interview questionsDr. Ramesh B
 

What's hot (20)

Aircraft refrigeration system (air cooling system)
Aircraft refrigeration system (air cooling system)Aircraft refrigeration system (air cooling system)
Aircraft refrigeration system (air cooling system)
 
Introduction to cfd
Introduction to cfdIntroduction to cfd
Introduction to cfd
 
Draught and chimney
Draught and chimneyDraught and chimney
Draught and chimney
 
Thermodynamic cycles
Thermodynamic cycles Thermodynamic cycles
Thermodynamic cycles
 
GAS DYNAMICS AND JET PROPULSION
GAS DYNAMICS AND JET PROPULSIONGAS DYNAMICS AND JET PROPULSION
GAS DYNAMICS AND JET PROPULSION
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercooling
 
Turning moment-diagram-flywheel
Turning moment-diagram-flywheelTurning moment-diagram-flywheel
Turning moment-diagram-flywheel
 
Atkinson Cycle, Ericsson Cycle And Stirling Cycle
Atkinson Cycle, Ericsson Cycle And Stirling CycleAtkinson Cycle, Ericsson Cycle And Stirling Cycle
Atkinson Cycle, Ericsson Cycle And Stirling Cycle
 
Basics of Gas Turbine Power Plant
Basics of Gas Turbine Power PlantBasics of Gas Turbine Power Plant
Basics of Gas Turbine Power Plant
 
Gas Turbine PPT
Gas Turbine PPTGas Turbine PPT
Gas Turbine PPT
 
. Gas turbine presentation
. Gas turbine presentation. Gas turbine presentation
. Gas turbine presentation
 
Air compressor
Air compressorAir compressor
Air compressor
 
Finite Element Methods
Finite Element  MethodsFinite Element  Methods
Finite Element Methods
 
Dynamics of multiple degree of freedom linear systems
Dynamics of multiple degree of freedom linear systemsDynamics of multiple degree of freedom linear systems
Dynamics of multiple degree of freedom linear systems
 
Vapor Compression Refrigeration System
Vapor Compression Refrigeration System Vapor Compression Refrigeration System
Vapor Compression Refrigeration System
 
Design of flywheel
Design of flywheelDesign of flywheel
Design of flywheel
 
Hybrid Electric Vehicles.pptx
Hybrid Electric Vehicles.pptxHybrid Electric Vehicles.pptx
Hybrid Electric Vehicles.pptx
 
BOILER DRAUGHT
BOILER DRAUGHTBOILER DRAUGHT
BOILER DRAUGHT
 
Acutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-IAcutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-I
 
Machine design possible interview questions
Machine design possible interview questionsMachine design possible interview questions
Machine design possible interview questions
 

Viewers also liked

Manure Handling Presentation
Manure Handling PresentationManure Handling Presentation
Manure Handling PresentationIwl Pcu
 
Overview of Manure Management Equipment for Small Farms
Overview of Manure Management Equipment for Small FarmsOverview of Manure Management Equipment for Small Farms
Overview of Manure Management Equipment for Small FarmsLPE Learning Center
 
John Deere 6000 6010 series tractor
John Deere 6000 6010 series tractorJohn Deere 6000 6010 series tractor
John Deere 6000 6010 series tractorRimsky Cheng
 
Will manure spreading bans reduce winter runoff events?
Will manure spreading bans reduce winter runoff events?Will manure spreading bans reduce winter runoff events?
Will manure spreading bans reduce winter runoff events?LPE Learning Center
 
Guiding 2D fracture analysis in Ansys 14
Guiding 2D fracture analysis in Ansys 14Guiding 2D fracture analysis in Ansys 14
Guiding 2D fracture analysis in Ansys 14Ky Nguyen
 
Solving 3-D Printing Design Problems with ANSYS CFD for UAV Project
Solving 3-D Printing Design Problems with ANSYS CFD for UAV ProjectSolving 3-D Printing Design Problems with ANSYS CFD for UAV Project
Solving 3-D Printing Design Problems with ANSYS CFD for UAV ProjectAnsys
 
