Magnetic monopoles in
 noncommutative spacetime




                                      Tapio Salminen
                                     University of Helsinki
      In collaboration with Miklos L˚ngvik and Anca Tureanu
                                    a
                        [arXiv:1104.1078], [arXiv:1101.4540]
Quantizing spacetime
                      Motivation

Black hole formation in the process of measurement at small
distances (∼ λP ) ⇒ additional uncertainty relations for
coordinates
                        Doplicher, Fredenhagen and Roberts (1994)
Quantizing spacetime
                      Motivation

Black hole formation in the process of measurement at small
distances (∼ λP ) ⇒ additional uncertainty relations for
coordinates
                        Doplicher, Fredenhagen and Roberts (1994)
Open string + D-brane theory with an antisymmetric Bij field
background ⇒ noncommutative coordinates in low-energy
limit
                                       Seiberg and Witten (1999)
Quantizing spacetime
                      Motivation

Black hole formation in the process of measurement at small
distances (∼ λP ) ⇒ additional uncertainty relations for
coordinates
                        Doplicher, Fredenhagen and Roberts (1994)
Open string + D-brane theory with an antisymmetric Bij field
background ⇒ noncommutative coordinates in low-energy
limit
                                       Seiberg and Witten (1999)

      A possible approach to Planck scale physics is
               QFT in NC space-time
Quantizing spacetime
        Implementation

  Impose [ˆµ , x ν ] = iθµν and
          x ˆ
    choose the frame where
                          
          0 0 0 0
        0 0 θ 0 
 θµν = 
        0 −θ 0 0 
                           

          0 0 0 0
Quantizing spacetime
                  Implementation

           Impose [ˆµ , x ν ] = iθµν and
                   x ˆ
             choose the frame where
                                   
                   0 0 0 0
                 0 0 θ 0 
          θµν = 
                 0 −θ 0 0 
                                    

                   0 0 0 0

    This leads to the -product of functions
                            i   ←
                                −    µν −
                                        →
    (f    g ) (x) ≡ f (x)e 2 ∂ µ θ      ∂ν
                                             g (y ) |y =x

Infinite amount of derivatives induces nonlocality
Wu-Yang monopole
                     Commutative spacetime


Find potentials AN and AS such that:
                 µ      µ



               N/S
1. Bµ =    × Aµ
    N/S
2. Aµ are gauge
   transformable to each
   other in the overlap δ
    N/S
3. Aµ are nonsingular
   outside the origin
Wu-Yang monopole
                               Commutative spacetime


 Solution:

  N/S                    N/S
At   = AN/S = Aθ = 0
          r
 N      g
Aφ =         (1 − cos θ)
     r sin θ
           g
AS = −
 φ             (1 + cos θ)
       r sin θ
  that gauge transform

AN/S → UAN/S U −1 = Aµ
 µ       µ
                     S/N

              2ige
                     φ
        U=e     c
Wu-Yang monopole
                      Commutative spacetime


Solution:

Single-valuedness of
            2ige
                 φ
      U=e     c



        implies
 2ge
     = N = integer
   c
 Dirac Quantization
 Condition (DQC)
Wu-Yang monopole
                            NC spacetime


Find potentials AN and AS such that:
                 µ      µ


    N/S
1. Aµ satisfy NC
   Maxwell’s equations
    N/S
2. Aµ are gauge
   transformable to each
   other in the overlap δ
    N/S
3. Aµ are nonsingular
   outside the origin
Wu-Yang monopole
                 Maxwell’s equations


              1. NC Maxwell’s equations
                   µνγδ
                           Dν   Fγδ = 0
                       Dµ F µν = J ν
              1 µνγδ
where Fµν =   2      Fγδ   is the dual field strength tensor and

          Fµν = ∂µ Aν − ∂ν Aµ − ie[Aµ , Aν ]
          Dν = ∂ν − ie[Aν , ·]

