SlideShare a Scribd company logo
WELCOME
1April 6 , 2016 ECE, Khulna University
TITLE
Performance Analysis
Of
Orthogonal Space-Time Block Codes
Exploiting Channel State Information
In MIMO System
2
PRESENTED BY
ANIMESH ROY
ID: 110901
ABDULLAH- AL- MAMUN
ID:110905
SHATARUPA MONDAL
ID:110938
3
SUPERVISED BY
S. M. Shamsul Alam
(Associate Professor)
Electronics and Communication Engineering Discipline
Khulna University
Khulna-9208
4
 INTRODUCTION
 MIMO WIRELESS COMMUNICATION
 SPACE TIME CODING(STC)
 SPACE TIME BLOCK CODES
 PROBLEMS OF MIMO SYSYTEM AND MOTIVATION
 THESIS OBJECTIVES
 MATERIALS AND METHODS
 DATA PROCESSING AT OSTBC SYSTEM
 ALAMOUTI OSTBC
 GENERALIZED OSTBC
 OSTBC TRANSMISSION WITH CSI FEEDBACK
 RESULTS AND DISCUSSION
 CONCLUSION
 FUTURE WORK
5
CONTENTS
INTRODUCTION
6
MIMO WIRELESS COMMUNICATION
 Multiple Input Multiple Output
 Multiple antennas are used at transmitter and receiver
 Increases link capacity and spectral efficiency with improved link reliability
 Wireless Fidelity(Wi-Fi), Long Term Evolution(LTE), and many other latest wireless
technologies
7
Fig. 1. Multiple-Input Multiple-Output system block diagram
MIMO WIRELESS COMMUNICATION(CONTD.)
Features Of MIMO
 Multiple Signal Paths
 High Data Rate
 Spatial Diversity
 High Capacity
 High Throughput
 Less Decoding Complexity
8
MIMO WIRELESS
COMMUNICATION(CONTD.)
MIMO Channel
Physical paths between transmitters and receivers
Channel Model
Here is the Rayleigh channel model for NLOS environment.
9
))1,0(1)1,0((
2
1
, normalnormalh ji 
jih ,
MIMO WIRELESS
COMMUNICATION(CONTD.)
Channel State Information(CSI)
 Channel Characteristics
 Fading, and power decay with distance
 Adapt transmissions to current channel conditions
 Improves the diversity technique
10
 )(sin hj
ehh 

MIMO WIRELESS COMMUNICATION(CONTD.)
3×3 MIMO System
 At some time instant transmit voltage “1” from first transmit antenna and measure its
response from three receive antennas as [0.8 0.7 0.9]
 At the same time instant, the procedure is repeated for other transmit antennas
 From the sample CSI matrix above, transmission antenna 2 is not effective .Receiver
feedback the CSI the transmitter- best utilization of RF equipment's-save transmit power
11
000
000
001
009.0
007.0
008.0
7.01.09.0
8.02.07.0
6.01.08.0 
100
010
001
TX-1 TX-2 TX-3
MIMO WIRELESS COMMUNICATION(CONTD.)
In reality the CSI matrix contains elements that are complex and they describe both the
amplitude and phase variations of the link
According to Eq(2)-CSI matrix will be,
12
jj
jjj
jjj
7.07.01.08.09.0
1.01.05.05.07.020.0
6.05.01.03.01.0



CLASSIFICATION OF MIMO ON THE BASIS
OF CSI FEEDBACK
 Open Loop MIMO System
Transmitter does not have any information about the channel
 Close Loop MIMO System
Receiver sends the channel state information to the transmitter through a feedback channel,
provides array gain
13
Transmitter Receiver
Fig:2 Block diagram open loop MIMO system
Transmitter Receiver
Fig.3 Block diagram close loop MIMO system
CLASSIFICATION OF MIMO TRANSMISSION
TECHNIQUES
 Precoding
• Same signal is emitted from each of the transmit antennas with appropriate phase and
gain weighting
• Requires knowledge of channel state information (CSI) at the transmitter
 Spatial multiplexing
• Transmit independent data stream over different transmit antennas
• Can be combined with precoding if CSI is available
 Diversity coding
• A single stream is transmitted
• Signal is coded using – Space Time Coding-Space Frequency Coding
• Combined with spatial multiplexing and precoding when CSI available
• Diversity gain – aimed at improving the reliability
14
SPACE –TIME CODING(STC)
 A diversity technique
 Multiple, redundant copies of data stream are transmitted to the receiver
 Allows reliable Maximum Likelihood (ML)decoding
15
SPACE –TIME CODING(CONTD.)
Types of STC
 Space Time Trellis Code (STTC)
• Distributes a trellis codes over multiple antennas and multiple time slots
• Code gain, and diversity gain
 Space Time Block Code(STBC)
• Transmit multiple copies of data stream over multiple transmit antennas
• Exploit various received version of data stream
• Compensate for different channel problems such as fading, scattering, refraction
16
SPACE TIME BLOCK CODES
17
Transmit Antenna
Time
Slots
*
1
*
2
*
3
*
4
*
2
*
1
*
4
*
3
*
3
*
4
*
1
*
2
*
4
*
32
*
1
1234
2143
3412
4321
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx







𝒢=
SPACE -TIME BLOCK CODE(CONTD.)
Orthogonal Space -Time Block Code
 STBC –pair of columns-orthogonal to each other
Features of OSTBC
 Better performance in Fading Environment
 Less decodable Complexity
 Better Diversity Gain
Rate of OSTBC 𝒢2,2,2
=
𝑥1 𝑥2
−𝑥2
∗
𝑥1
∗
K=number of symbols per block=2
T=Total number of time slots=2
Code rate, R=
𝐾
𝑇
=1
18
SPACE -TIME BLOCK CODE(CONTD.)
 Alamouti OSTBC
• Designed for two transmit antennas
• Code rate one
 Generalized OSTBC
• Designed for more than two transmit antennas
• Code rate less than one
19
Different Forms of OSTBC
PROBLEM OF MIMO SYSTEM AND
MOTIVATION
 Electromagnetic waves interact with obstacles like hills, buildings, canyons
 Great attenuation ( due to higher data rate and higher performance)
 Diversity technique(OSTBC) - reduction of ill effect - multipath fading problem
 MIMO with space time coded transmission –receiver with much radio equipment –
improved transmission quality
 Space Time Coded transmission- CSI- reduction of receivers circuit complexity-less
radio equipment's
20
THESIS OBJECTIVES
 Bit error rate - Orthogonal Space Time Block Codes(OSTBC) - open loop MIMO
 Comparison- performance of OSTBC-close loop MIMO techniques- exploits CSI
 Maximum utilization -limited radio equipment - good quality of data transmission-CSI
exploitation
 Comparison of techniques- CSI exploitation
21
MATERIALS AND METHODS
22
DATA PROCESSING AT OSTBC SYSTEM
OSTBC Encoder
23
1010001...
ksss ....2,1 kk sx Symbol
Calculation
In 𝒢 Sends rows
of C
Fig 6 : Block Diagram of OSTBC encoder
𝑥1
𝑥2
−𝑥2
∗
𝑥1
∗
t t+T
kk sx 
DATA PROCESSING AT OSTBC SYSTEM(CONTD.)
OSTBC Decoder
24
Linear
Combination
Pick Closest Symbol
(Maximum Likelihood
Detector)
Trrr ....2,1
ksss ~....~~
2,1
ksss ~....~~
2,1 ksˆ
Fig 7 : Block Diagram of OSTBC decoder
ALAMOUTI OSTBC
𝒢2,2,2=
𝑥1 𝑥2
−𝑥2
∗
𝑥1
∗
Two transmit antennas deliver two symbols over two time slots
In case of one receive antenna:
Received signal , r = C H + 𝓝
25
1,1r = ℎ1,1 𝑥1 + ℎ1,2 𝑥2 + 1,1
1,2r = −ℎ1,1 𝑥2
∗
+ ℎ1,2 𝑥1
∗
+ 1,2






*
1,2
1,1
r
r




















 
1,2
1,1
2
1
*
1,1
*
2,1
2,11,1
x
x
hh
hh
ALAMOUTI OSTBC(CONTD.)
Effective received signal matrix
Effective Channel matrix
Linear combination of received signals
= ℎ1,1
∗
𝑟1,1 + ℎ1,2 𝑟2,1
∗
= ℎ1,2
∗
𝑟1,1 − ℎ1,1 𝑟2,1
∗
26
effH 





 *
1,1
*
2,1
2,11,1
hh
hh
effr 





*
1,2
1,1
r
r
eff
H
eff rHS 
~
1
~
S
2
~
S
ALAMOUTI OSTBC(CONTD.)
ML decoding for 𝑵 𝒓receive antennas
𝑖=1
𝑁 𝑟
𝑟1,𝑖ℎ𝑖,1
∗
+ 𝑟2,𝑖
∗
ℎ𝑖,2 − 𝑠1
2
+ 𝜓 𝑠1
2
𝜓 = −1 +
𝑖=1
𝑁 𝑟
𝑗=1
𝑁
ℎ𝑖,𝑗
2
27
𝑖=1
𝑁 𝑟
𝑟1,𝑖ℎ𝑖,2
∗
− 𝑟2,𝑖
∗
ℎ𝑖,1 − 𝑠2
2
+ 𝜓 𝑠2
2
GENERALIZED OSTBC
OSTBC for N=4 with rate 1/2
𝒢448=
Four transmit antennas deliver four symbols over eight time slots
ML decoding for 𝑵 𝒓receive antennas
28
*
1
*
2
*
3
*
4
*
2
*
1
*
4
*
3
*
3
*
4
*
1
*
2
*
4
*
32
*
1
1234
2143
3412
4321
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx







1
~
S 𝑁 𝑟
𝑚=1 (𝑟1,𝑚 ℎ 𝑚,1
∗
+𝑟2,𝑚 ℎ 𝑚,2
∗
+𝑟3,𝑚 ℎ 𝑚,3
∗
+𝑟4,𝑚 ℎ 𝑚,4
∗
+𝑟5,𝑚
∗
ℎ 𝑚,1+
𝑟6,𝑚
∗
ℎ 𝑚,2+𝑟7,𝑚
∗
ℎ 𝑚,3+𝑟8,𝑚
∗
ℎ 𝑚,4)
𝑁 𝑟
𝑚=1 (𝑟1,𝑚 ℎ 𝑚,2
∗
-𝑟2,𝑚 ℎ 𝑚,1
∗
-𝑟3,𝑚 ℎ 𝑚,4
∗
+𝑟4,𝑚 ℎ 𝑚,3
∗
+𝑟5,𝑚
∗
ℎ 𝑚,2-
𝑟6,𝑚
∗
ℎ 𝑚,1-𝑟7,𝑚
∗
ℎ 𝑚,4+𝑟8,𝑚
∗
ℎ 𝑚,3)
2
~
S
GENERALIZED OSTBC(CONTD.)
𝑁 𝑟
𝑚=1 (𝑟1,𝑚 ℎ 𝑚,3
∗
+ 𝑟2,𝑚 ℎ 𝑚,1
∗
− 𝑟3,𝑚 ℎ 𝑚,1
∗
− 𝑟4,𝑚 ℎ 𝑚,2
∗
+
𝑟5,𝑚
∗
ℎ 𝑚,3 + 𝑟6,𝑚
∗
ℎ 𝑚,4 − 𝑟7,𝑚
∗
ℎ 𝑚,1 − 𝑟8,𝑚
∗
ℎ 𝑚,2)
29
3
~
S
ML decoding for 𝑵 𝒓receive antennas
𝑁 𝑟
𝑚=1
(𝑟1,𝑚 ℎ 𝑚,4
∗
− 𝑟2,𝑚 ℎ 𝑚,3
∗
+ 𝑟3,𝑚 ℎ 𝑚,2
∗
− 𝑟4,𝑚 ℎ 𝑚,1
∗
+ 𝑟5,𝑚
∗
ℎ 𝑚,4
− 𝑟6,𝑚
∗
ℎ 𝑚,3 − 𝑟7,𝑚
∗
ℎ 𝑚,2 + 𝑟8,𝑚
∗
ℎ 𝑚,1)
4
~
S
GENERALIZED OSTBC(CONTD.)
OSTBC for N=3 with rate 1/2
Three transmit antennas deliver four symbols over eight time slots
30
*
2
*
3
*
4
*
1
*
4
*
3
*
4
*
1
*
2
*
3
*
2
*
1
234
143
412
321
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx






𝒢348=
GENERALIZED OSTBC(CONTD.)
OSTBC for N=4 with rate 3/4
𝒢434 =
𝑥1 𝑥2
𝑥3
2
𝑥3
2
−𝑥2
∗
𝑥1
∗
𝑥3
2
−
𝑥3
2
𝑥3
∗
2
𝑥3
∗
2
𝑥3
∗
2
−
𝑥3
∗
2
−𝑥1 − 𝑥1
∗
+ 𝑥2 − 𝑥2
∗
2
−𝑥2 − 𝑥2
∗
+ 𝑥1 − 𝑥1
∗
2
𝑥2 + 𝑥2
∗
+ 𝑥1 − 𝑥1
∗
2
−
𝑥1 + 𝑥1
∗
+ 𝑥2 − 𝑥2
∗
2
Four transmit antennas deliver three symbols over four time slots
31
GENERALIZED OSTBC(CONTD.)
𝑟1,𝑖 ℎ𝑖,1
∗
+ 𝑟2,𝑖 ℎ𝑖,2
∗
+
𝑟4,𝑖− 𝑟3,𝑖 ℎ 𝑖,3
∗
−ℎ 𝑖,4
∗
2
−
𝑁 𝑟
𝑖=1
𝑟3,𝑖+ 𝑟4,𝑖
∗
ℎ 𝑖,3
∗
+ℎ 𝑖,4
∗
2
− 𝑠1
2
+ 𝜓 𝑠1
2
32
𝑟1,𝑖 ℎ𝑖,2
∗
− 𝑟2,𝑖 ℎ𝑖,1
∗
+
𝑟4,𝑖+ 𝑟3,𝑖 ℎ 𝑖,3
∗
−ℎ 𝑖,4
∗
2
+
𝑁 𝑟
𝑖=1
−𝑟3,𝑖+ 𝑟4,𝑖
∗
ℎ 𝑖,3+ℎ 𝑖,4
2
− 𝑠1
2
+ 𝜓 𝑠2
2
𝑟1,𝑖−𝑟2,𝑖 ℎ 𝑖,3
∗
2
+
𝑟1,𝑖−𝑟2,𝑖 ℎ 𝑖,4
2
+
𝑟3,𝑖
∗
(ℎ 𝑖,1+ℎ 𝑖,2)
2
+
𝑁 𝑟
𝑖=1
𝑟4,𝑖
∗
(ℎ 𝑖,1−ℎ 𝑖,2)
2
− 𝑠3
2
+ 𝜓 𝑠3
2
ML decoding for 𝑵 𝒓receive antennas
GENERALIZED OSTBC(CONTD.)
OSTBC for N=3 with rate 3/4
𝒢334 =
𝑥1 𝑥2
𝑥3
2
−𝑥2
∗
𝑥1
∗
𝑥3
2
𝑥3
∗
2
𝑥3
∗
2
𝑥3
∗
2
−
𝑥3
∗
2
−𝑥1 − 𝑥1
∗
− 𝑥2 − 𝑥2
∗
2
𝑥2 + 𝑥2
∗
+ 𝑥1 − 𝑥1
∗
2
33
Three transmit antennas deliver three symbols
over four time slots
OSTBC TRANSMISSION WITH CSI FEEDBACK
OSTBC with Precoding
34
Modulator
OSTBC
Encoder
Pre-coder
C𝑊𝑜𝑝𝑡
𝑊𝑜𝑝𝑡 =
arg 𝑚𝑎𝑥
𝑊𝜖𝐹
𝐻𝑊 𝐹
2
},...,,,{ 321 Lopt WWWWFW 
Receiver
RF Chain
},...,,,{ 321 Lopt WWWWFW 
},...,,,{ 321 LWWWWF 
Signal processing
(CSI estimation)
H
Indices of 𝑊𝑜𝑝𝑡
Received signal equation
𝑟 = HWC
N
E
T
x
𝓝
OSTBC TRANSMISSION WITH CSI FEEDBACK
Precoding matrix of codebook ‘F’
𝐹 = 𝑊𝐷𝐹𝑇, 𝜃𝑊𝐷𝐹𝑇, … , 𝜃 𝐿−1
𝑊𝐷𝐹𝑇 , 𝜃 = 𝑑𝑖𝑎𝑔 𝑒 𝑗2𝜋𝑢1/𝑁 𝑇 𝑒 𝑗2𝜋𝑢2/𝑁 𝑇 … 𝑒 𝑗2𝜋𝑢 𝑁𝑇/𝑁 𝑇
35
tN
Number of
Tx antennas
M
Number of
Data streams
BFL /
Codebook size
(feedback bits)
c
column indices
u
rotation vector
2 1 8/(3) [1] [1,0]
3 1 32/(5) [1] [1,26,28]
4 2 32/(5) [1,2] [1,26,28]
4 1 64/(6) [1] [1,8,61,45]
4 2 64/(6) [0,1] [1,7,52,56]
4 3 64/(6) [0,2,3] [1,8,61,45]






















