SlideShare a Scribd company logo
A Brief Introduction to Manifold Learning
Wei Yang
platero.yang@gmail.com
2016/8/11 1
Some slides are from Geometric Methods and Manifold Learning in Machine Learning (Mikhail Belkin and
Partha Niyoqi). Summer School (MLSS), Chicago 2009
What is a manifold?
2016/8/11 2
https://en.wikipedia.org/wiki/Manifold
Manifolds in visual perception
Consider a simple example of image variability, the set 𝑀 of all
facial images generated by varying the orientation of a face
• 1D manifold:
– a single degree of freedom: the angle of rotation
• The dimensionality of 𝑀 would increase if we allow
– image scaling
– illumination changing
– …
2016/8/11 3
The Manifold Ways of Perception
•H. Sebastian Seung and
•Daniel D. Lee
Science 22 December 2000
Why Manifolds?
• Euclidean distance in the high dimensional input space may
not accurately reflect the intrinsic similarity
– Euclidean distance
– Geodesic distance
2016/8/11 4
Linear Manifold VS. Nonlinear
Manifold
Differential Geometry
• Embedded manifolds
• Tangent space
• Geodesic
• Laplace-Beltrami operator
2016/8/11 5
Embedded manifolds
• ℳ 𝑘
⊂ ℝ 𝑁
• Locally (not globally) looks like Euclidean space
𝑆 2
⊂ ℝ3
2016/8/11 6
Example: circle
• 𝑥2
+ 𝑦2
= 1
• Charts: continuous, invertible
𝜙 𝑡𝑜𝑝: (𝑥, 𝑦) ⟼ 𝑥
𝜙 𝑡𝑜𝑝
−1
: (𝑥) ⟼ (𝑥, 1 − 𝑥2)
• Atlas: charts covered the whole
circle
• Transition map
𝑇 𝑎 = 𝜙 𝑟𝑖𝑔ℎ𝑡 𝜙 𝑡𝑜𝑝
−1
𝑎
2016/8/11 7
𝑥
𝑦
= 𝜙 𝑟𝑖𝑔ℎ𝑡(𝑎, 1 − 𝑎2)
= 1 − 𝑎2
𝑎
𝜙 𝑡𝑜𝑝
−1
𝑎
𝜙 𝑟𝑖𝑔ℎ𝑡 𝜙 𝑡𝑜𝑝
−1
𝑎
http://en.wikipedia.org/wiki/Manifold
Tangent space
• 𝑘-dimensional affine subspace of ℝ 𝑁
𝑇𝑝ℳ 𝑘
⊂ ℝ 𝑁
𝑝
2016/8/11 8
Tangent vectors and curves
• Tangent vectors <———> curves.
Geometric Methods and Manifold Learning – p. 1
𝜙 𝑡 : ℝ → ℳ 𝑘
𝑑 𝜙 𝑡
𝑑 𝑡
|0 = 𝑉
𝑣
𝜙 𝑡
𝑝
2016/8/11 9
Tangent vectors as derivatives
• Tangent vectors <———> Directional derivatives
Geometric Methods and Manifold Learning – p. 1
𝜙 𝑡 : ℝ → ℳ 𝑘
𝑓 𝜙 𝑡 : ℝ → ℝ
𝑑𝑓
𝑑𝑣
=
𝑑 𝜙 𝑡
𝑑 𝑡
|0
𝑣
𝜙 𝑡
𝑓: ℳ 𝑘
→ ℝ𝑝
2016/8/11 10
Riemannian geometry
• Norms and angles in tangent space
Geometric Methods and Manifold Learning – p. 1
< 𝑣, 𝑤 >
𝑣 , 𝑤
𝑣
𝑤𝑝
2016/8/11 11
Length of curves and geodesics
• Can measure length using norm in tangent space.
• Geodesic — shortest curve between two points.
Geometric Methods and Manifold Learning – p. 1
𝜙 𝑡 : [0,1] → ℳ 𝑘
𝑙 𝜙 =
0
1
𝑑𝜙
𝑑𝑡
𝑑𝑡
𝑝
2016/8/11 12
Gradient
• Tangent vectors <———> Directional derivatives
• Gradient points in the direction of maximum change.
Geometric Methods and Manifold Learning – p. 1
< 𝛻𝑓, 𝑣 >≡
𝑑𝑓
𝑑𝑣
𝑣
𝜙 𝑡
𝑓: ℳ 𝑘
→ ℝ𝑝
2016/8/11 13
Exponential map
• Geodesic: 𝜙 𝑡
• 𝜙 0 = 𝑝, 𝜙 𝑣 = 𝑞,
𝑑𝜙 𝑡
𝑑𝑡
|0 = 𝑣