       Task: Expand to second order in θ
Wu-Yang monopole
                                       Maxwell’s equations


                      Task: Expand to second order in θ

2     N     S              4θ 2 xz         h
                                                     2    2 3      2   2   2 2   4   2   2        6
                                                                                                      i
    (B 2 − B 2 )1 =                            − 375(x + y ) + 131z (x + y ) − 2z (x + y ) − 4z
                      (x 2 + y 2 )3 r 10
                       N        S
                 − ∂1 ρ 2 + ∂1 ρ 2

2     N     S              4θ 2 yz         h
                                                     2    2 3      2   2   2 2   4   2   2        6
                                                                                                      i
    (B 2 − B 2 )2 =                            − 375(x + y ) + 131z (x + y ) − 2z (x + y ) − 4z
                      (x 2 + y 2 )3 r 10
                      N            S
                − ∂2 ρ 2 + ∂2 ρ 2

2   N     S             4θ 2         h
                                           2   2 5       2   2 4 2          2     2 3 4
  (B 2 − B 2 )3 =                     120(x + y ) − 900(x + y ) z − 1285(x + y ) z
                  (x 2 + y 2 )4 r 10
                                                                i
                         2        2 2 6        2   2 8       10         N        S
                − 1289(x + y ) z − 652(x + y )z − 132z            − ∂3 ρ 2 + ∂3 ρ 2
Wu-Yang monopole
      Maxwell’s equations


Task: Expand to second order in θ
Wu-Yang monopole
                     Gauge transformations


                   2. NC gauge transformations

          N/S                        S/N
        Aµ      should transform to Aµ     (x) under U (1)

AN/S (x) → U(x) AN/S (x) U −1 (x)−iU(x) ∂µ U −1 (x) = AS/N (x)
 µ               µ                                     µ

                  with groups elements U(x) = e iλ

                Task: Expand to second order in θ
Wu-Yang monopole
                                     Gauge transformations


                      Task: Expand to second order in θ

2     N     S GT           4θ 2 xz         “
                                                     2    2 3       2        2 2 2   2   2   4    6
                                                                                                      ”
    (B 2 − B 2 )1 =                            − 321(x + y ) + 205(x + y ) z + 26(x + y )z + 4z
                      (x 2 + y 2 )3 r 10

2     N     S GT           4θ 2 yz         “
                                                     2    2 3       2        2 2 2   2   2   4    6
                                                                                                      ”
    (B 2 − B 2 )2 =                            − 321(x + y ) + 205(x + y ) z + 26(x + y )z + 4z
                      (x 2 + y 2 )3 r 10

2     N     S GT            4θ 2           “
                                                 2   2 5       2   2 4 2       2   2 3 4
    (B 2 − B 2 )3 =                         144(x + y ) − 564(x + y ) z − 455(x + y ) z
                      (x 2 + y 2 )4 r 10
                                                                         ”
                            2        2 2 6           2    2     8   10
                 − 403(x + y ) z − 188(x + y )z − 36z
Wu-Yang monopole
     Gauge transformations


Task: Expand to second order in θ
Wu-Yang monopole
                 Contradiction


Comparing the two sets of equations for AN2 − AS2
                                         i     i




           After some algebra we get...
Wu-Yang monopole
                                         Contradiction


         Comparing the two sets of equations for AN2 − AS2
                                                  i     i



                      N     S            24θ 2 x         “
                                                                2       2 4       2       2 3 2   2   2 2 4
0 = (∂x ∂z − ∂z ∂x )(ρ 2 − ρ 2 ) =                           41(x + y ) + 426(x + y ) z + 704(x + y ) z
                                     (x 2 + y 2 )5 r 8
                                                                                          ”
                                                                    2     2   6       8
                                                         + 496(x + y )z + 128z