4
3.3
.2
4
2.3
.2
4
3.2
.2
4
2.2
.2
4
3.1
.2
4
2.1
.2
1
1
1
1
111
4
1
jj
jj
jj
ee
ee
ee
W
𝑊𝑖 = 𝑑𝑖𝑎𝑔 𝑒 𝑗2𝜋.
1
4 𝑒 𝑗2𝜋.
8
4 𝑒 𝑗2𝜋.
61
4 𝑒 𝑗2𝜋.
45
4
𝑖−𝑙
𝑊1
𝑖 = 2,3, … 64
Codebook design parameters for OSTBC in IEEE 802.16e specification.
𝑁 𝑇=4,M=3 and L=64 , 𝑊1
OSTBC TRANSMISSION WITH CSI FEEDBACK
OSTBC with Antenna Selection
36
RF chain
Input
OSTBC
Encoder
RF module
selector
𝐻 𝑝1, 𝑝2,… 𝑝 𝑄
Signal processing
(CSI estimation)
arg𝑚𝑎𝑥
𝑝1, 𝑝2,…,𝑝𝑞 𝜖𝐴𝑞
𝐻 𝑝1, 𝑝2,… 𝑝 𝑄
𝐹
2
Column Indices
Received signal equation
Q RF modules are selectively mapped from 𝑁 𝑇 transmit
antennas
𝑟 =
𝐸 𝑋
𝑄
𝐻 𝑝1, 𝑝2,… 𝑝 𝑄
𝐶 + 𝒩 , Q<𝑁 𝑇
RESULTS AND DISCUSSION
37
OSTBC’S FOR ONE RECEIVE ANTENNAS
0 2 4 6 8 10 12 14 16 18 20
10
-4
10
-3
10
-2
10
-1
10
0
SNR(db)
BER
1bit/(sHZ),1 receive antenna
Uncoded,BPSK(1Tx,1Rx)
alamouti OSTBC,BPSK(2Tx,1Rx)
Rate 1/2 OSTBC,QPSK(3Tx,1Rx)
Rate 1/2 OSTBC,QPSK(4Tx,1Rx)
38
Fig 11: Bit Error Rate plotted against SNR for OSTBC’s for one
receive antennas
OSTBC’S FOR TWO RECEIVE ANTENNAS
0 2 4 6 8 10 12 14 16
10
-4
10
-3
10
-2
10
-1
SNR(db)
BER
1bit/(sHZ),2 receive antennas
Uncoded,BPSK(1Tx,2Rx)
alamouti OSTBC,BPSK(2Tx,2Rx)
Rate 1/2 OSTBC,QPSK(3Tx,2Rx)
Rate 1/2 OSTBC,QPSK(4Tx,2Rx)
39
Fig 12: Bit Error Rate plotted against SNR for OSTBC’s for
two receive antennas
OSTBC’S FOR THREE RECEIVE ANTENNAS
0 2 4 6 8 10 12 14 16 18
10
-4
10
-3
10
-2
10
-1
SNR(db)
BER
2bit/(sHZ),3 receive antennas
Uncoded,QPSK(1Tx,3Rx)
alamouti OSTBC,QPSK(2Tx,3Rx)
Rate 1/2 OSTBC,16QAM(3Tx,3Rx)
Rate 1/2 OSTBC,16QAM(4Tx,3Rx)
40
Fig 13: Bit Error Rate plotted against SNR for OSTBC’s for
three receive antennas
OSTBC’S FOR FOUR RECEIVE ANTENNAS
0 1 2 3 4 5 6 7 8 9 10
10
-4
10
-3
10
-2
10
-1
SNR(db)
BER
2bit/(sHZ),4 receive antennas
Uncoded,QPSK(1Tx,4Rx)
alamouti OSTBC,QPSK(2Tx,4Rx)
Rate 1/2 OSTBC,16QAM(3Tx,4Rx)
Rate 1/2 OSTBC,16QAM(4Tx,4Rx)
41
Fig 14: Bit Error Rate plotted against SNR for OSTBC’s for
Four receive antennas
OSTBC’S FOR THREE RECEIVE ANTENNAS
0 2 4 6 8 10 12 14 16
10
-4
10
-3
10
-2
10
-1
SNR(db)
BER
3bit/(sHZ),3 receive antennas
Uncoded,8PSK(1Tx,3Rx)
alamouti OSTBC,8PSK(2Tx,3Rx)
Rate 3/4 OSTBC,16QAM(3Tx,3Rx)
Rate 3/4 OSTBC,16QAM(4Tx,3Rx)
42
Fig 15: Bit Error Rate plotted against SNR for OSTBC’s for
three receive antennas
OSTBC’S FOR FOUR RECEIVE ANTENNAS
0 5 10 15
10
-4
10
-3
10
-2
10
-1
SNR(db)
BER
3bit/(sHZ),4 receive antennas
Uncoded,8PSK(1Tx,4Rx)
alamouti OSTBC,8PSK(2Tx,4Rx)
Rate 3/4 OSTBC,16QAM(4Tx,4Rx)
Rate 3/4 OSTBC,16QAM(3Tx,4Rx)
43
Fig 16: Bit Error Rate plotted against SNR for OSTBC’s for
four receive antennas
OSTBC’S FOR THREE TRANSMIT ANTENNAS
0 2 4 6 8 10 12 14 16 18
10
-4
10
-3
10
-2
10
-1
10
0
SNR(db)
BER BER performance for Three transmit antennas of Generalized OSTBC
Rate 1/2OSTBC(3Tx,1Rx)
Rate1/2 OSTBC(3Tx,2Rx)
Rate1/2 OSTBC(3Tx,3Rx)
Rate1/2 OSTBC(3Tx,4Rx)
Rate3/4 OSTBC(3Tx,1Rx)
Rate3/4 OSTBC(3Tx,2Rx)
Rate3/4 OSTBC(3Tx,3Rx)
Rate3/4 OSTBC(3Tx,4Rx)
44
Fig 17: Bit Error Rate plotted against SNR for OSTBC’s for
three transmit antennas
OSTBC’S FOR SPATIAL DIVERSITY 12
0 1 2 3 4 5 6 7 8 9
10
-4
10
-3
10
-2
10
-1
SNR(db)
BER Spatial Diversity 12
alamouti,QPSK(2Tx,6Rx)
Rate 1/2 OSTBC,QPSK(3Tx,4Rx)
Rate 1/2 OSTBC,QPSK(4Tx,3Rx)
Rate 3/4 OSTBC,QPSK(3Tx,4Rx)
Rate 3/4 OSTBC,QPSK(4Tx,3Rx)
45
Fig 18: Bit Error Rate plotted against SNR for OSTBC’s for
spatial diversity 12
ALAMOUTI & RATE ½ OSTBC WITH
PRECODING
0 2 4 6 8 10 12 14 16 18 20
10
-4
10
-3
10
-2
10
-1
10
0
SNR(db)
BER
1 bit/(shz) bit rate
Alamouti(2Tx,1Rx)
precoded Alamouti(2Tx,1Rx)
OSTBC (3Tx,1Rx)
precoded OSTBC (3Tx,1Rx)
alamouti(2Tx,2Rx)
OSTBC (4Tx,1Rx)
46
Fig 19 :BER performance analysis again SNR for Alamouti & rate ½ OSTBC with precoding
ALAMOUTI & RATE ½ OSTBC WITH
ANTENNA SELECTION
0 2 4 6 8 10 12 14 16 18 20
10
-4
10
-3
10
-2
10
-1
10
0
SNR(db)
BER
1 bit/(shz) bit rate
Alamouti(2Tx,1Rx)
OSTBC(3Tx,1Rx)
Antenna alamouti(2Tx,1Rx)
Antenna OSTBC (3Tx,1Rx)
alamouti(2Tx,2Rx)
OSTBC (4Tx,1Rx)
47
Fig 20 :BER performance analysis again SNR for Alamouti & rate ½ OSTBC with antenna selection
PRECODING WITH LIMITED FEEDBACK AND
ANTENNA SUBSET SELECTION
0 2 4 6 8 10 12
10
-4
10
-3
10
-2
10
-1
SNR(db)
BER
1 bit/(shz) bit rate
precoded Alamouti(2Tx,1Rx)
precoded OSTBC(3Tx,1Rx)
Antenna alamouti(2Tx,1Rx)
Antenna OSTBC (3Tx,1Rx)
48
Fig 21 :Performance analysis between precoding with limited
feedback and Antenna subset selection
FINDINGS OF THE SIMULATIONS
 In higher bit rate Alamouti OSTBC performs better
 Rate ½ OSTBC always outperforms over rate ¾ OSTBC
 For certain OSTBC with constant RX antenna the more we increase TX antenna the
better will the performance
 For same spatial diversity less TX antenna with more RX antenna outperform over more
TX antenna with less RX antenna
 CSI at transmitter reduce the necessity of extra radio equipment's at transmitter and
receiver for attaining better performance
 Precoding using codebook is efficient than antenna selection
49
CONCLUSION
 Precoded OSTBC- OSTBC with Antenna selection-Efficient uses of radio equipment's
 Adjust - size of codebook -easily possible to improve array gain - antenna selection
 Alamouti OSTBC as a rate one OSTBC and apply it to precoded system, in future we
apply Quasi Orthogonal Space Time Block codes in precoded system and analysis the
performance in Multi –User MIMO
 In the thesis we have used ML decoding, in future we will focus on Sphere Decoding for
OSTBC and compare the performance with ML decoding
50
REFERENCES
1. Hamid Jafarkhani , “Space-Time Coding: Theory and practice,” cambridge university press 2005,pp.1-125
2. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456–1467, July
1999.
3. S.M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communication”, IEEE Jl. on Select Areas in Comm., Vol. 16, pp. 1451–1458, 1998.
4. Yong Soo Cho,Jaekwon Kim,Won Young Yang,Chung -Gu Kang, “ MIMO – OFDM Wireless Communications ,” Copyright _ 2010 John Wiley & Sons (Asia)
Pte Ltd
5. D. J. Love and R. W. Heath, "Limited feedback unitary precoding for orthogonal space-time block codes," in IEEE Transactions on Signal Processing, vol. 53,
no. 1, pp. 64-73, Jan. 2005.
6. Vahid Tarokh, Hamid Jafarkhani, and A. Robert Calderbank (March 1999). “Space–time block coding for wireless communications: performance
results(PDF)”. IEEE Journal on Selected Areas in Communications 17 (3): 451–460.
7. L. M. Cortes-Pena , “MIMO Space-Time Block Coding (STBC): Simulations and Results,” Design Project: Personal and Mobile Communications, Georgia
Tech , pp. 1-8, April, 2009.
8. Modern Digital and Analog Communication System by B.P Lathi ,Zhi Ding
9. Advanced Engineering Mathematics by H.K DASS
10. Fuqin Xiong ,“Digital Modulation technique”,Artech house ,inc.2000,pp-1-7 & 561-563.(p-562)]
11. G. Foschini and M. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless personal communications,
vol. 6, no. 3, pp. 311–335, 1998.
12. Simon Haykin, “Digital Communication” john Wiley & Sons Ltd 2000
13. LTE, LTE-Advanced and WiMAX: Towards IMT-Advanced Networks by Abd-Elhamid M. Taha, Najah Abu Ali, Hossam S. Hassanein
14. Precoding Techniques for Digital Communication Systems by C.-C. Jay Kuo, Shang-Ho Tsai, Layla Tadjpour, Yu-Hao Chang
15. Larsson, E.G., Ganesan, G., Stoica, P., and Wong, W.H. (2002) On the performance of orthogonal space-time block coding with quantized feedback. IEEE
Commun. Letters, 12(6), 487–489.
16. Hochwald, B.M., Marzetta, T.L., Richardson, T.J. et al. (2000) , “Systematic design of unitary space-time constellations,” IEEE Trans. Info. Theory, 46, 1962–
1973.
17. Recent Trends in Intelligent and Emerging Systems edited by Kandarpa Kumar Sarma, Manash Pratim Sarma, Mousmita Sarma p-(21)]
18. Signal Processing, Channel Estimation and Link Adaptation in MIMO-OFDM Systems By Jianjun Ran,p-60
19. D. Gesbert, M. Kountouris, R. W. Heath Jr., C. b. Chae and T. Salzer, "Shifting the MIMO Paradigm," in IEEE Signal Processing Magazine, vol. 24, no. 5, pp.
36-46, Sept. 2007.
20. B. M. Hochwald, T. L. Marzetta, T. J. Richardson, W. Sweldens and R. Urbanke, "Systematic design of unitary space-time constellations," in IEEE
Transactions on Information Theory, vol. 46, no. 6, pp. 1962-1973, Sep 2000.
21. J.-C. Guey, M. P. Fitz, M. R. Bell, and W.-Y. Kuo, “Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels,”
in51 Proc. IEEE VTC’96, 1996, pp. 136–140.
THANK YOU
Question please!!!