Geometric Methods and Manifold Learning – p. 1
exp 𝑝: 𝑇𝑝ℳ 𝑘
→ ℳ 𝑘
exp 𝑝 𝑣 = 𝑟
exp 𝑝 𝑤 = 𝑞𝑞
𝑝
𝑟
𝑣𝑤
𝜙 𝑡
2016/8/11 14
Laplace-Beltrami operator
• Orthonormal coordinate system.
Geometric Methods and Manifold Learning – p. 1
𝑝 𝑥2
𝑥1
𝑓: ℳ 𝑘
→ ℝ
exp 𝑝: 𝑇𝑝ℳ 𝑘
→ ℳ 𝑘
2016/8/11 15
Linear Manifold Learning
• Principal Components Analysis
• Multidimensional Scaling
2016/8/11 16
Principal Components Analysis
• Given x1, x2… , x 𝑛 ∈ ℝ 𝐷 with mean 0
• Find 𝑦1, 𝑦2 … , 𝑦𝑛 ∈ ℝ such that
𝑦𝑖 = w ∙ x 𝑖
• And
argmax
w
𝑣𝑎𝑟({𝑦𝑖}) =
𝑖
𝑦𝑖
2 = w 𝑇
𝑖
x𝑖x𝑖
𝑇 w
• w∗ is leading eigenvectors of 𝑖 x𝑖x𝑖
𝑇
2016/8/11 17
Multidimensional Scaling
• MDS: exploring similarities or dissimilarities in data.
• Given 𝑁 data points with distance function is defined as:
𝛿𝑖,𝑗
• The dissimilarity matrix can be defined as:
Δ ≔
𝛿1,1 … 𝛿1,𝑁
⋮ ⋱ ⋮
𝛿 𝑁,1 … 𝛿 𝑁,𝑁
Find x1, x2… , x 𝑁 ∈ ℝ 𝐷 such that
min
x1,... ,x 𝑁
𝑖<𝑗
( x 𝑖 − x𝑗 − 𝛿𝑖,𝑗)2
2016/8/11 18
Nonlinear Manifold Learning
• ISOMAP (Tenenbaum, et al, 00)
• LLE (Roweis, Saul, 00)
• Laplacian Eigenmaps (Belkin, Niyogi, 01)
2016/8/11 19
Algorithmic framework
• Neighborhood graph common to all methods.
2016/8/11 20
Isomap: Motivation
• PCA/MDS see just the Euclidean structure
• Only geodesic distances reflect the true low-dimensional
geometry of the manifold
• The question:
– How to approximate geodesic distances?
2016/8/11 21
Isomap
1. Construct neighborhood graph 𝒅 𝒙(𝒊, 𝒋) using Euclidean
distance
– 𝜖-Isomap: neighbors within a radius 𝜖
– 𝐾-Isomap: 𝐾 nearest neighbors
2. Compute shortest path as the approximation of geodesic
distance
1. 𝒅 𝑮 𝒊, 𝒋 = 𝒅 𝒙(𝒊, 𝒋)
2. For 𝒌 = 𝟏, 𝟐, … , 𝑵, replace all 𝒅 𝑮 𝒊, 𝒋 by 𝐦𝐢𝐧 𝒅 𝑮 𝒊, 𝒋 , 𝒅 𝑮 𝒊, 𝒌 + 𝒅 𝑮 𝒌, 𝒋
3. Construct 𝑑-dimensional embedding using MDS
2016/8/11 22
Isomap: results
2016/8/11 23
Face varying in pose and illumination Hand varying in finger extension & wrist
rotation
Isomap: estimate the intrinsic dimensionality
2016/8/11 24
Locally Linear Embedding
• Intuition: each data point and its neighbors are expected to lie
on or close to a locally linear patch of the manifold.
2016/8/11 25
Locally Linear Embedding
1. Assign neighbours to
each data point (𝑘-NN)
2. Reconstruct each
point by a weighted
linear combination of
its neighbors.
3. Map each point to
embedded
coordinates.
2016/8/11 26
S T Roweis, and L K Saul Science 2000;290:2323-2326
Steps of locally linear embedding
• Suppose we have 𝑁 data points 𝑋𝑖 in a 𝐷 dimensional space.
• Step 1: Construct neighborhood graph
– 𝑘-NN neighborhood
– Euclidean distance or normalized dot products
2016/8/11 27
Steps of locally linear embedding
• Step 2: Compute the weights 𝑊𝑖𝑗 that best linearly