Submodeling using ansys_workbench_v12
Submodeling using ansys_workbench_v12Submodeling using ansys_workbench_v12
Submodeling using ansys_workbench_v12sivasankar1977
 
The Story of a Redesign - Aaron Weyenberg - SearchLove 2014
The Story of a Redesign - Aaron Weyenberg - SearchLove 2014The Story of a Redesign - Aaron Weyenberg - SearchLove 2014
The Story of a Redesign - Aaron Weyenberg - SearchLove 2014Distilled
 
manures & fertilizers
manures & fertilizersmanures & fertilizers
manures & fertilizerssanasha_999
 

Viewers also liked (12)

Manure Handling Presentation
Manure Handling PresentationManure Handling Presentation
Manure Handling Presentation
 
Overview of Manure Management Equipment for Small Farms
Overview of Manure Management Equipment for Small FarmsOverview of Manure Management Equipment for Small Farms
Overview of Manure Management Equipment for Small Farms
 
John Deere 6000 6010 series tractor
John Deere 6000 6010 series tractorJohn Deere 6000 6010 series tractor
John Deere 6000 6010 series tractor
 
Will manure spreading bans reduce winter runoff events?
Will manure spreading bans reduce winter runoff events?Will manure spreading bans reduce winter runoff events?
Will manure spreading bans reduce winter runoff events?
 
Guiding 2D fracture analysis in Ansys 14
Guiding 2D fracture analysis in Ansys 14Guiding 2D fracture analysis in Ansys 14
Guiding 2D fracture analysis in Ansys 14
 
Manure 101
Manure 101Manure 101
Manure 101
 
Solving 3-D Printing Design Problems with ANSYS CFD for UAV Project
Solving 3-D Printing Design Problems with ANSYS CFD for UAV ProjectSolving 3-D Printing Design Problems with ANSYS CFD for UAV Project
Solving 3-D Printing Design Problems with ANSYS CFD for UAV Project
 
Ansys 11 tutorial
Ansys 11 tutorialAnsys 11 tutorial
Ansys 11 tutorial
 
Submodeling using ansys_workbench_v12
Submodeling using ansys_workbench_v12Submodeling using ansys_workbench_v12
Submodeling using ansys_workbench_v12
 
Hfss user guide
Hfss user guideHfss user guide
Hfss user guide
 
The Story of a Redesign - Aaron Weyenberg - SearchLove 2014
The Story of a Redesign - Aaron Weyenberg - SearchLove 2014The Story of a Redesign - Aaron Weyenberg - SearchLove 2014
The Story of a Redesign - Aaron Weyenberg - SearchLove 2014
 
manures & fertilizers
manures & fertilizersmanures & fertilizers
manures & fertilizers
 

Similar to ANSYS Project

DAAD RISE Asepn Custom Reactor Final Summary
DAAD RISE Asepn Custom Reactor Final SummaryDAAD RISE Asepn Custom Reactor Final Summary
DAAD RISE Asepn Custom Reactor Final SummaryKyle Mattson, EIT
 
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated PipeCfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated PipeIOSR Journals
 
Presure loss Erdi Karaçal Mechanical Engineer
Presure loss  Erdi Karaçal Mechanical EngineerPresure loss  Erdi Karaçal Mechanical Engineer
Presure loss Erdi Karaçal Mechanical EngineerErdi Karaçal
 
Aplicaciones de las derivadas
Aplicaciones de las  derivadasAplicaciones de las  derivadas
Aplicaciones de las derivadasAyshaReyes1
 
Chp%3 a10.1007%2f978 3-642-55753-8-3
Chp%3 a10.1007%2f978 3-642-55753-8-3Chp%3 a10.1007%2f978 3-642-55753-8-3
Chp%3 a10.1007%2f978 3-642-55753-8-3Sabina Czyż
 
Transient three dimensional cfd modelling of ceilng fan
Transient three dimensional cfd modelling of ceilng fanTransient three dimensional cfd modelling of ceilng fan
Transient three dimensional cfd modelling of ceilng fanLahiru Dilshan
 