More Related Content

What's hot

Convolution codes - Coding/Decoding Tree codes and Trellis codes for multiple...
Convolution codes - Coding/Decoding Tree codes and Trellis codes for multiple...Convolution codes - Coding/Decoding Tree codes and Trellis codes for multiple...
Convolution codes - Coding/Decoding Tree codes and Trellis codes for multiple...
Madhumita Tamhane
 
OFDM Basics
OFDM BasicsOFDM Basics
OFDM Basics
Alwin Poulose
 
Rake Receiver
Rake ReceiverRake Receiver
Rake Receiver
ManochandarThenralma
 
Precoding
PrecodingPrecoding
Precoding
Khalid Hussain
 
Pulse modulation, Pulse Amplitude (PAM), Pulse Width (PWM/PLM/PDM), Pulse Pos...
Pulse modulation, Pulse Amplitude (PAM), Pulse Width (PWM/PLM/PDM), Pulse Pos...Pulse modulation, Pulse Amplitude (PAM), Pulse Width (PWM/PLM/PDM), Pulse Pos...
Pulse modulation, Pulse Amplitude (PAM), Pulse Width (PWM/PLM/PDM), Pulse Pos...
Waqas Afzal
 
Mimo in Wireless Communication
Mimo in Wireless CommunicationMimo in Wireless Communication
Mimo in Wireless Communication
kailash karki
 
GSM channels
GSM channelsGSM channels
GSM channels
Mohd Nazir Shakeel
 
Ofdm
OfdmOfdm
Ofdm
anupmath
 
[Year 2012-13] Mimo technology
[Year 2012-13] Mimo technology[Year 2012-13] Mimo technology
[Year 2012-13] Mimo technology
Saurabh N. Mehta
 
GSM capacity planning
GSM capacity planningGSM capacity planning
GSM capacity planning
Deepak Joshi
 
Hspa and hsdpa
Hspa and hsdpaHspa and hsdpa
Hspa and hsdpa
Manish Srivastava
 
BCH Codes
BCH CodesBCH Codes
BCH Codes
AakankshaR
 
Stbc.pptx(1)
Stbc.pptx(1)Stbc.pptx(1)
Stbc.pptx(1)
Rathangshah
 
Synchronization
SynchronizationSynchronization
Source coding
Source coding Source coding
Source coding
Shankar Gangaju
 
17 SONET/SDH
17 SONET/SDH17 SONET/SDH
17 SONET/SDH
Ahmar Hashmi
 
Matched filter
Matched filterMatched filter
Matched filter
srkrishna341
 
Chap 4 (large scale propagation)
Chap 4 (large scale propagation)Chap 4 (large scale propagation)
Chap 4 (large scale propagation)
asadkhan1327
 
Du binary signalling
Du binary signallingDu binary signalling
Du binary signalling
srkrishna341
 
4.4 diversity combining techniques
4.4   diversity combining techniques4.4   diversity combining techniques
4.4 diversity combining techniques
JAIGANESH SEKAR
 

What's hot (20)

Convolution codes - Coding/Decoding Tree codes and Trellis codes for multiple...
Convolution codes - Coding/Decoding Tree codes and Trellis codes for multiple...Convolution codes - Coding/Decoding Tree codes and Trellis codes for multiple...
Convolution codes - Coding/Decoding Tree codes and Trellis codes for multiple...
 
OFDM Basics
OFDM BasicsOFDM Basics
OFDM Basics
 
Rake Receiver
Rake ReceiverRake Receiver
Rake Receiver
 
Precoding
PrecodingPrecoding
Precoding
 
Pulse modulation, Pulse Amplitude (PAM), Pulse Width (PWM/PLM/PDM), Pulse Pos...
Pulse modulation, Pulse Amplitude (PAM), Pulse Width (PWM/PLM/PDM), Pulse Pos...Pulse modulation, Pulse Amplitude (PAM), Pulse Width (PWM/PLM/PDM), Pulse Pos...
Pulse modulation, Pulse Amplitude (PAM), Pulse Width (PWM/PLM/PDM), Pulse Pos...
 
Mimo in Wireless Communication
Mimo in Wireless CommunicationMimo in Wireless Communication
Mimo in Wireless Communication
 
GSM channels
GSM channelsGSM channels
GSM channels
 
Ofdm
OfdmOfdm
Ofdm
 
[Year 2012-13] Mimo technology
[Year 2012-13] Mimo technology[Year 2012-13] Mimo technology
[Year 2012-13] Mimo technology
 
GSM capacity planning
GSM capacity planningGSM capacity planning
GSM capacity planning
 
Hspa and hsdpa
Hspa and hsdpaHspa and hsdpa
Hspa and hsdpa
 
BCH Codes
BCH CodesBCH Codes
BCH Codes
 
Stbc.pptx(1)
Stbc.pptx(1)Stbc.pptx(1)
Stbc.pptx(1)
 
Synchronization
SynchronizationSynchronization
Synchronization
 
Source coding
Source coding Source coding
Source coding
 
17 SONET/SDH
17 SONET/SDH17 SONET/SDH
17 SONET/SDH
 
Matched filter
Matched filterMatched filter
Matched filter
 
Chap 4 (large scale propagation)
Chap 4 (large scale propagation)Chap 4 (large scale propagation)
Chap 4 (large scale propagation)
 
Du binary signalling
Du binary signallingDu binary signalling
Du binary signalling
 
4.4 diversity combining techniques
4.4   diversity combining techniques4.4   diversity combining techniques
4.4 diversity combining techniques
 

Viewers also liked

Kazaura
KazauraKazaura
Studies on next generation access technology using radio over free space opti...
Studies on next generation access technology using radio over free space opti...Studies on next generation access technology using radio over free space opti...
Studies on next generation access technology using radio over free space opti...
wtyru1989
 
Diversity techniques in satellite communications
Diversity techniques in satellite communicationsDiversity techniques in satellite communications
Diversity techniques in satellite communications
Kailash Karki
 
Mixer | Communication Systems
Mixer | Communication SystemsMixer | Communication Systems
Mixer | Communication Systems
Learn By Watch
 
Symbol Based Modulation Classification using Combination of Fuzzy Clustering ...
Symbol Based Modulation Classification using Combination of Fuzzy Clustering ...Symbol Based Modulation Classification using Combination of Fuzzy Clustering ...
Symbol Based Modulation Classification using Combination of Fuzzy Clustering ...
CSCJournals
 
differential pulse code modulation dpcm | Communication Systems
differential pulse code modulation dpcm | Communication Systemsdifferential pulse code modulation dpcm | Communication Systems
differential pulse code modulation dpcm | Communication Systems
Learn By Watch
 
4G WIRELESS TECHNOLOGY
4G WIRELESS TECHNOLOGY4G WIRELESS TECHNOLOGY
4G WIRELESS TECHNOLOGY
Tarun chandel
 
fom fm receiver | Communication Systems
fom fm receiver | Communication Systemsfom fm receiver | Communication Systems
fom fm receiver | Communication Systems
Learn By Watch
 
Adaptive linear equalizer
Adaptive linear equalizerAdaptive linear equalizer
Adaptive linear equalizer
Sophia Jeanne
 
linear equalizer and turbo equalizer
linear equalizer and turbo equalizerlinear equalizer and turbo equalizer
linear equalizer and turbo equalizer
Divya_mtech
 
4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية
4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية
4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية
Dawood Aqlan
 
COMPARISON OF SISO & MIMO TECHNIQUES IN WIRELESS COMMUNICATION
COMPARISON OF SISO & MIMO TECHNIQUES IN WIRELESS COMMUNICATIONCOMPARISON OF SISO & MIMO TECHNIQUES IN WIRELESS COMMUNICATION
COMPARISON OF SISO & MIMO TECHNIQUES IN WIRELESS COMMUNICATION
Journal For Research
 
Equalizer types
Equalizer typesEqualizer types
Equalizer types
Gezo21
 
CHANNEL EQUALIZATION by NAVEEN TOKAS
CHANNEL EQUALIZATION by NAVEEN TOKASCHANNEL EQUALIZATION by NAVEEN TOKAS
CHANNEL EQUALIZATION by NAVEEN TOKAS
NAVEEN TOKAS
 
space time codes
space time codesspace time codes
space time codes
jie ren
 
Plant physiology in arabic
Plant physiology in arabicPlant physiology in arabic
Plant physiology in arabickaakaawaah
 
Distributed maximum likelihood classification of linear modulations over noni...
Distributed maximum likelihood classification of linear modulations over noni...Distributed maximum likelihood classification of linear modulations over noni...
Distributed maximum likelihood classification of linear modulations over noni...
ieeepondy
 
MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4
arogozhnikov
 
Classification of modulation | Communication Systems
Classification of modulation | Communication SystemsClassification of modulation | Communication Systems
Classification of modulation | Communication Systems
Learn By Watch
 
Thesis
ThesisThesis

Viewers also liked (20)

Kazaura
KazauraKazaura
Kazaura
 
Studies on next generation access technology using radio over free space opti...
Studies on next generation access technology using radio over free space opti...Studies on next generation access technology using radio over free space opti...
Studies on next generation access technology using radio over free space opti...
 