                      N     S            24θ 2 y         “
                                                                2       2 4       2       2 3 2   2   2 2 4
0 = (∂y ∂z − ∂z ∂y )(ρ 2 − ρ 2 ) =                           41(x + y ) + 426(x + y ) z + 704(x + y ) z
                                     (x 2 + y 2 )5 r 8
                                                                                          ”
                                                                    2     2   6       8
                                                         + 496(x + y )z + 128z
Wu-Yang monopole
                                         Contradiction


         Comparing the two sets of equations for AN2 − AS2
                                                  i     i



                      N     S            24θ 2 x         “
                                                                2       2 4       2       2 3 2   2   2 2 4
0 = (∂x ∂z − ∂z ∂x )(ρ 2 − ρ 2 ) =                           41(x + y ) + 426(x + y ) z + 704(x + y ) z
                                     (x 2 + y 2 )5 r 8
                                                                                          ”
                                                                    2     2   6       8
                                                         + 496(x + y )z + 128z

                      N     S            24θ 2 y         “
                                                                2       2 4       2       2 3 2   2   2 2 4
0 = (∂y ∂z − ∂z ∂y )(ρ 2 − ρ 2 ) =                           41(x + y ) + 426(x + y ) z + 704(x + y ) z
                                     (x 2 + y 2 )5 r 8
                                                                                          ”
                                                                    2     2   6       8
                                                         + 496(x + y )z + 128z




                These equations have                                no solution!
Wu-Yang monopole
                      Conclusion




 There does not exist potentials AN and AS that would
                                  µ        µ
simultaneously satisfy Maxwell’s equations and be gauge
              transformable to each other.
Wu-Yang monopole
                      Conclusion




 There does not exist potentials AN and AS that would
                                  µ        µ
simultaneously satisfy Maxwell’s equations and be gauge
              transformable to each other.

         ⇒ The DQC cannot be satisfied
Wu-Yang monopole
                           Discussion



Possible causes for the failure of the DQC:

   Rotational invariance, 3D vs 2D
       Aharonov-Bohm effect works
       Vortex line quantization has problems
   CP violation and the Witten effect
   Perturbative method used
Wu-Yang monopole
                         Discussion



Possible causes for the failure of the DQC:

   Rotational invariance, 3D vs 2D
       Aharonov-Bohm effect works
       Vortex line quantization has problems
   CP violation and the Witten effect
   Perturbative method used
Wu-Yang monopole
                           Discussion



Possible causes for the failure of the DQC:

   Rotational invariance, 3D vs 2D
       Aharonov-Bohm effect works
       Vortex line quantization has problems
   CP violation and the Witten effect
   Perturbative method used
Wu-Yang monopole
                           Discussion



Possible causes for the failure of the DQC:

   Rotational invariance, 3D vs 2D
       Aharonov-Bohm effect works
       Vortex line quantization has problems
   CP violation and the Witten effect
   Perturbative method used
Bonus
Covariant source
Wu-Yang monopole
                   Covariant source

                NC Maxwell’s equations

                    Dµ F µν = J ν

The lhs transforms covariantly under gauge transformations
⇒ also the rhs must transform nontrivially
Wu-Yang monopole
                          Covariant source

                   NC Maxwell’s equations

                           Dµ F µν = J ν

The lhs transforms covariantly under gauge transformations
⇒ also the rhs must transform nontrivially
From this one gets the gauge covariance requirement up to
the 2nd order correction (J 0 = ρ = ρ0 + ρ1 + ρ2 + O(θ3 ))

ρ1 → ρ1 + θij ∂i λ∂j ρ0
                            θij θkl
ρ2 → ρ2 + θij ∂i λ∂j ρ1 +           ∂k λ∂i λ∂j ∂l ρ0 − ∂j λ∂l ρ0 ∂i ∂k λ
                               2
Wu-Yang monopole
                                     Covariant source