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...ijiert bestjournal
 
Jamie Fogarty CFD FINAL DRAFT PRINT
Jamie Fogarty CFD FINAL DRAFT PRINTJamie Fogarty CFD FINAL DRAFT PRINT
Jamie Fogarty CFD FINAL DRAFT PRINTJamie Fogarty
 
Alternating direction-implicit-finite-difference-method-for-transient-2 d-hea...
Alternating direction-implicit-finite-difference-method-for-transient-2 d-hea...Alternating direction-implicit-finite-difference-method-for-transient-2 d-hea...
Alternating direction-implicit-finite-difference-method-for-transient-2 d-hea...Abimbola Ashaju
 
CFD_Wind_drBorseBATU.pptx
CFD_Wind_drBorseBATU.pptxCFD_Wind_drBorseBATU.pptx
CFD_Wind_drBorseBATU.pptxSachinBorse16
 
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docxTitle of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docxjuliennehar
 
Matlab solved tutorials 2017 june.
Matlab solved tutorials  2017 june.Matlab solved tutorials  2017 june.
Matlab solved tutorials 2017 june.musadoto
 
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...IRJET Journal
 

Similar to ANSYS Project (20)

DAAD RISE Asepn Custom Reactor Final Summary
DAAD RISE Asepn Custom Reactor Final SummaryDAAD RISE Asepn Custom Reactor Final Summary
DAAD RISE Asepn Custom Reactor Final Summary
 
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated PipeCfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
 
cfd ahmed body
cfd ahmed bodycfd ahmed body
cfd ahmed body
 
Presure loss Erdi Karaçal Mechanical Engineer
Presure loss  Erdi Karaçal Mechanical EngineerPresure loss  Erdi Karaçal Mechanical Engineer
Presure loss Erdi Karaçal Mechanical Engineer
 
Aplicaciones de las derivadas
Aplicaciones de las  derivadasAplicaciones de las  derivadas
Aplicaciones de las derivadas
 
Chp%3 a10.1007%2f978 3-642-55753-8-3
Chp%3 a10.1007%2f978 3-642-55753-8-3Chp%3 a10.1007%2f978 3-642-55753-8-3
Chp%3 a10.1007%2f978 3-642-55753-8-3
 
Transient three dimensional cfd modelling of ceilng fan
Transient three dimensional cfd modelling of ceilng fanTransient three dimensional cfd modelling of ceilng fan
Transient three dimensional cfd modelling of ceilng fan
 
Portfolio Po-Chun Kang
Portfolio Po-Chun KangPortfolio Po-Chun Kang
Portfolio Po-Chun Kang
 
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
Fuzzy Logic Modeling of Heat Transfer in a double Pipe Heat Exchanger with Wa...
 
Computational Assignment Help
Computational Assignment HelpComputational Assignment Help
Computational Assignment Help
 
Jamie Fogarty CFD FINAL DRAFT PRINT
Jamie Fogarty CFD FINAL DRAFT PRINTJamie Fogarty CFD FINAL DRAFT PRINT
Jamie Fogarty CFD FINAL DRAFT PRINT
 
Alternating direction-implicit-finite-difference-method-for-transient-2 d-hea...
Alternating direction-implicit-finite-difference-method-for-transient-2 d-hea...Alternating direction-implicit-finite-difference-method-for-transient-2 d-hea...
Alternating direction-implicit-finite-difference-method-for-transient-2 d-hea...
 
CFD_Wind_drBorseBATU.pptx
CFD_Wind_drBorseBATU.pptxCFD_Wind_drBorseBATU.pptx
CFD_Wind_drBorseBATU.pptx
 
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docxTitle of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
 
Matlab solved tutorials 2017 june.
Matlab solved tutorials  2017 june.Matlab solved tutorials  2017 june.
Matlab solved tutorials 2017 june.
 