Diversity techniques in satellite communications
Diversity techniques in satellite communicationsDiversity techniques in satellite communications
Diversity techniques in satellite communications
 
Mixer | Communication Systems
Mixer | Communication SystemsMixer | Communication Systems
Mixer | Communication Systems
 
Symbol Based Modulation Classification using Combination of Fuzzy Clustering ...
Symbol Based Modulation Classification using Combination of Fuzzy Clustering ...Symbol Based Modulation Classification using Combination of Fuzzy Clustering ...
Symbol Based Modulation Classification using Combination of Fuzzy Clustering ...
 
differential pulse code modulation dpcm | Communication Systems
differential pulse code modulation dpcm | Communication Systemsdifferential pulse code modulation dpcm | Communication Systems
differential pulse code modulation dpcm | Communication Systems
 
4G WIRELESS TECHNOLOGY
4G WIRELESS TECHNOLOGY4G WIRELESS TECHNOLOGY
4G WIRELESS TECHNOLOGY
 
fom fm receiver | Communication Systems
fom fm receiver | Communication Systemsfom fm receiver | Communication Systems
fom fm receiver | Communication Systems
 
Adaptive linear equalizer
Adaptive linear equalizerAdaptive linear equalizer
Adaptive linear equalizer
 
linear equalizer and turbo equalizer
linear equalizer and turbo equalizerlinear equalizer and turbo equalizer
linear equalizer and turbo equalizer
 
4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية
4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية
4g wireless technology شبكات الجيل الرابع كتاب في غاية الاهمية
 
COMPARISON OF SISO & MIMO TECHNIQUES IN WIRELESS COMMUNICATION
COMPARISON OF SISO & MIMO TECHNIQUES IN WIRELESS COMMUNICATIONCOMPARISON OF SISO & MIMO TECHNIQUES IN WIRELESS COMMUNICATION
COMPARISON OF SISO & MIMO TECHNIQUES IN WIRELESS COMMUNICATION
 
Equalizer types
Equalizer typesEqualizer types
Equalizer types
 
CHANNEL EQUALIZATION by NAVEEN TOKAS
CHANNEL EQUALIZATION by NAVEEN TOKASCHANNEL EQUALIZATION by NAVEEN TOKAS
CHANNEL EQUALIZATION by NAVEEN TOKAS
 
space time codes
space time codesspace time codes
space time codes
 
Plant physiology in arabic
Plant physiology in arabicPlant physiology in arabic
Plant physiology in arabic
 
Distributed maximum likelihood classification of linear modulations over noni...
Distributed maximum likelihood classification of linear modulations over noni...Distributed maximum likelihood classification of linear modulations over noni...
Distributed maximum likelihood classification of linear modulations over noni...
 
MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4
 
Classification of modulation | Communication Systems
Classification of modulation | Communication SystemsClassification of modulation | Communication Systems
Classification of modulation | Communication Systems
 
Thesis
ThesisThesis
Thesis
 

Similar to MIMO

Comparitive analysis of bit error rates of multiple input multiple output tra...
Comparitive analysis of bit error rates of multiple input multiple output tra...Comparitive analysis of bit error rates of multiple input multiple output tra...
Comparitive analysis of bit error rates of multiple input multiple output tra...
slinpublishers
 
Adaptive transmit diversity selection (atds) based on stbc and sfbc fir 2 x1 ...
Adaptive transmit diversity selection (atds) based on stbc and sfbc fir 2 x1 ...Adaptive transmit diversity selection (atds) based on stbc and sfbc fir 2 x1 ...
Adaptive transmit diversity selection (atds) based on stbc and sfbc fir 2 x1 ...
eSAT Publishing House
 
Capsulization of Existing Space Time Techniques
Capsulization of Existing Space Time TechniquesCapsulization of Existing Space Time Techniques
Capsulization of Existing Space Time Techniques
IJEEE
 
Ipmc003 2
Ipmc003 2Ipmc003 2
Ipmc003 2
Sasanka1991
 
PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...
PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...
PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...
Journal For Research
 
Multi user performance on mc cdma single relay cooperative system by distribu...
Multi user performance on mc cdma single relay cooperative system by distribu...Multi user performance on mc cdma single relay cooperative system by distribu...
Multi user performance on mc cdma single relay cooperative system by distribu...
IJCNCJournal
 
IMT Advanced
IMT AdvancedIMT Advanced
Basic mathematics of MIMO technology.pptx
Basic mathematics of MIMO technology.pptxBasic mathematics of MIMO technology.pptx
Basic mathematics of MIMO technology.pptx
pravin patil
 
Iaetsd vlsi implementation of spatial modulation receiver
Iaetsd vlsi implementation of spatial modulation receiverIaetsd vlsi implementation of spatial modulation receiver
Iaetsd vlsi implementation of spatial modulation receiver
Iaetsd Iaetsd
 
Performance Analysis of Differential Beamforming in Decentralized Networks
Performance Analysis of Differential Beamforming in Decentralized NetworksPerformance Analysis of Differential Beamforming in Decentralized Networks
Performance Analysis of Differential Beamforming in Decentralized Networks
IJECEIAES
 
I010125056
I010125056I010125056
I010125056
IOSR Journals
 
Channel Estimation In The STTC For OFDM Using MIMO With 4G System
Channel Estimation In The STTC For OFDM Using MIMO With 4G SystemChannel Estimation In The STTC For OFDM Using MIMO With 4G System
Channel Estimation In The STTC For OFDM Using MIMO With 4G System
IOSR Journals
 
Prediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systemsPrediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systems
IAEME Publication
 
Prediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systemsPrediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systems
iaemedu
 
Prediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systemsPrediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systems
iaemedu
 
PERFORMANCE ANALYSIS OF CLIPPED STBC CODED MIMO OFDM SYSTEM
PERFORMANCE ANALYSIS OF CLIPPED STBC CODED MIMO OFDM SYSTEMPERFORMANCE ANALYSIS OF CLIPPED STBC CODED MIMO OFDM SYSTEM
PERFORMANCE ANALYSIS OF CLIPPED STBC CODED MIMO OFDM SYSTEM
IAEME Publication
 
Performance Analysis of OSTBC MIMO Using Precoder with ZF & MMSE Equalizer
Performance Analysis of OSTBC MIMO Using Precoder with ZF & MMSE EqualizerPerformance Analysis of OSTBC MIMO Using Precoder with ZF & MMSE Equalizer
Performance Analysis of OSTBC MIMO Using Precoder with ZF & MMSE Equalizer
IJERA Editor
 
Performance of BCH and RS Codes in MIMO System Using MPFEC Diversity Technique
Performance of BCH and RS Codes in MIMO System Using MPFEC Diversity TechniquePerformance of BCH and RS Codes in MIMO System Using MPFEC Diversity Technique
Performance of BCH and RS Codes in MIMO System Using MPFEC Diversity Technique
ALYAA AL-BARRAK
 
Evaluation of STBC and Convolutional Code Performance for Wireless Communicat...
Evaluation of STBC and Convolutional Code Performance for Wireless Communicat...Evaluation of STBC and Convolutional Code Performance for Wireless Communicat...
Evaluation of STBC and Convolutional Code Performance for Wireless Communicat...
theijes
 
Iterative qr decompostion channel estimation for
Iterative qr decompostion channel estimation forIterative qr decompostion channel estimation for
Iterative qr decompostion channel estimation for
eSAT Publishing House
 

Similar to MIMO (20)

Comparitive analysis of bit error rates of multiple input multiple output tra...
Comparitive analysis of bit error rates of multiple input multiple output tra...Comparitive analysis of bit error rates of multiple input multiple output tra...
Comparitive analysis of bit error rates of multiple input multiple output tra...
 
Adaptive transmit diversity selection (atds) based on stbc and sfbc fir 2 x1 ...
Adaptive transmit diversity selection (atds) based on stbc and sfbc fir 2 x1 ...Adaptive transmit diversity selection (atds) based on stbc and sfbc fir 2 x1 ...
Adaptive transmit diversity selection (atds) based on stbc and sfbc fir 2 x1 ...
 
Capsulization of Existing Space Time Techniques
Capsulization of Existing Space Time TechniquesCapsulization of Existing Space Time Techniques
Capsulization of Existing Space Time Techniques
 
Ipmc003 2
Ipmc003 2Ipmc003 2
Ipmc003 2
 
PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...
PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...
PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...
 
Multi user performance on mc cdma single relay cooperative system by distribu...
Multi user performance on mc cdma single relay cooperative system by distribu...Multi user performance on mc cdma single relay cooperative system by distribu...
Multi user performance on mc cdma single relay cooperative system by distribu...
 
IMT Advanced
IMT AdvancedIMT Advanced
IMT Advanced
 
Basic mathematics of MIMO technology.pptx
Basic mathematics of MIMO technology.pptxBasic mathematics of MIMO technology.pptx
Basic mathematics of MIMO technology.pptx
 
Iaetsd vlsi implementation of spatial modulation receiver
Iaetsd vlsi implementation of spatial modulation receiverIaetsd vlsi implementation of spatial modulation receiver
Iaetsd vlsi implementation of spatial modulation receiver
 
Performance Analysis of Differential Beamforming in Decentralized Networks
Performance Analysis of Differential Beamforming in Decentralized NetworksPerformance Analysis of Differential Beamforming in Decentralized Networks
Performance Analysis of Differential Beamforming in Decentralized Networks
 
I010125056
I010125056I010125056
I010125056
 
Channel Estimation In The STTC For OFDM Using MIMO With 4G System
Channel Estimation In The STTC For OFDM Using MIMO With 4G SystemChannel Estimation In The STTC For OFDM Using MIMO With 4G System
Channel Estimation In The STTC For OFDM Using MIMO With 4G System
 
Prediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systemsPrediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systems
 
Prediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systemsPrediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systems
 
Prediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systemsPrediction of a reliable code for wireless communication systems
Prediction of a reliable code for wireless communication systems
 
PERFORMANCE ANALYSIS OF CLIPPED STBC CODED MIMO OFDM SYSTEM
PERFORMANCE ANALYSIS OF CLIPPED STBC CODED MIMO OFDM SYSTEMPERFORMANCE ANALYSIS OF CLIPPED STBC CODED MIMO OFDM SYSTEM
PERFORMANCE ANALYSIS OF CLIPPED STBC CODED MIMO OFDM SYSTEM
 
Performance Analysis of OSTBC MIMO Using Precoder with ZF & MMSE Equalizer
Performance Analysis of OSTBC MIMO Using Precoder with ZF & MMSE EqualizerPerformance Analysis of OSTBC MIMO Using Precoder with ZF & MMSE Equalizer
Performance Analysis of OSTBC MIMO Using Precoder with ZF & MMSE Equalizer
 
Performance of BCH and RS Codes in MIMO System Using MPFEC Diversity Technique
Performance of BCH and RS Codes in MIMO System Using MPFEC Diversity TechniquePerformance of BCH and RS Codes in MIMO System Using MPFEC Diversity Technique
Performance of BCH and RS Codes in MIMO System Using MPFEC Diversity Technique
 
Evaluation of STBC and Convolutional Code Performance for Wireless Communicat...
Evaluation of STBC and Convolutional Code Performance for Wireless Communicat...Evaluation of STBC and Convolutional Code Performance for Wireless Communicat...
Evaluation of STBC and Convolutional Code Performance for Wireless Communicat...
 
