Embed presentation
Downloaded 20 times



![Example 2
Determine XY if X(-4, 5) and
Y(1,2).
XY= (𝑥2−𝑥1)2 + (𝑦2+𝑦1)2
XY= [1 − −4 ]2+(2 − 5)2
XY = (5)2+(−3)2
XY = 25 + 9
XY= 34
10
8
6
4
2
-4 -2 2 4 6
X
Y](https://image.slidesharecdn.com/distanceformula-171005084034/85/Math-Distance-Formula-4-320.jpg)
![M
C
A
Example 3
Prove that the triangle whose vertices
are A (-1, -1), C(3, -4) and M (2, 3) is
isosceles.
Proof:
AC = (−1 − 3)2+[−1 − −4 ]2
= (−4)2+(3)2
= 16 + 9
AC = 5
AM = (−1 − 2)2+(−1 − 3)2
= (−3)2+(−4)2
= 9 + 16
AM = 5
CM= (3 − 2)2+(−4 − 3)2
= (1)2+(−7)2
= 1 + 49
= 50
CM = 5 2
Since AC = AM, then 𝐴𝐶 ≅ 𝐴𝑀 and Δ𝐴𝐶𝑀
is an isosceles triangle.](https://image.slidesharecdn.com/distanceformula-171005084034/85/Math-Distance-Formula-5-320.jpg)


The document explains the distance formula for calculating the distance between points on a coordinate plane. It provides examples of how to compute distances using vertices of triangles and demonstrates the properties of isosceles triangles. The document includes specific coordinate examples and the step-by-step methodology for solving them.



![Example 2
Determine XY if X(-4, 5) and
Y(1,2).
XY= (𝑥2−𝑥1)2 + (𝑦2+𝑦1)2
XY= [1 − −4 ]2+(2 − 5)2
XY = (5)2+(−3)2
XY = 25 + 9
XY= 34
10
8
6
4
2
-4 -2 2 4 6
X
Y](https://image.slidesharecdn.com/distanceformula-171005084034/85/Math-Distance-Formula-4-320.jpg)
![M
C
A
Example 3
Prove that the triangle whose vertices
are A (-1, -1), C(3, -4) and M (2, 3) is
isosceles.
Proof:
AC = (−1 − 3)2+[−1 − −4 ]2
= (−4)2+(3)2
= 16 + 9
AC = 5
AM = (−1 − 2)2+(−1 − 3)2
= (−3)2+(−4)2
= 9 + 16
AM = 5
CM= (3 − 2)2+(−4 − 3)2
= (1)2+(−7)2
= 1 + 49
= 50
CM = 5 2
Since AC = AM, then 𝐴𝐶 ≅ 𝐴𝑀 and Δ𝐴𝐶𝑀
is an isosceles triangle.](https://image.slidesharecdn.com/distanceformula-171005084034/85/Math-Distance-Formula-5-320.jpg)