       Using this requirement we get two covariant sources
             „                “         ”
   ρ = 4πg δ 3 (r ) − θkl ∂k Al δ 3 (r ) + θij A1 ∂i δ 3 (r )
                                                    j
             »      “                              ” 1                    –         «
     +θij θkl A0 ∂k ∂i A0 δ 3 (r ) + A0 ∂i δ 3 (r ) + A0 A0 ∂j ∂l δ 3 (r ) + O(θ3 )
               j         l            l                   i k
                                                      2

         „                                                                                                       «
             3        ij                                                1
ρ = 4πg δ (r ) − θ         A0 ∂i δ 3 (r )
                            j               −θ   ij
                                                      A1 ∂i δ 3 (r )
                                                       j               + θij θkl A0 A0 ∂j ∂l δ 3 (r ) + O(θ3 )
                                                                                  i k
                                                                        2


           All of the coefficients are uniquely fixed!
Thank you

Monopole zurich

  • 1.
    Magnetic monopoles in noncommutative spacetime Tapio Salminen University of Helsinki In collaboration with Miklos L˚ngvik and Anca Tureanu a [arXiv:1104.1078], [arXiv:1101.4540]
  • 2.
    Quantizing spacetime Motivation Black hole formation in the process of measurement at small distances (∼ λP ) ⇒ additional uncertainty relations for coordinates Doplicher, Fredenhagen and Roberts (1994)
  • 3.
    Quantizing spacetime Motivation Black hole formation in the process of measurement at small distances (∼ λP ) ⇒ additional uncertainty relations for coordinates Doplicher, Fredenhagen and Roberts (1994) Open string + D-brane theory with an antisymmetric Bij field background ⇒ noncommutative coordinates in low-energy limit Seiberg and Witten (1999)
  • 4.
    Quantizing spacetime Motivation Black hole formation in the process of measurement at small distances (∼ λP ) ⇒ additional uncertainty relations for coordinates Doplicher, Fredenhagen and Roberts (1994) Open string + D-brane theory with an antisymmetric Bij field background ⇒ noncommutative coordinates in low-energy limit Seiberg and Witten (1999) A possible approach to Planck scale physics is QFT in NC space-time
  • 5.
    Quantizing spacetime Implementation Impose [ˆµ , x ν ] = iθµν and x ˆ choose the frame where   0 0 0 0  0 0 θ 0  θµν =   0 −θ 0 0   0 0 0 0
  • 6.
    Quantizing spacetime Implementation Impose [ˆµ , x ν ] = iθµν and x ˆ choose the frame where   0 0 0 0  0 0 θ 0  θµν =   0 −θ 0 0   0 0 0 0 This leads to the -product of functions i ← − µν − → (f g ) (x) ≡ f (x)e 2 ∂ µ θ ∂ν g (y ) |y =x Infinite amount of derivatives induces nonlocality
  • 7.