Iterative qr decompostion channel estimation for
Iterative qr decompostion channel estimation forIterative qr decompostion channel estimation for
Iterative qr decompostion channel estimation for
 

MIMO

  • 1. WELCOME 1April 6 , 2016 ECE, Khulna University
  • 2. TITLE Performance Analysis Of Orthogonal Space-Time Block Codes Exploiting Channel State Information In MIMO System 2
  • 3. PRESENTED BY ANIMESH ROY ID: 110901 ABDULLAH- AL- MAMUN ID:110905 SHATARUPA MONDAL ID:110938 3
  • 4. SUPERVISED BY S. M. Shamsul Alam (Associate Professor) Electronics and Communication Engineering Discipline Khulna University Khulna-9208 4
  • 5.  INTRODUCTION  MIMO WIRELESS COMMUNICATION  SPACE TIME CODING(STC)  SPACE TIME BLOCK CODES  PROBLEMS OF MIMO SYSYTEM AND MOTIVATION  THESIS OBJECTIVES  MATERIALS AND METHODS  DATA PROCESSING AT OSTBC SYSTEM  ALAMOUTI OSTBC  GENERALIZED OSTBC  OSTBC TRANSMISSION WITH CSI FEEDBACK  RESULTS AND DISCUSSION  CONCLUSION  FUTURE WORK 5 CONTENTS
  • 7. MIMO WIRELESS COMMUNICATION  Multiple Input Multiple Output  Multiple antennas are used at transmitter and receiver  Increases link capacity and spectral efficiency with improved link reliability  Wireless Fidelity(Wi-Fi), Long Term Evolution(LTE), and many other latest wireless technologies 7 Fig. 1. Multiple-Input Multiple-Output system block diagram
  • 8. MIMO WIRELESS COMMUNICATION(CONTD.) Features Of MIMO  Multiple Signal Paths  High Data Rate  Spatial Diversity  High Capacity  High Throughput  Less Decoding Complexity 8
  • 9. MIMO WIRELESS COMMUNICATION(CONTD.) MIMO Channel Physical paths between transmitters and receivers Channel Model Here is the Rayleigh channel model for NLOS environment. 9 ))1,0(1)1,0(( 2 1 , normalnormalh ji  jih ,
  • 10. MIMO WIRELESS COMMUNICATION(CONTD.) Channel State Information(CSI)  Channel Characteristics  Fading, and power decay with distance  Adapt transmissions to current channel conditions  Improves the diversity technique 10  )(sin hj ehh  
  • 11. MIMO WIRELESS COMMUNICATION(CONTD.) 3×3 MIMO System  At some time instant transmit voltage “1” from first transmit antenna and measure its response from three receive antennas as [0.8 0.7 0.9]  At the same time instant, the procedure is repeated for other transmit antennas  From the sample CSI matrix above, transmission antenna 2 is not effective .Receiver feedback the CSI the transmitter- best utilization of RF equipment's-save transmit power 11 000 000 001 009.0 007.0 008.0 7.01.09.0 8.02.07.0 6.01.08.0  100 010 001 TX-1 TX-2 TX-3
  • 12. MIMO WIRELESS COMMUNICATION(CONTD.) In reality the CSI matrix contains elements that are complex and they describe both the amplitude and phase variations of the link According to Eq(2)-CSI matrix will be, 12 jj jjj jjj 7.07.01.08.09.0 1.01.05.05.07.020.0 6.05.01.03.01.0   
  • 13. CLASSIFICATION OF MIMO ON THE BASIS OF CSI FEEDBACK  Open Loop MIMO System Transmitter does not have any information about the channel  Close Loop MIMO System Receiver sends the channel state information to the transmitter through a feedback channel, provides array gain 13 Transmitter Receiver Fig:2 Block diagram open loop MIMO system Transmitter Receiver Fig.3 Block diagram close loop MIMO system
  • 14. CLASSIFICATION OF MIMO TRANSMISSION TECHNIQUES  Precoding • Same signal is emitted from each of the transmit antennas with appropriate phase and gain weighting • Requires knowledge of channel state information (CSI) at the transmitter  Spatial multiplexing • Transmit independent data stream over different transmit antennas • Can be combined with precoding if CSI is available  Diversity coding • A single stream is transmitted • Signal is coded using – Space Time Coding-Space Frequency Coding • Combined with spatial multiplexing and precoding when CSI available • Diversity gain – aimed at improving the reliability 14
  • 15. SPACE –TIME CODING(STC)  A diversity technique  Multiple, redundant copies of data stream are transmitted to the receiver  Allows reliable Maximum Likelihood (ML)decoding 15
  • 16. SPACE –TIME CODING(CONTD.) Types of STC  Space Time Trellis Code (STTC) • Distributes a trellis codes over multiple antennas and multiple time slots • Code gain, and diversity gain  Space Time Block Code(STBC) • Transmit multiple copies of data stream over multiple transmit antennas • Exploit various received version of data stream • Compensate for different channel problems such as fading, scattering, refraction 16
  • 17. SPACE TIME BLOCK CODES 17 Transmit Antenna Time Slots * 1 * 2 * 3 * 4 * 2 * 1 * 4 * 3 * 3 * 4 * 1 * 2 * 4 * 32 * 1 1234 2143 3412 4321 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx        𝒢=
  • 18. SPACE -TIME BLOCK CODE(CONTD.) Orthogonal Space -Time Block Code  STBC –pair of columns-orthogonal to each other Features of OSTBC  Better performance in Fading Environment  Less decodable Complexity  Better Diversity Gain Rate of OSTBC 𝒢2,2,2 = 𝑥1 𝑥2 −𝑥2 ∗ 𝑥1 ∗ K=number of symbols per block=2 T=Total number of time slots=2 Code rate, R= 𝐾 𝑇 =1 18
  • 19. SPACE -TIME BLOCK CODE(CONTD.)  Alamouti OSTBC • Designed for two transmit antennas • Code rate one  Generalized OSTBC • Designed for more than two transmit antennas • Code rate less than one 19 Different Forms of OSTBC
  • 20. PROBLEM OF MIMO SYSTEM AND MOTIVATION  Electromagnetic waves interact with obstacles like hills, buildings, canyons  Great attenuation ( due to higher data rate and higher performance)  Diversity technique(OSTBC) - reduction of ill effect - multipath fading problem  MIMO with space time coded transmission –receiver with much radio equipment – improved transmission quality  Space Time Coded transmission- CSI- reduction of receivers circuit complexity-less radio equipment's 20
  • 21. THESIS OBJECTIVES  Bit error rate - Orthogonal Space Time Block Codes(OSTBC) - open loop MIMO  Comparison- performance of OSTBC-close loop MIMO techniques- exploits CSI  Maximum utilization -limited radio equipment - good quality of data transmission-CSI exploitation  Comparison of techniques- CSI exploitation 21
  • 23. DATA PROCESSING AT OSTBC SYSTEM OSTBC Encoder 23 1010001... ksss ....2,1 kk sx Symbol Calculation In 𝒢 Sends rows of C Fig 6 : Block Diagram of OSTBC encoder 𝑥1 𝑥2 −𝑥2 ∗ 𝑥1 ∗ t t+T kk sx 