reconstruct 𝑋𝑖 from its neighbors by minimizing
where
2016/8/11 28
Steps of locally linear embedding
• Step 3: Compute the low-dimensional embedding best
reconstructed by 𝑊𝑖𝑗 by minimizing
• Note: 𝑊 is a sparse matrix, and 𝑖-th row is barycentric
coordinates (center of mass) of 𝑋𝑖 in the basis of its nearest
neighbors.
• Similar to PCA, using lowest eigenvectors of 𝐼 − 𝑊 𝑇(𝐼 − 𝑊)
to embed.
2016/8/11 29
LLE (Comments by Ruimao Zhang)
算法优点
• LLE算法可以学习任意维的局部线性
的低维流形.
• LLE算法中的待定参数很少, K 和 d.
• LLE算法中每个点的近邻权值在平
移, 旋转,伸缩变换下是保持不变的.
• LLE算法有解析的整体最优解,不需
迭代.
• LLE算法归结为稀疏矩阵特征值计
算, 计算复杂度相对较小, 容易执行.
算法缺点
• LLE算法要求所学习的流形只能是不
闭合的且在局部是线性的.
• LLE算法要求样本在流形上是稠密采
样的.
• LLE算法中的参数 K, d 有过多的选择.
• LLE算法对样本中的噪音很敏感.
2016/8/11 30
Laplacian Eigenmaps
• Using the notion of the Laplacian of a graph to compute a
low-dimensional representation of the data
– The laplacian of a graph is analogous to the Laplace Beltrami operator
on manifolds, of which the eigenfunctions have properties desirable
for embedding (See M. Belkin and P. Niyogi for justification).
2016/8/11 31
Laplacian matrix (discrete Laplacian)
• Laplacian matrix is a matrix representation of a graph
𝐿 = 𝐷 − 𝐴
– 𝐿 is the Laplacian matrix
– 𝐷 is the degree matrix
– 𝐴 is the adjacent matrix
2016/8/11 32
Laplacian Eigenmaps
2016/8/11 mlss09us_niyogi_belkin_gmml 33
Laplacian Eigenmaps
2016/8/11 mlss09us_niyogi_belkin_gmml 34
Laplacian Eigenmaps
2016/8/11 mlss09us_niyogi_belkin_gmml 35
𝑫: Degree matrix
𝑾 : (Weighted) adjacent matrix
𝑳 : Laplacian matrix
𝐷−1
𝐿𝑓 = 𝜆𝑓
Justification of optimal embedding
• We have constructed a weighted graph 𝐺 = 𝑉, 𝐸
• We want to map 𝐺 to a line 𝒚 so that connected points stay
as close together as possible
𝒚 = 𝑦1, 𝑦2, … , 𝑦𝑛
𝑻
• This can be done by minimizing the objective function
𝑖𝑗
𝑦𝑖 − 𝑦𝑗
2
𝑊𝑖𝑗
• It incurs a heavy penalty if neighboring points are mapped far
apart.
2016/8/11 36
Justification of optimal embedding (Cont.)
𝑖𝑗
𝑦𝑖 − 𝑦𝑗
2
𝑊𝑖𝑗
=
𝑖𝑗
𝑦𝑖
2 + 𝑦𝑗
2 − 2𝑦𝑖 𝑦𝑗 𝑊𝑖𝑗
= (
𝑖
𝑦𝑖
2
𝐷𝑖𝑖 +
𝑗
𝑦𝑗
2
𝐷𝑗𝑗) − 2
𝑖,𝑗
𝑦𝑖 𝑦𝑗 𝑊𝑖𝑗
= 2𝒚 𝑇 𝐷𝒚 − 2𝒚 𝑇 𝑊𝒚
= 2𝒚 𝑇(𝐷 − 𝑊)𝒚
= 2𝒚 𝑇 𝐿𝒚
2016/8/11 37
1
2 𝑖𝑗 𝑦𝑖 − 𝑦𝑗
2
𝑊𝑖𝑗 = 𝒚 𝑇 𝐿𝒚
Justification of optimal embedding (Cont.)
The minimization problem reduces to finding
Note the constraint removes an arbitrary scaling factor in the
embedding.
Using Lagrange multiplier and setting the derivative with respect
to 𝒚 equal to zero, we obtain
The optimum is given by the minimum eigenvalue solution to the
generalized eigenvalue problem (trivial solution: 𝒚 = 𝟏, 𝜆 = 0).
2016/8/11 38
More methods for non-linear manifold learning
2016/8/11 39
Applications
• Super-resolution
• Laplacianfaces
2016/8/11 40