Cfd 0
Cfd 0Cfd 0
Cfd 0
 
Ew35859862
Ew35859862Ew35859862
Ew35859862
 
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
Numerical Study of Gas Effect at High Temperature on the Supersonic Plug and ...
 
PROBLEMA 3
PROBLEMA 3 PROBLEMA 3
PROBLEMA 3
 
Fluent summary
Fluent summaryFluent summary
Fluent summary
 

ANSYS Project

  • 1. Introduction:     The   main   purpose   of   exploring   and   modelling   the   process  heat   transfer   of  heat   exchanger  would   be   increasing  total  efficiency  of  the  unit.  In  this  project  we  would  like  investigate  the  results  of  analytical   and  numerical  solution  with  the  results  of  modelling  and  simulation  process  of  a  tube  heat  exchanger.   The  whole  process  of  this  project  would  be  creating  two  different  procedure  with  MATLAB  and  FLUENT.   In  house  MATLAB  software  will  be  used  to  numerically  model  the  heat  transfer  procedure.  On  the  other   hand,  the  tube  will  be  designed  in  GAMBIT  software  before  importing  in  FLUENT  commercial  software.   Results  of  fluid  dynamic  computation  can  be  obtained  in  each  of  FLUENT  or  ANSYS/FLUENT  software.     Basics  of  Heat  Exchanger  Theory:   The  current  geometry  in  2-­‐D  can  be  simplified  as  the  following  picture  of  figure.1.  It  means  that  in  2-­‐D   we   can   have   a   similar   3-­‐D   model   and   there   is   a   total   axis-­‐symmetry   around   the   heat   exchanger.   Therefore,  we  can  define  and  evaluate  our  model  in  longitudinal  and  peripheral  directions.  In  2-­‐D  sketch   outer  layers  and  outer  walls  have  no  heat  transfers.  Therefore,  the  boundary  condition  of  Q=0  will  be   applied  in  this  area.  Air  with  ambient  temperature  of  300o C  enters  through  the  second  layer  between   two  pipes  with  constant  velocity  and  one  of  the  project’s  targets  is  to  find  its  profile  in  steady-­‐state   condition.  Wall  temperature  in  inner  pipe  has  a  constant  700o C  temperature,  and  conduction  is  the  only   way  of  heat  transfer.       Figure  1:  2D  sketch  for  heat  exchanger.   In   order   to   model   the   process   in   2-­‐D   or   3-­‐D   scheme,   we   can   have   still   more   simplification   for   our   geometry;  main  axis  at  the  middle  of  our  pipes  can  be  used  as  another  symmetry  line.  In  3-­‐D  modelling   we  use  a  quarter  of  all  geometry,  it  contains  double  symmetry.  The  bulk  velocity  for  inlet  of  the  second-­‐ layer   pipe   can   be   easily   calculated.   With   respect   to   turbulent   Reynolds   number,   pipe’s   hydraulic   diameter  and  required  fluid’s  properties  we  can  calculate  the  bulk  velocity  (Ub)  as  follows:   Hydraulic Diameter = 4*(Hydraulic Radius), (1)
  • 2. Hydraulic Radius = (Projection Area)/(Peripheral Length) (2) Equate Diameter = Outer Diameter – Inner Diameter = ( Do – Di ) (3) Re = (Ub * Density * Deq) / (Dynamic Viscosity) (4) Required Constants: Density = 1e5/287T= 0.596 [kg/m^3] (5), (6) & Dynamic Viscosity=1.747*10-5 +4.404*10-5 t –1.645*10-10 t2 =29.725*10-6 [kg/ms] Re= 50000 => Ub = 50 m/s Equations  and  Boundary  Conditions:     Three  different  ODE  (Ordinary  Differential  Equations)  can  feature  the  main  aspects  of  turbulent  theory.   We  can  say  that  between  ri<r<ro  the  following  equations  are:         !" !" = !! µ!!!! !! ! !!! !! ! !!! ! ∙ ( !! !  )          ri<r<rm     (7.a)       !" !" = !! µ!!!! !!!!! ! !! !!!! ! ∙ ( !! !  )            rm<r<ro (7.b)           !! !" = ! !(!!!!!!!)             (8)           !" !" = 𝑟𝜌𝑐! 𝑢( !! !" )           (9)   The  above  equations  need  to  define  new  constant  parameters.  Some  of  them  such  as  rm  (we  would  like   to  use  parabolic  velocity  profile  for  our  assumption  in  this  section)  are  new  defined  parameters  and   some   other   need   to   be   defined   as   constants.   Therefore,   we   can   present   full   variation   of   these   new   constants   mostly   based   on   temperature.   Thermal   conductivity   and   specific   heat   are   defined   as   the   following  information:     Thermal Conductivity: k = 0.0243 + (6.584*10-4 )t – (1.65*10-8 )t2 (W/mK) (10) Specific Heat: CP = 1010.4755 + (0.115)t + (4*10-5 )t2 (J/Kg.K) (11) Rm: Rm = [(Ro^2-Ri^2) / (2Ln(Ro/Ri))]^0.5=0.062 (m) (12) I.Cs  &  B.Cs:     In  order  to  derive  initial  condition  we  must  have  the  following  calculation:     Re=50000    =>        Ub=  50  m/s      =>      fdarcy=  0.316/Re0.25=0.0213      =>    H=f(L/D)(U2/2g)      =>     dP/dx  =  (Delta  P)/(Delta  L)  =  fdarcy(Density)(U)2/2D  =  312.2  N/m^3       The  initial  conditions  (I.Cs)  and  boundary  conditions  (B.Cs)  are  highly  affecting  in  solution  process  of  the   numerical  methods.  If  we  consider  more  in  these  items,  we  will  have  easier  path  to  the  results.  
  • 3. For  inner  wall  r  =  ri  :     U  =  0,   T=Tw=cte=700+273.15              &   Z  =  -­‐(H*ri)   For  outer  wall  r  =  ro:     U  =  0,   dT/dr=0     For  x  =  0:   2𝜋𝑟! 𝜏! = 𝜋 ∗ !" !" ∗ 𝑟! ! −   𝑟! ! → 𝜏! = 4.34    𝑁/𝑚!             2𝜋𝑟! 𝜏! =  𝜋 ∗ !" !" ∗ 𝑟! ! −   𝑟! ! → 𝜏! = 3.79  𝑁/𝑚!   Runge-­‐Kutta  Method  with  MATLAB  in-­‐house  software:   In  this  section  we  would  like  to  describe  4th  order  of  Runge-­‐Kutta  technique  for  solving  the  ordinary   differential  equations.  Initial  values  need  to  be  chosen  carefully  in  all  numerical  methods.  The  set  of   equation  for  this  method  is  presented  as  below:     Regarded  to:   𝑦 = 𝑓(𝑥, 𝑦),    &     𝑦! = 𝑓(𝑥!),    we  use  4  auxiliary  points  and  therefore,  error  would  be  from   5th  order  (    …+O(h)5   ):   𝑘! = ℎ𝑓(𝑥!, 𝑦!),𝑘! = ℎ𝑓(𝑥! + 1/2ℎ, 1/2𝑘!),𝑘! = ℎ𝑓(𝑥! + 1/2ℎ, 1/2𝑘!),𝑘! = ℎ𝑓(𝑥! + 1/2ℎ, 1/2𝑘!)   𝑥!!! = 𝑥! + ℎ,       &       𝑦!!! = 𝑦! + 1/6(𝑘! + 2𝑘! + 2𝑘! + 𝑘!),   4th  order  Rung-­‐Kutta  method  would  be  a  recursive  technique.  At  first  it  is  needed  to  initialize  T,  Z,  u  and   other  needed  constants,  and  then  it  is  required  to  construct  three  parallel  solvers  for  each  of  variables.   Using  MATLAB  we  can  easily  handle  the  iteration  process.  It  needs  to  update  the  values  after  calculating   the  weighted  averages.  Consequently,  calculating  for  4  functional  points  and  updating  variables  through   new  deltas  finalize  each  of  iterations.  The  main  point  would  be  that  with  x  increment  equation  variables   such  as  u,  Z,  T,  and  dT/dx  will  have  new  values.  This  procedure  contains  up  to  results  convergence  and   consequently  repetition  for  values.     Obtained  Results  from  MATLAB:   Optimization   results   obtained   from   MATLAB   software   presents   variation   of   targeted   parameters   in   following   figures.   Outlet   velocity   profile   and   steady-­‐state   profile  of  temperature  are  more  important.   Radius   variation   from   0.05   to   0.075   meter   shows  the  maximum  velocity  lower  than  60   m/s.   However,   for   outer   wall   final   temperature   is   lower   than   300o C.   In   figure.3a   velocity   profile   shows   a   fully   turbulent   case   were   studied   and   very   low   velocity  values  next  to  wall  confirms  it.           0.05 0.06 0.07 0.08 -5000 -4000 -3000 -2000 -1000 0 1000 Z(w/m) r(m) Z=-Hþr i & H:heat flux Figure  2:  Z  variation  regarded  to  inner  radius  and  Heat  Flux  