  • 24. DATA PROCESSING AT OSTBC SYSTEM(CONTD.) OSTBC Decoder 24 Linear Combination Pick Closest Symbol (Maximum Likelihood Detector) Trrr ....2,1 ksss ~....~~ 2,1 ksss ~....~~ 2,1 ksˆ Fig 7 : Block Diagram of OSTBC decoder
  • 25. ALAMOUTI OSTBC 𝒢2,2,2= 𝑥1 𝑥2 −𝑥2 ∗ 𝑥1 ∗ Two transmit antennas deliver two symbols over two time slots In case of one receive antenna: Received signal , r = C H + 𝓝 25 1,1r = ℎ1,1 𝑥1 + ℎ1,2 𝑥2 + 1,1 1,2r = −ℎ1,1 𝑥2 ∗ + ℎ1,2 𝑥1 ∗ + 1,2       * 1,2 1,1 r r                       1,2 1,1 2 1 * 1,1 * 2,1 2,11,1 x x hh hh
  • 26. ALAMOUTI OSTBC(CONTD.) Effective received signal matrix Effective Channel matrix Linear combination of received signals = ℎ1,1 ∗ 𝑟1,1 + ℎ1,2 𝑟2,1 ∗ = ℎ1,2 ∗ 𝑟1,1 − ℎ1,1 𝑟2,1 ∗ 26 effH        * 1,1 * 2,1 2,11,1 hh hh effr       * 1,2 1,1 r r eff H eff rHS  ~ 1 ~ S 2 ~ S
  • 27. ALAMOUTI OSTBC(CONTD.) ML decoding for 𝑵 𝒓receive antennas 𝑖=1 𝑁 𝑟 𝑟1,𝑖ℎ𝑖,1 ∗ + 𝑟2,𝑖 ∗ ℎ𝑖,2 − 𝑠1 2 + 𝜓 𝑠1 2 𝜓 = −1 + 𝑖=1 𝑁 𝑟 𝑗=1 𝑁 ℎ𝑖,𝑗 2 27 𝑖=1 𝑁 𝑟 𝑟1,𝑖ℎ𝑖,2 ∗ − 𝑟2,𝑖 ∗ ℎ𝑖,1 − 𝑠2 2 + 𝜓 𝑠2 2
  • 28. GENERALIZED OSTBC OSTBC for N=4 with rate 1/2 𝒢448= Four transmit antennas deliver four symbols over eight time slots ML decoding for 𝑵 𝒓receive antennas 28 * 1 * 2 * 3 * 4 * 2 * 1 * 4 * 3 * 3 * 4 * 1 * 2 * 4 * 32 * 1 1234 2143 3412 4321 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx        1 ~ S 𝑁 𝑟 𝑚=1 (𝑟1,𝑚 ℎ 𝑚,1 ∗ +𝑟2,𝑚 ℎ 𝑚,2 ∗ +𝑟3,𝑚 ℎ 𝑚,3 ∗ +𝑟4,𝑚 ℎ 𝑚,4 ∗ +𝑟5,𝑚 ∗ ℎ 𝑚,1+ 𝑟6,𝑚 ∗ ℎ 𝑚,2+𝑟7,𝑚 ∗ ℎ 𝑚,3+𝑟8,𝑚 ∗ ℎ 𝑚,4) 𝑁 𝑟 𝑚=1 (𝑟1,𝑚 ℎ 𝑚,2 ∗ -𝑟2,𝑚 ℎ 𝑚,1 ∗ -𝑟3,𝑚 ℎ 𝑚,4 ∗ +𝑟4,𝑚 ℎ 𝑚,3 ∗ +𝑟5,𝑚 ∗ ℎ 𝑚,2- 𝑟6,𝑚 ∗ ℎ 𝑚,1-𝑟7,𝑚 ∗ ℎ 𝑚,4+𝑟8,𝑚 ∗ ℎ 𝑚,3) 2 ~ S
  • 29. GENERALIZED OSTBC(CONTD.) 𝑁 𝑟 𝑚=1 (𝑟1,𝑚 ℎ 𝑚,3 ∗ + 𝑟2,𝑚 ℎ 𝑚,1 ∗ − 𝑟3,𝑚 ℎ 𝑚,1 ∗ − 𝑟4,𝑚 ℎ 𝑚,2 ∗ + 𝑟5,𝑚 ∗ ℎ 𝑚,3 + 𝑟6,𝑚 ∗ ℎ 𝑚,4 − 𝑟7,𝑚 ∗ ℎ 𝑚,1 − 𝑟8,𝑚 ∗ ℎ 𝑚,2) 29 3 ~ S ML decoding for 𝑵 𝒓receive antennas 𝑁 𝑟 𝑚=1 (𝑟1,𝑚 ℎ 𝑚,4 ∗ − 𝑟2,𝑚 ℎ 𝑚,3 ∗ + 𝑟3,𝑚 ℎ 𝑚,2 ∗ − 𝑟4,𝑚 ℎ 𝑚,1 ∗ + 𝑟5,𝑚 ∗ ℎ 𝑚,4 − 𝑟6,𝑚 ∗ ℎ 𝑚,3 − 𝑟7,𝑚 ∗ ℎ 𝑚,2 + 𝑟8,𝑚 ∗ ℎ 𝑚,1) 4 ~ S
  • 30. GENERALIZED OSTBC(CONTD.) OSTBC for N=3 with rate 1/2 Three transmit antennas deliver four symbols over eight time slots 30 * 2 * 3 * 4 * 1 * 4 * 3 * 4 * 1 * 2 * 3 * 2 * 1 234 143 412 321 xxx xxx xxx xxx xxx xxx xxx xxx       𝒢348=
  • 31. GENERALIZED OSTBC(CONTD.) OSTBC for N=4 with rate 3/4 𝒢434 = 𝑥1 𝑥2 𝑥3 2 𝑥3 2 −𝑥2 ∗ 𝑥1 ∗ 𝑥3 2 − 𝑥3 2 𝑥3 ∗ 2 𝑥3 ∗ 2 𝑥3 ∗ 2 − 𝑥3 ∗ 2 −𝑥1 − 𝑥1 ∗ + 𝑥2 − 𝑥2 ∗ 2 −𝑥2 − 𝑥2 ∗ + 𝑥1 − 𝑥1 ∗ 2 𝑥2 + 𝑥2 ∗ + 𝑥1 − 𝑥1 ∗ 2 − 𝑥1 + 𝑥1 ∗ + 𝑥2 − 𝑥2 ∗ 2 Four transmit antennas deliver three symbols over four time slots 31
  • 32. GENERALIZED OSTBC(CONTD.) 𝑟1,𝑖 ℎ𝑖,1 ∗ + 𝑟2,𝑖 ℎ𝑖,2 ∗ + 𝑟4,𝑖− 𝑟3,𝑖 ℎ 𝑖,3 ∗ −ℎ 𝑖,4 ∗ 2 − 𝑁 𝑟 𝑖=1 𝑟3,𝑖+ 𝑟4,𝑖 ∗ ℎ 𝑖,3 ∗ +ℎ 𝑖,4 ∗ 2 − 𝑠1 2 + 𝜓 𝑠1 2 32 𝑟1,𝑖 ℎ𝑖,2 ∗ − 𝑟2,𝑖 ℎ𝑖,1 ∗ + 𝑟4,𝑖+ 𝑟3,𝑖 ℎ 𝑖,3 ∗ −ℎ 𝑖,4 ∗ 2 + 𝑁 𝑟 𝑖=1 −𝑟3,𝑖+ 𝑟4,𝑖 ∗ ℎ 𝑖,3+ℎ 𝑖,4 2 − 𝑠1 2 + 𝜓 𝑠2 2 𝑟1,𝑖−𝑟2,𝑖 ℎ 𝑖,3 ∗ 2 + 𝑟1,𝑖−𝑟2,𝑖 ℎ 𝑖,4 2 + 𝑟3,𝑖 ∗ (ℎ 𝑖,1+ℎ 𝑖,2) 2 + 𝑁 𝑟 𝑖=1 𝑟4,𝑖 ∗ (ℎ 𝑖,1−ℎ 𝑖,2) 2 − 𝑠3 2 + 𝜓 𝑠3 2 ML decoding for 𝑵 𝒓receive antennas
  • 33. GENERALIZED OSTBC(CONTD.) OSTBC for N=3 with rate 3/4 𝒢334 = 𝑥1 𝑥2 𝑥3 2 −𝑥2 ∗ 𝑥1 ∗ 𝑥3 2 𝑥3 ∗ 2 𝑥3 ∗ 2 𝑥3 ∗ 2 − 𝑥3 ∗ 2 −𝑥1 − 𝑥1 ∗ − 𝑥2 − 𝑥2 ∗ 2 𝑥2 + 𝑥2 ∗ + 𝑥1 − 𝑥1 ∗ 2 33 Three transmit antennas deliver three symbols over four time slots
  • 34. OSTBC TRANSMISSION WITH CSI FEEDBACK OSTBC with Precoding 34 Modulator OSTBC Encoder Pre-coder C𝑊𝑜𝑝𝑡 𝑊𝑜𝑝𝑡 = arg 𝑚𝑎𝑥 𝑊𝜖𝐹 𝐻𝑊 𝐹 2 },...,,,{ 321 Lopt WWWWFW  Receiver RF Chain },...,,,{ 321 Lopt WWWWFW  },...,,,{ 321 LWWWWF  Signal processing (CSI estimation) H Indices of 𝑊𝑜𝑝𝑡 Received signal equation 𝑟 = HWC N E T x 𝓝
  • 35. OSTBC TRANSMISSION WITH CSI FEEDBACK Precoding matrix of codebook ‘F’ 𝐹 = 𝑊𝐷𝐹𝑇, 𝜃𝑊𝐷𝐹𝑇, … , 𝜃 𝐿−1 𝑊𝐷𝐹𝑇 , 𝜃 = 𝑑𝑖𝑎𝑔 𝑒 𝑗2𝜋𝑢1/𝑁 𝑇 𝑒 𝑗2𝜋𝑢2/𝑁 𝑇 … 𝑒 𝑗2𝜋𝑢 𝑁𝑇/𝑁 𝑇 35 tN Number of Tx antennas M Number of Data streams BFL / Codebook size (feedback bits) c column indices u rotation vector 2 1 8/(3) [1] [1,0] 3 1 32/(5) [1] [1,26,28] 4 2 32/(5) [1,2] [1,26,28] 4 1 64/(6) [1] [1,8,61,45] 4 2 64/(6) [0,1] [1,7,52,56] 4 3 64/(6) [0,2,3] [1,8,61,45]                       4 3.3 .2 4 2.3 .2 4 3.2 .2 4 2.2 .2 4 3.1 .2 4 2.1 .2 1 1 1 1 111 4 1 jj jj jj ee ee ee W 𝑊𝑖 = 𝑑𝑖𝑎𝑔 𝑒 𝑗2𝜋. 1 4 𝑒 𝑗2𝜋. 8 4 𝑒 𝑗2𝜋. 61 4 𝑒 𝑗2𝜋. 45 4 𝑖−𝑙 𝑊1 𝑖 = 2,3, … 64 Codebook design parameters for OSTBC in IEEE 802.16e specification. 𝑁 𝑇=4,M=3 and L=64 , 𝑊1
  • 36. OSTBC TRANSMISSION WITH CSI FEEDBACK OSTBC with Antenna Selection 36 RF chain Input OSTBC Encoder RF module selector 𝐻 𝑝1, 𝑝2,… 𝑝 𝑄 Signal processing (CSI estimation) arg𝑚𝑎𝑥 𝑝1, 𝑝2,…,𝑝𝑞 𝜖𝐴𝑞 𝐻 𝑝1, 𝑝2,… 𝑝 𝑄 𝐹 2 Column Indices Received signal equation Q RF modules are selectively mapped from 𝑁 𝑇 transmit antennas 𝑟 = 𝐸 𝑋 𝑄 𝐻 𝑝1, 𝑝2,… 𝑝 𝑄 𝐶 + 𝒩 , Q<𝑁 𝑇
  • 38. OSTBC’S FOR ONE RECEIVE ANTENNAS 0 2 4 6 8 10 12 14 16 18 20 10 -4 10 -3 10 -2 10 -1 10 0 SNR(db) BER 1bit/(sHZ),1 receive antenna Uncoded,BPSK(1Tx,1Rx) alamouti OSTBC,BPSK(2Tx,1Rx) Rate 1/2 OSTBC,QPSK(3Tx,1Rx) Rate 1/2 OSTBC,QPSK(4Tx,1Rx) 38 Fig 11: Bit Error Rate plotted against SNR for OSTBC’s for one receive antennas
  • 39. OSTBC’S FOR TWO RECEIVE ANTENNAS 0 2 4 6 8 10 12 14 16 10 -4 10 -3 10 -2 10 -1 SNR(db) BER 1bit/(sHZ),2 receive antennas Uncoded,BPSK(1Tx,2Rx) alamouti OSTBC,BPSK(2Tx,2Rx) Rate 1/2 OSTBC,QPSK(3Tx,2Rx) Rate 1/2 OSTBC,QPSK(4Tx,2Rx) 39 Fig 12: Bit Error Rate plotted against SNR for OSTBC’s for two receive antennas
  • 40. OSTBC’S FOR THREE RECEIVE ANTENNAS 0 2 4 6 8 10 12 14 16 18 10 -4 10 -3 10 -2 10 -1 SNR(db) BER 2bit/(sHZ),3 receive antennas Uncoded,QPSK(1Tx,3Rx) alamouti OSTBC,QPSK(2Tx,3Rx) Rate 1/2 OSTBC,16QAM(3Tx,3Rx) Rate 1/2 OSTBC,16QAM(4Tx,3Rx) 40 Fig 13: Bit Error Rate plotted against SNR for OSTBC’s for three receive antennas
  • 41. OSTBC’S FOR FOUR RECEIVE ANTENNAS 0 1 2 3 4 5 6 7 8 9 10 10 -4 10 -3 10 -2 10 -1 SNR(db) BER 2bit/(sHZ),4 receive antennas Uncoded,QPSK(1Tx,4Rx) alamouti OSTBC,QPSK(2Tx,4Rx) Rate 1/2 OSTBC,16QAM(3Tx,4Rx) Rate 1/2 OSTBC,16QAM(4Tx,4Rx) 41 Fig 14: Bit Error Rate plotted against SNR for OSTBC’s for Four receive antennas
  • 42. OSTBC’S FOR THREE RECEIVE ANTENNAS 0 2 4 6 8 10 12 14 16 10 -4 10 -3 10 -2 10 -1 SNR(db) BER 3bit/(sHZ),3 receive antennas Uncoded,8PSK(1Tx,3Rx) alamouti OSTBC,8PSK(2Tx,3Rx) Rate 3/4 OSTBC,16QAM(3Tx,3Rx) Rate 3/4 OSTBC,16QAM(4Tx,3Rx) 42 Fig 15: Bit Error Rate plotted against SNR for OSTBC’s for three receive antennas