Super-Resolution Through Neighbor Embedding
• Intuition: small patches in the low- and high-resolution images
form manifolds with similar local geometry in two distinct
spaces.
• X: low-resolution image Y: target high-resolution image
• The algorithm is extremely analogous to LLE!
– Step 1: construct neighborhood of each patch in X
– Step 2: compute the reconstructing weights of the neighbors that
minimize the reconstruction error
– Step 3: perform high-dimensional embedding to (as opposed to the
low-dimensional embedding of LLE)
– Step 4: Construct the target high-resolution image Y by enforcing local
compatibility and smoothness constraints between adjacent patches
obtained in step 3.
2016/8/11 41
Chang, Hong, Dit-Yan Yeung, and Yimin Xiong. "Super-resolution
through neighbor embedding." CVPR 2004.
Super-Resolution Through Neighbor Embedding
• Training parameters
– The number of nearest neighbors K
– The patch size
– The degree of overlap
2016/8/11 42
Chang, Hong, Dit-Yan Yeung, and Yimin Xiong. "Super-resolution
through neighbor embedding." CVPR 2004.
Super-Resolution Through Neighbor Embedding
2016/8/11 43
Chang, Hong, Dit-Yan Yeung, and Yimin Xiong. "Super-resolution
through neighbor embedding." CVPR 2004.
Laplacianfaces
• Mapping face images in the image space via Locality
Preserving Projections (LPP) to low-dimensional face
subspace (manifold), called Laplacianfaces.
• LLP is analogous to Laplacian Eigenmaps except the objective
function
– Laplacian Eigenmaps:
– LLP:
2016/8/11 44
He, Xiaofei, et al. "Face recognition using laplacianfaces." Pattern Analysis
and Machine Intelligence, IEEE Transactions on 27.3 (2005): 328-340.
Laplacianfaces
Learning Laplacianfaces for Representation
1. PCA projection (kept 98 percent information in the sense of
reconstruction error)
2. Constructing the nearest-neighbor graph
3. Choosing the weights
4. Optimize
The k lowest eigenvectors of
are choosing to form
is the so-called Laplacianfaces.
2016/8/11 45
Laplacianfaces
Two-dimensional linear embedding of face images by Laplacianfaces.
2016/8/11 46
Reference and Resources
• 浅谈流形学习. Pluskid. 2010-05-29. http://blog.pluskid.org/?p=533&cpage=1
• Wikipedia: MDS, Manifold, Laplacian Matrix
• PCA: M. Bishop, PRML
• Eigenvalue decomposition and SVD:机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用
• General Eigenvalue Problem: wolfram, tutorial
• Video lecture: Geometric Methods and Manifold Learning. Mikhail Belkin, Partha Niyogi (author of
Laplacian eigenmap)
• MANI fold Learning Matlab Demo: http://www.math.ucla.edu/~wittman/mani/index.html
2016/8/11 47
Thank you.
2016/8/11 48