  • 4.   Part2:  Using  FLUENT  as  CFD  Software     The   main   concept   of   parallel   computing   with   FLUENT   relates   to   using   computational   fluid   dynamic   software.  Therefore,  we  can  compare  the  results  of  numerical  solution  with  RK4  via  MATLAB  and  with   ANSYS/FLUENT.  The  theory  of  the  problem  in  the  second  part  is  exactly  as  it  provided  with  the  first  part   and  consequently  we  can  define  the  same  results  from  simulated  model.  Boundary  conditions  and  initial   conditions   are   very   important   in   our   model,   and   steps   of   using   ANSYS/FLUENT   differ   with   In-­‐house   software.  The  following  steps  regularly  required  for  any  CFD  project  worked  with  ANSYS/FLUENT.   -­‐ Creating  the  geometry  2-­‐D  or  3-­‐D  (Using  Gambit  or  ANSYS  design  modeler)   -­‐ Determining   the   state   of   the   problem   (such   as   steady-­‐state   or   transient,   Newtonian,   compressibility,  …  )     -­‐ Applying  initial  conditions  on  relevant  walls,  inlets,  outlets,  symmetry  lines,  …   -­‐ Setting  needed  constants  and  defining  proper  values  for  them     -­‐ Using  appropriate  size  control  for  mesh  and  consequently  define  a  systematic  mesh  generator   -­‐ Define  a  calculation  method  and  algorithm  which  might  be  important  in  fluid  dynamic  cases   -­‐ Deriving  the  required  results  from  the  pool  of  solutions   Simply  this  project  enjoyed  a  k-­‐epsilon  turbulent  model  in  FLUENT  software.  And  directional  velocity  of   Ub=  50  m/s  launched  inside  the  pipes  between  ri=50 mm  &  ro=75 mm.  Results  of  temperature  profile  in   outlet   face   and   also   the   results   of   velocity   profile   after   fully-­‐developed   length   can   be   illustrated   in   figure4.  In  this  figure  we  can  find  that  there  would  be  a  viscous  sublayer  area  in  leass  than  5%  of  fluid   domain  from  each  wall  with  very  low  magnitude  for  the  velocity.  And  the  maximum  value  for  velocity   0 20 40 60 0.05 0.055 0.06 0.065 0.07 0.075 velocity(m/s) r(m) u-velocity profile 200 300 400 500 600 700 0.05 0.055 0.06 0.065 0.07 0.075 0.08 r(m) T(° C) Temperature profile Figure  3a:  Velocity  profile  at  fully-­‐developed  level  of  annular  space   Figure  3b:  Temperature  profile  for  steady-­‐state  condition  
  • 5. hardly  reaches  to  60  m/s.  Again  as  it  is  obvious  from  the  boundary  conditions  we  have  dT/dx=0  at  the   outer  surface  and  the  minimum  temperature  of  460o C  released  for  outer  wall  in  fully  developed  case.         Figure  4:  Results  of  temperature  profile  (right)  and  velocity  profile  (left)  by  FLUENT  plotted  against  various  radiuses.     Discussion:   There  would  be  various  problems  in  using  numerical  methods  in  engineering.  In  this  project  we  assumed   to  define  a  turbulence  fluid  for  inlet  air  and  consequently  the  other  constants  calculated  based  on  this   assumption.  