  • 43. OSTBC’S FOR FOUR RECEIVE ANTENNAS 0 5 10 15 10 -4 10 -3 10 -2 10 -1 SNR(db) BER 3bit/(sHZ),4 receive antennas Uncoded,8PSK(1Tx,4Rx) alamouti OSTBC,8PSK(2Tx,4Rx) Rate 3/4 OSTBC,16QAM(4Tx,4Rx) Rate 3/4 OSTBC,16QAM(3Tx,4Rx) 43 Fig 16: Bit Error Rate plotted against SNR for OSTBC’s for four receive antennas
  • 44. OSTBC’S FOR THREE TRANSMIT ANTENNAS 0 2 4 6 8 10 12 14 16 18 10 -4 10 -3 10 -2 10 -1 10 0 SNR(db) BER BER performance for Three transmit antennas of Generalized OSTBC Rate 1/2OSTBC(3Tx,1Rx) Rate1/2 OSTBC(3Tx,2Rx) Rate1/2 OSTBC(3Tx,3Rx) Rate1/2 OSTBC(3Tx,4Rx) Rate3/4 OSTBC(3Tx,1Rx) Rate3/4 OSTBC(3Tx,2Rx) Rate3/4 OSTBC(3Tx,3Rx) Rate3/4 OSTBC(3Tx,4Rx) 44 Fig 17: Bit Error Rate plotted against SNR for OSTBC’s for three transmit antennas
  • 45. OSTBC’S FOR SPATIAL DIVERSITY 12 0 1 2 3 4 5 6 7 8 9 10 -4 10 -3 10 -2 10 -1 SNR(db) BER Spatial Diversity 12 alamouti,QPSK(2Tx,6Rx) Rate 1/2 OSTBC,QPSK(3Tx,4Rx) Rate 1/2 OSTBC,QPSK(4Tx,3Rx) Rate 3/4 OSTBC,QPSK(3Tx,4Rx) Rate 3/4 OSTBC,QPSK(4Tx,3Rx) 45 Fig 18: Bit Error Rate plotted against SNR for OSTBC’s for spatial diversity 12
  • 46. ALAMOUTI & RATE ½ OSTBC WITH PRECODING 0 2 4 6 8 10 12 14 16 18 20 10 -4 10 -3 10 -2 10 -1 10 0 SNR(db) BER 1 bit/(shz) bit rate Alamouti(2Tx,1Rx) precoded Alamouti(2Tx,1Rx) OSTBC (3Tx,1Rx) precoded OSTBC (3Tx,1Rx) alamouti(2Tx,2Rx) OSTBC (4Tx,1Rx) 46 Fig 19 :BER performance analysis again SNR for Alamouti & rate ½ OSTBC with precoding
  • 47. ALAMOUTI & RATE ½ OSTBC WITH ANTENNA SELECTION 0 2 4 6 8 10 12 14 16 18 20 10 -4 10 -3 10 -2 10 -1 10 0 SNR(db) BER 1 bit/(shz) bit rate Alamouti(2Tx,1Rx) OSTBC(3Tx,1Rx) Antenna alamouti(2Tx,1Rx) Antenna OSTBC (3Tx,1Rx) alamouti(2Tx,2Rx) OSTBC (4Tx,1Rx) 47 Fig 20 :BER performance analysis again SNR for Alamouti & rate ½ OSTBC with antenna selection
  • 48. PRECODING WITH LIMITED FEEDBACK AND ANTENNA SUBSET SELECTION 0 2 4 6 8 10 12 10 -4 10 -3 10 -2 10 -1 SNR(db) BER 1 bit/(shz) bit rate precoded Alamouti(2Tx,1Rx) precoded OSTBC(3Tx,1Rx) Antenna alamouti(2Tx,1Rx) Antenna OSTBC (3Tx,1Rx) 48 Fig 21 :Performance analysis between precoding with limited feedback and Antenna subset selection
  • 49. FINDINGS OF THE SIMULATIONS  In higher bit rate Alamouti OSTBC performs better  Rate ½ OSTBC always outperforms over rate ¾ OSTBC  For certain OSTBC with constant RX antenna the more we increase TX antenna the better will the performance  For same spatial diversity less TX antenna with more RX antenna outperform over more TX antenna with less RX antenna  CSI at transmitter reduce the necessity of extra radio equipment's at transmitter and receiver for attaining better performance  Precoding using codebook is efficient than antenna selection 49
  • 50. CONCLUSION  Precoded OSTBC- OSTBC with Antenna selection-Efficient uses of radio equipment's  Adjust - size of codebook -easily possible to improve array gain - antenna selection  Alamouti OSTBC as a rate one OSTBC and apply it to precoded system, in future we apply Quasi Orthogonal Space Time Block codes in precoded system and analysis the performance in Multi –User MIMO  In the thesis we have used ML decoding, in future we will focus on Sphere Decoding for OSTBC and compare the performance with ML decoding 50
  • 51. REFERENCES 1. Hamid Jafarkhani , “Space-Time Coding: Theory and practice,” cambridge university press 2005,pp.1-125 2. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456–1467, July 1999. 3. S.M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communication”, IEEE Jl. on Select Areas in Comm., Vol. 16, pp. 1451–1458, 1998. 4. Yong Soo Cho,Jaekwon Kim,Won Young Yang,Chung -Gu Kang, “ MIMO – OFDM Wireless Communications ,” Copyright _ 2010 John Wiley & Sons (Asia) Pte Ltd 5. D. J. Love and R. W. Heath, "Limited feedback unitary precoding for orthogonal space-time block codes," in IEEE Transactions on Signal Processing, vol. 53, no. 1, pp. 64-73, Jan. 2005. 6. Vahid Tarokh, Hamid Jafarkhani, and A. Robert Calderbank (March 1999). “Space–time block coding for wireless communications: performance results(PDF)”. IEEE Journal on Selected Areas in Communications 17 (3): 451–460. 7. L. M. Cortes-Pena , “MIMO Space-Time Block Coding (STBC): Simulations and Results,” Design Project: Personal and Mobile Communications, Georgia Tech , pp. 1-8, April, 2009. 8. Modern Digital and Analog Communication System by B.P Lathi ,Zhi Ding 9. Advanced Engineering Mathematics by H.K DASS 10. Fuqin Xiong ,“Digital Modulation technique”,Artech house ,inc.2000,pp-1-7 & 561-563.(p-562)] 11. G. Foschini and M. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless personal communications, vol. 6, no. 3, pp. 311–335, 1998. 12. Simon Haykin, “Digital Communication” john Wiley & Sons Ltd 2000 13. LTE, LTE-Advanced and WiMAX: Towards IMT-Advanced Networks by Abd-Elhamid M. Taha, Najah Abu Ali, Hossam S. Hassanein 14. Precoding Techniques for Digital Communication Systems by C.-C. Jay Kuo, Shang-Ho Tsai, Layla Tadjpour, Yu-Hao Chang 15. Larsson, E.G., Ganesan, G., Stoica, P., and Wong, W.H. (2002) On the performance of orthogonal space-time block coding with quantized feedback. IEEE Commun. Letters, 12(6), 487–489. 16. Hochwald, B.M., Marzetta, T.L., Richardson, T.J. et al. (2000) , “Systematic design of unitary space-time constellations,” IEEE Trans. Info. Theory, 46, 1962– 1973. 17. Recent Trends in Intelligent and Emerging Systems edited by Kandarpa Kumar Sarma, Manash Pratim Sarma, Mousmita Sarma p-(21)] 18. Signal Processing, Channel Estimation and Link Adaptation in MIMO-OFDM Systems By Jianjun Ran,p-60 19. D. Gesbert, M. Kountouris, R. W. Heath Jr., C. b. Chae and T. Salzer, "Shifting the MIMO Paradigm," in IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 36-46, Sept. 2007. 20. B. M. Hochwald, T. L. Marzetta, T. J. Richardson, W. Sweldens and R. Urbanke, "Systematic design of unitary space-time constellations," in IEEE Transactions on Information Theory, vol. 46, no. 6, pp. 1962-1973, Sep 2000. 21. J.-C. Guey, M. P. Fitz, M. R. Bell, and W.-Y. Kuo, “Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels,” in51 Proc. IEEE VTC’96, 1996, pp. 136–140.