    Wu-Yang monopole Commutative spacetime Find potentials AN and AS such that: µ µ N/S 1. Bµ = × Aµ N/S 2. Aµ are gauge transformable to each other in the overlap δ N/S 3. Aµ are nonsingular outside the origin
  • 8.
    Wu-Yang monopole Commutative spacetime Solution: N/S N/S At = AN/S = Aθ = 0 r N g Aφ = (1 − cos θ) r sin θ g AS = − φ (1 + cos θ) r sin θ that gauge transform AN/S → UAN/S U −1 = Aµ µ µ S/N 2ige φ U=e c
  • 9.
    Wu-Yang monopole Commutative spacetime Solution: Single-valuedness of 2ige φ U=e c implies 2ge = N = integer c Dirac Quantization Condition (DQC)
  • 10.
    Wu-Yang monopole NC spacetime Find potentials AN and AS such that: µ µ N/S 1. Aµ satisfy NC Maxwell’s equations N/S 2. Aµ are gauge transformable to each other in the overlap δ N/S 3. Aµ are nonsingular outside the origin
  • 11.
    Wu-Yang monopole Maxwell’s equations 1. NC Maxwell’s equations µνγδ Dν Fγδ = 0 Dµ F µν = J ν 1 µνγδ where Fµν = 2 Fγδ is the dual field strength tensor and Fµν = ∂µ Aν − ∂ν Aµ − ie[Aµ , Aν ] Dν = ∂ν − ie[Aν , ·] Task: Expand to second order in θ
  • 12.
    Wu-Yang monopole Maxwell’s equations Task: Expand to second order in θ 2 N S 4θ 2 xz h 2 2 3 2 2 2 2 4 2 2 6 i (B 2 − B 2 )1 = − 375(x + y ) + 131z (x + y ) − 2z (x + y ) − 4z (x 2 + y 2 )3 r 10 N S − ∂1 ρ 2 + ∂1 ρ 2 2 N S 4θ 2 yz h 2 2 3 2 2 2 2 4 2 2 6 i (B 2 − B 2 )2 = − 375(x + y ) + 131z (x + y ) − 2z (x + y ) − 4z (x 2 + y 2 )3 r 10 N S − ∂2 ρ 2 + ∂2 ρ 2 2 N S 4θ 2 h 2 2 5 2 2 4 2 2 2 3 4 (B 2 − B 2 )3 = 120(x + y ) − 900(x + y ) z − 1285(x + y ) z (x 2 + y 2 )4 r 10 i 2 2 2 6 2 2 8 10 N S − 1289(x + y ) z − 652(x + y )z − 132z − ∂3 ρ 2 + ∂3 ρ 2
  • 13.
    Wu-Yang monopole Maxwell’s equations Task: Expand to second order in θ
  • 14.
    Wu-Yang monopole Gauge transformations 2. NC gauge transformations N/S S/N Aµ should transform to Aµ (x) under U (1) AN/S (x) → U(x) AN/S (x) U −1 (x)−iU(x) ∂µ U −1 (x) = AS/N (x) µ µ µ with groups elements U(x) = e iλ Task: Expand to second order in θ
  • 15.
    Wu-Yang monopole Gauge transformations Task: Expand to second order in θ 2 N S GT 4θ 2 xz “ 2 2 3 2 2 2 2 2 2 4 6 ” (B 2 − B 2 )1 = − 321(x + y ) + 205(x + y ) z + 26(x + y )z + 4z (x 2 + y 2 )3 r 10 2 N S GT 4θ 2 yz “ 2 2 3 2 2 2 2 2 2 4 6 ” (B 2 − B 2 )2 = − 321(x + y ) + 205(x + y ) z + 26(x + y )z + 4z (x 2 + y 2 )3 r 10 2 N S GT 4θ 2 “ 2 2 5 2 2 4 2 2 2 3 4 (B 2 − B 2 )3 = 144(x + y ) − 564(x + y ) z − 455(x + y ) z (x 2 + y 2 )4 r 10 ” 2 2 2 6 2 2 8 10 − 403(x + y ) z − 188(x + y )z − 36z
  • 16.
    Wu-Yang monopole Gauge transformations Task: Expand to second order in θ
  • 17.
    Wu-Yang monopole Contradiction Comparing the two sets of equations for AN2 − AS2 i i After some algebra we get...
  • 18.
    Wu-Yang monopole Contradiction Comparing the two sets of equations for AN2 − AS2 i i N S 24θ 2 x “ 2 2 4 2 2 3 2 2 2 2 4 0 = (∂x ∂z − ∂z ∂x )(ρ 2 − ρ 2 ) = 41(x + y ) + 426(x + y ) z + 704(x + y ) z (x 2 + y 2 )5 r 8 ” 2 2 6 8 + 496(x + y )z + 128z N S 24θ 2 y “ 2 2 4 2 2 3 2 2 2 2 4 0 = (∂y ∂z − ∂z ∂y )(ρ 2 − ρ 2 ) = 41(x + y ) + 426(x + y ) z + 704(x + y ) z (x 2 + y 2 )5 r 8 ” 2 2 6 8 + 496(x + y )z + 128z