More Related Content

What's hot

Gnn overview
Gnn overviewGnn overview
Gnn overview
Louis (Yufeng) Wang
 
Representation learning on graphs
Representation learning on graphsRepresentation learning on graphs
Representation learning on graphs
Deakin University
 
Graph Neural Network - Introduction
Graph Neural Network - IntroductionGraph Neural Network - Introduction
Graph Neural Network - Introduction
Jungwon Kim
 
K-Nearest Neighbor Classifier
K-Nearest Neighbor ClassifierK-Nearest Neighbor Classifier
K-Nearest Neighbor Classifier
Neha Kulkarni
 
Gradient Boosting
Gradient BoostingGradient Boosting
Gradient Boosting
Nghia Bui Van
 
K mean-clustering algorithm
K mean-clustering algorithmK mean-clustering algorithm
K mean-clustering algorithm
parry prabhu
 
Graph neural networks overview
Graph neural networks overviewGraph neural networks overview
Graph neural networks overview
Rodion Kiryukhin
 
Optimization in Deep Learning
Optimization in Deep LearningOptimization in Deep Learning
Optimization in Deep Learning
Yan Xu
 
Nonnegative Matrix Factorization
Nonnegative Matrix FactorizationNonnegative Matrix Factorization
Nonnegative Matrix Factorization
Tatsuya Yokota
 
Perceptron (neural network)
Perceptron (neural network)Perceptron (neural network)
Perceptron (neural network)
EdutechLearners
 
Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)
Gaurav Mittal
 
Mask R-CNN
Mask R-CNNMask R-CNN
Mask R-CNN
Chanuk Lim
 
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Simplilearn
 
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
Ceni Babaoglu, PhD
 
Dimension Reduction Introduction & PCA.pptx
Dimension Reduction Introduction & PCA.pptxDimension Reduction Introduction & PCA.pptx
Dimension Reduction Introduction & PCA.pptx
RohanBorgalli
 
Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational Autoencoder
Mark Chang
 
Feature selection
Feature selectionFeature selection
Feature selection
Dong Guo
 
Feed forward ,back propagation,gradient descent
Feed forward ,back propagation,gradient descentFeed forward ,back propagation,gradient descent
Feed forward ,back propagation,gradient descent
Muhammad Rasel
 
HML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep LearningHML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep Learning
Yan Xu
 

What's hot (20)

Gnn overview
Gnn overviewGnn overview
Gnn overview
 
Representation learning on graphs
Representation learning on graphsRepresentation learning on graphs
Representation learning on graphs
 
Graph Neural Network - Introduction
Graph Neural Network - IntroductionGraph Neural Network - Introduction
Graph Neural Network - Introduction
 
K-Nearest Neighbor Classifier
K-Nearest Neighbor ClassifierK-Nearest Neighbor Classifier
K-Nearest Neighbor Classifier
 
Gradient Boosting
Gradient BoostingGradient Boosting
Gradient Boosting
 
K mean-clustering algorithm
K mean-clustering algorithmK mean-clustering algorithm
K mean-clustering algorithm
 
Graph neural networks overview
Graph neural networks overviewGraph neural networks overview
Graph neural networks overview
 
Optimization in Deep Learning
Optimization in Deep LearningOptimization in Deep Learning
Optimization in Deep Learning
 
Nonnegative Matrix Factorization
Nonnegative Matrix FactorizationNonnegative Matrix Factorization
Nonnegative Matrix Factorization
 
Perceptron (neural network)
Perceptron (neural network)Perceptron (neural network)
Perceptron (neural network)
 
Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)
 
Mask R-CNN
Mask R-CNNMask R-CNN
Mask R-CNN
 
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
 
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
 
Dimension Reduction Introduction & PCA.pptx
Dimension Reduction Introduction & PCA.pptxDimension Reduction Introduction & PCA.pptx
Dimension Reduction Introduction & PCA.pptx
 
KNN
KNNKNN
KNN
 
Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational Autoencoder
 
Feature selection
Feature selectionFeature selection
Feature selection
 
Feed forward ,back propagation,gradient descent
Feed forward ,back propagation,gradient descentFeed forward ,back propagation,gradient descent
Feed forward ,back propagation,gradient descent
 
HML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep LearningHML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep Learning
 

Similar to Manifold learning

Machine Learning Foundations for Professional Managers
Machine Learning Foundations for Professional ManagersMachine Learning Foundations for Professional Managers
Machine Learning Foundations for Professional Managers
Albert Y. C. Chen
 
Deep convolutional neural fields for depth estimation from a single image
Deep convolutional neural fields for depth estimation from a single imageDeep convolutional neural fields for depth estimation from a single image
Deep convolutional neural fields for depth estimation from a single image
Wei Yang
 
Nonlinear dimension reduction
Nonlinear dimension reductionNonlinear dimension reduction
Nonlinear dimension reduction
Yan Xu
 