We  also  selected  initial   values  for  U,  Z  and  T  for  launching   of   RK4   method.   We   know   that   efficiency   of   these   numerical   methods   highly   depends   on   estimating  true  initialization.     Some   sorts   of   similarities   can   be   easily  obvious  between  the  results   of   RK4   in   MATLAB   software   and   CFD   modelling   process   using   FLUENT.       Figure  5:  Grid  dependency  for  CFD  analysis   References:   1. F.  M.  White,  Fluid  Mechanics,  McGraw-­‐Hill.   2. http://Wikipedia.org/ODE45   3. ANSYS  CFX  Toturial     4. http://www.mbs-­‐europe.com/eng/webproduct.php?idarticolo=10   5. Project  Brief/  Professor  Wyszinsky,  University  of  Birmingham   6. Christie,  Ignas  S.  (Clay,  NY),  “Multi-­‐tube  heat  exchanger  with  annular  spaces”,  United  States   Patent  6626235,  Publication  Date:  09/30/2003     1.2 1.3 1.4 1.5 1.6 1.7 1.8 x  10 -­‐9 0.16 0.18 0.2 0.22 2D  cell  volume Y-­‐pluse grid  independency
  • 6. Extra  task  (PART  III):  Investigate  flows  around  a  2-­‐d  circular  rod  immersed  in  flow  (using  ANSYS-­‐ FLUENT.)         Contents:    In  this  part  we  are  interested  to  investigate  the  effects  of  variation  in  Reynolds  number   in  stream  lines  and  flow  path  for  laminar  and  turbulent  flows.    For  this  purpose  a  2-­‐dimensional   circle  is  modeled  at  the  middle  of  a  plate  which  demonstrates  a  rod  immersed  in  various  types  of   flow.    The  aim  of  the  project  was  to  examine  the  type  of  flow,  wake,  velocity  profile,  and  path  of   stream  lines  against  different  number  of  Reynolds.  In  this  case  we  modeled  flow  with  7  different   Reynolds  numbers.  In  a  constant  geometry,  from  Re=1  to  Re=106  with  exponential  increment,  the   following   results   derived   in   figure6.     The   obtained   results   show   different   aspects   of   velocity  profile  in  outlet  wall  and  different   types   secondary   flows   and   vortices   in   upper   and   lower   walls   and   in   the   wake   space.     Generally,  from  the  velocity  profiles  at  the   outlet   we   can   easily   find   the   Re   number.   For  first  three  figures  there  are  smooth  and   parabolic   shape   for   velocity   profile   and   it   leads   to   laminar   flow   and   consequently   Newtonian  and  inviscid  fluid.  For  Re=1000   the   fluids   flows   in   laminar   model   but   neighboring   walls   affects   velocity   profile.   From   10000   to   1000000   we   can   see   that   viscous   sub-­‐layer   created   near   the   walls.   Viscous  sub-­‐layer  includes  less  than  5%  of   the   area   at   outlet   wall   or   totally   in   fully-­‐ developed   condition.   And   velocity   profile   approximately   takes   a   uniform   shape   in   middle  areas  of  outlet  wall.     One  of  the  main  points  which  is  completely   obvious  in  these  figures  can  be  mentioned   in   Re   number   between   1000   and   10000.   This   area   can   be   regarded   as   transition   between   laminar   and   turbulent   flows   which   contains   highest   amount   of   viscous   wake.   Separation   points   have   different   locations   circular   wall   and   it   completely   depends   on   Re   number.   Stagnation   points   at   the   start   and   end   of   circular   path   are   also  obvious  and  can  be  marginally