  • 19.
    Wu-Yang monopole Contradiction Comparing the two sets of equations for AN2 − AS2 i i N S 24θ 2 x “ 2 2 4 2 2 3 2 2 2 2 4 0 = (∂x ∂z − ∂z ∂x )(ρ 2 − ρ 2 ) = 41(x + y ) + 426(x + y ) z + 704(x + y ) z (x 2 + y 2 )5 r 8 ” 2 2 6 8 + 496(x + y )z + 128z N S 24θ 2 y “ 2 2 4 2 2 3 2 2 2 2 4 0 = (∂y ∂z − ∂z ∂y )(ρ 2 − ρ 2 ) = 41(x + y ) + 426(x + y ) z + 704(x + y ) z (x 2 + y 2 )5 r 8 ” 2 2 6 8 + 496(x + y )z + 128z These equations have no solution!
  • 20.
    Wu-Yang monopole Conclusion There does not exist potentials AN and AS that would µ µ simultaneously satisfy Maxwell’s equations and be gauge transformable to each other.
  • 21.
    Wu-Yang monopole Conclusion There does not exist potentials AN and AS that would µ µ simultaneously satisfy Maxwell’s equations and be gauge transformable to each other. ⇒ The DQC cannot be satisfied
  • 22.
    Wu-Yang monopole Discussion Possible causes for the failure of the DQC: Rotational invariance, 3D vs 2D Aharonov-Bohm effect works Vortex line quantization has problems CP violation and the Witten effect Perturbative method used
  • 23.
    Wu-Yang monopole Discussion Possible causes for the failure of the DQC: Rotational invariance, 3D vs 2D Aharonov-Bohm effect works Vortex line quantization has problems CP violation and the Witten effect Perturbative method used
  • 24.
    Wu-Yang monopole Discussion Possible causes for the failure of the DQC: Rotational invariance, 3D vs 2D Aharonov-Bohm effect works Vortex line quantization has problems CP violation and the Witten effect Perturbative method used
  • 25.
    Wu-Yang monopole Discussion Possible causes for the failure of the DQC: Rotational invariance, 3D vs 2D Aharonov-Bohm effect works Vortex line quantization has problems CP violation and the Witten effect Perturbative method used
  • 26.
  • 27.
    Wu-Yang monopole Covariant source NC Maxwell’s equations Dµ F µν = J ν The lhs transforms covariantly under gauge transformations ⇒ also the rhs must transform nontrivially
  • 28.
    Wu-Yang monopole Covariant source NC Maxwell’s equations Dµ F µν = J ν The lhs transforms covariantly under gauge transformations ⇒ also the rhs must transform nontrivially From this one gets the gauge covariance requirement up to the 2nd order correction (J 0 = ρ = ρ0 + ρ1 + ρ2 + O(θ3 )) ρ1 → ρ1 + θij ∂i λ∂j ρ0 θij θkl ρ2 → ρ2 + θij ∂i λ∂j ρ1 + ∂k λ∂i λ∂j ∂l ρ0 − ∂j λ∂l ρ0 ∂i ∂k λ 2
  • 29.
    Wu-Yang monopole Covariant source Using this requirement we get two covariant sources „ “ ” ρ = 4πg δ 3 (r ) − θkl ∂k Al δ 3 (r ) + θij A1 ∂i δ 3 (r ) j » “ ” 1 – « +θij θkl A0 ∂k ∂i A0 δ 3 (r ) + A0 ∂i δ 3 (r ) + A0 A0 ∂j ∂l δ 3 (r ) + O(θ3 ) j l l i k 2 „ « 3 ij 1 ρ = 4πg δ (r ) − θ A0 ∂i δ 3 (r ) j −θ ij A1 ∂i δ 3 (r ) j + θij θkl A0 A0 ∂j ∂l δ 3 (r ) + O(θ3 ) i k 2 All of the coefficients are uniquely fixed!
  • 30.