NS-CUK Seminar:H.B.Kim, Review on "Asymmetric transitivity preserving graph ...
NS-CUK Seminar:H.B.Kim,  Review on "Asymmetric transitivity preserving graph ...NS-CUK Seminar:H.B.Kim,  Review on "Asymmetric transitivity preserving graph ...
NS-CUK Seminar:H.B.Kim, Review on "Asymmetric transitivity preserving graph ...
ssuser4b1f48
 
ODSC India 2018: Topological space creation &amp; Clustering at BigData scale
ODSC India 2018: Topological space creation &amp; Clustering at BigData scaleODSC India 2018: Topological space creation &amp; Clustering at BigData scale
ODSC India 2018: Topological space creation &amp; Clustering at BigData scale
Kuldeep Jiwani
 
Computational Giants_nhom.pptx
Computational Giants_nhom.pptxComputational Giants_nhom.pptx
Computational Giants_nhom.pptx
ThAnhonc
 
NS-CUK Seminar: H.B.Kim, Review on "Sequential Recommendation with Graph Neu...
NS-CUK Seminar: H.B.Kim,  Review on "Sequential Recommendation with Graph Neu...NS-CUK Seminar: H.B.Kim,  Review on "Sequential Recommendation with Graph Neu...
NS-CUK Seminar: H.B.Kim, Review on "Sequential Recommendation with Graph Neu...
ssuser4b1f48
 
Densebox
DenseboxDensebox
Densebox
冠宇 陳
 
Placing Images with Refined Language Models and Similarity Search with PCA-re...
Placing Images with Refined Language Models and Similarity Search with PCA-re...Placing Images with Refined Language Models and Similarity Search with PCA-re...
Placing Images with Refined Language Models and Similarity Search with PCA-re...
Symeon Papadopoulos
 
Understandig PCA and LDA
Understandig PCA and LDAUnderstandig PCA and LDA
Understandig PCA and LDA
Dr. Syed Hassan Amin
 
Kohonen self organizing maps
Kohonen self organizing mapsKohonen self organizing maps
Kohonen self organizing maps
raphaelkiminya
 
4-RSSI-Spectral Domain Image Transforms_1.pdf
4-RSSI-Spectral Domain Image Transforms_1.pdf4-RSSI-Spectral Domain Image Transforms_1.pdf
4-RSSI-Spectral Domain Image Transforms_1.pdf
muhammadwalidmido
 
Uncertainty aware multidimensional ensemble data visualization and exploration
Uncertainty aware multidimensional ensemble data visualization and explorationUncertainty aware multidimensional ensemble data visualization and exploration
Uncertainty aware multidimensional ensemble data visualization and exploration
Subhashis Hazarika
 
Research Analysis and Design of Geometric Transformations using Affine Geometry
Research Analysis and Design of Geometric Transformations using Affine GeometryResearch Analysis and Design of Geometric Transformations using Affine Geometry
Research Analysis and Design of Geometric Transformations using Affine Geometry
International Journal of Engineering Inventions www.ijeijournal.com
 
Forest Change Detection in incomplete satellite images with deep neural networks
Forest Change Detection in incomplete satellite images with deep neural networksForest Change Detection in incomplete satellite images with deep neural networks
Forest Change Detection in incomplete satellite images with deep neural networks
Aatif Sohail
 
Surface reconstruction using point cloud
Surface reconstruction using point cloudSurface reconstruction using point cloud
Surface reconstruction using point cloudishan kossambe
 
Image segmentation
Image segmentationImage segmentation
Image segmentation
Md Shabir Alam
 
Lecture6 pca
Lecture6 pcaLecture6 pca
Lecture6 pca
Azahel Vera
 

Similar to Manifold learning (20)

Machine Learning Foundations for Professional Managers
Machine Learning Foundations for Professional ManagersMachine Learning Foundations for Professional Managers
Machine Learning Foundations for Professional Managers
 
Deep convolutional neural fields for depth estimation from a single image
Deep convolutional neural fields for depth estimation from a single imageDeep convolutional neural fields for depth estimation from a single image
Deep convolutional neural fields for depth estimation from a single image
 
Nonlinear dimension reduction
Nonlinear dimension reductionNonlinear dimension reduction
Nonlinear dimension reduction
 
NS-CUK Seminar:H.B.Kim, Review on "Asymmetric transitivity preserving graph ...
NS-CUK Seminar:H.B.Kim,  Review on "Asymmetric transitivity preserving graph ...NS-CUK Seminar:H.B.Kim,  Review on "Asymmetric transitivity preserving graph ...
NS-CUK Seminar:H.B.Kim, Review on "Asymmetric transitivity preserving graph ...
 
ODSC India 2018: Topological space creation &amp; Clustering at BigData scale
ODSC India 2018: Topological space creation &amp; Clustering at BigData scaleODSC India 2018: Topological space creation &amp; Clustering at BigData scale
ODSC India 2018: Topological space creation &amp; Clustering at BigData scale
 
Computational Giants_nhom.pptx
Computational Giants_nhom.pptxComputational Giants_nhom.pptx
Computational Giants_nhom.pptx
 
NS-CUK Seminar: H.B.Kim, Review on "Sequential Recommendation with Graph Neu...
NS-CUK Seminar: H.B.Kim,  Review on "Sequential Recommendation with Graph Neu...NS-CUK Seminar: H.B.Kim,  Review on "Sequential Recommendation with Graph Neu...
NS-CUK Seminar: H.B.Kim, Review on "Sequential Recommendation with Graph Neu...
 
Densebox
DenseboxDensebox
Densebox
 
230727_HB_JointJournalClub.pptx
230727_HB_JointJournalClub.pptx230727_HB_JointJournalClub.pptx
230727_HB_JointJournalClub.pptx
 
Part2
Part2Part2
Part2
 
Placing Images with Refined Language Models and Similarity Search with PCA-re...
Placing Images with Refined Language Models and Similarity Search with PCA-re...Placing Images with Refined Language Models and Similarity Search with PCA-re...
Placing Images with Refined Language Models and Similarity Search with PCA-re...
 
Understandig PCA and LDA
Understandig PCA and LDAUnderstandig PCA and LDA
Understandig PCA and LDA
 
Kohonen self organizing maps
Kohonen self organizing mapsKohonen self organizing maps
Kohonen self organizing maps
 
4-RSSI-Spectral Domain Image Transforms_1.pdf
4-RSSI-Spectral Domain Image Transforms_1.pdf4-RSSI-Spectral Domain Image Transforms_1.pdf
4-RSSI-Spectral Domain Image Transforms_1.pdf
 
Uncertainty aware multidimensional ensemble data visualization and exploration
Uncertainty aware multidimensional ensemble data visualization and explorationUncertainty aware multidimensional ensemble data visualization and exploration
Uncertainty aware multidimensional ensemble data visualization and exploration
 
Research Analysis and Design of Geometric Transformations using Affine Geometry
Research Analysis and Design of Geometric Transformations using Affine GeometryResearch Analysis and Design of Geometric Transformations using Affine Geometry
Research Analysis and Design of Geometric Transformations using Affine Geometry
 
Forest Change Detection in incomplete satellite images with deep neural networks
Forest Change Detection in incomplete satellite images with deep neural networksForest Change Detection in incomplete satellite images with deep neural networks
Forest Change Detection in incomplete satellite images with deep neural networks
 
Surface reconstruction using point cloud
Surface reconstruction using point cloudSurface reconstruction using point cloud
Surface reconstruction using point cloud
 
Image segmentation
Image segmentationImage segmentation
Image segmentation
 
Lecture6 pca
Lecture6 pcaLecture6 pca
Lecture6 pca
 

More from Wei Yang

Articulated human pose estimation by deep learning
Articulated human pose estimation by deep learningArticulated human pose estimation by deep learning
Articulated human pose estimation by deep learning
Wei Yang
 
Deep learning-for-pose-estimation-wyang-defense
Deep learning-for-pose-estimation-wyang-defenseDeep learning-for-pose-estimation-wyang-defense
Deep learning-for-pose-estimation-wyang-defense
Wei Yang
 
Pose Machine
Pose MachinePose Machine
Pose Machine
Wei Yang
 
[Mmlab seminar 2016] deep learning for human pose estimation
[Mmlab seminar 2016] deep learning for human pose estimation[Mmlab seminar 2016] deep learning for human pose estimation
[Mmlab seminar 2016] deep learning for human pose estimation
Wei Yang
 
Human Pose Estimation by Deep Learning
Human Pose Estimation by Deep LearningHuman Pose Estimation by Deep Learning
Human Pose Estimation by Deep Learning
Wei Yang
 
Deformable Part Models are Convolutional Neural Networks
Deformable Part Models are Convolutional Neural NetworksDeformable Part Models are Convolutional Neural Networks
Deformable Part Models are Convolutional Neural Networks
Wei Yang
 

More from Wei Yang (6)

Articulated human pose estimation by deep learning
Articulated human pose estimation by deep learningArticulated human pose estimation by deep learning
Articulated human pose estimation by deep learning
 
Deep learning-for-pose-estimation-wyang-defense
Deep learning-for-pose-estimation-wyang-defenseDeep learning-for-pose-estimation-wyang-defense
Deep learning-for-pose-estimation-wyang-defense
 
Pose Machine
Pose MachinePose Machine
Pose Machine
 
[Mmlab seminar 2016] deep learning for human pose estimation
[Mmlab seminar 2016] deep learning for human pose estimation[Mmlab seminar 2016] deep learning for human pose estimation
[Mmlab seminar 2016] deep learning for human pose estimation
 
Human Pose Estimation by Deep Learning
Human Pose Estimation by Deep LearningHuman Pose Estimation by Deep Learning
Human Pose Estimation by Deep Learning
 
Deformable Part Models are Convolutional Neural Networks
Deformable Part Models are Convolutional Neural NetworksDeformable Part Models are Convolutional Neural Networks
Deformable Part Models are Convolutional Neural Networks
 

Recently uploaded

Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
AADYARAJPANDEY1
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
anitaento25
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
sachin783648
 
Viksit bharat till 2047 India@2047.pptx
Viksit bharat till 2047  India@2047.pptxViksit bharat till 2047  India@2047.pptx
Viksit bharat till 2047 India@2047.pptx
rakeshsharma20142015
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
muralinath2
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
muralinath2
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
justice-and-fairness-ethics with example
justice-and-fairness-ethics with examplejustice-and-fairness-ethics with example
justice-and-fairness-ethics with example
azzyixes
 
insect morphology and physiology of insect
insect morphology and physiology of insectinsect morphology and physiology of insect
insect morphology and physiology of insect
anitaento25
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
pablovgd
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
ossaicprecious19
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 

Recently uploaded (20)

Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 
Viksit bharat till 2047 India@2047.pptx
Viksit bharat till 2047  India@2047.pptxViksit bharat till 2047  India@2047.pptx
Viksit bharat till 2047 India@2047.pptx
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
justice-and-fairness-ethics with example
justice-and-fairness-ethics with examplejustice-and-fairness-ethics with example
justice-and-fairness-ethics with example
 
insect morphology and physiology of insect
insect morphology and physiology of insectinsect morphology and physiology of insect
insect morphology and physiology of insect
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 

Manifold learning

  • 1. A Brief Introduction to Manifold Learning Wei Yang platero.yang@gmail.com 2016/8/11 1 Some slides are from Geometric Methods and Manifold Learning in Machine Learning (Mikhail Belkin and Partha Niyoqi). Summer School (MLSS), Chicago 2009
  • 2. What is a manifold? 2016/8/11 2 https://en.wikipedia.org/wiki/Manifold
  • 3. Manifolds in visual perception Consider a simple example of image variability, the set 𝑀 of all facial images generated by varying the orientation of a face • 1D manifold: – a single degree of freedom: the angle of rotation • The dimensionality of 𝑀 would increase if we allow – image scaling – illumination changing – … 2016/8/11 3 The Manifold Ways of Perception •H. Sebastian Seung and •Daniel D. Lee Science 22 December 2000
  • 4. Why Manifolds? • Euclidean distance in the high dimensional input space may not accurately reflect the intrinsic similarity – Euclidean distance – Geodesic distance 2016/8/11 4 Linear Manifold VS. Nonlinear Manifold
  • 5. Differential Geometry • Embedded manifolds • Tangent space • Geodesic • Laplace-Beltrami operator 2016/8/11 5
  • 6. Embedded manifolds • ℳ 𝑘 ⊂ ℝ 𝑁 • Locally (not globally) looks like Euclidean space 𝑆 2 ⊂ ℝ3 2016/8/11 6
  • 7. Example: circle • 𝑥2 + 𝑦2 = 1 • Charts: continuous, invertible 𝜙 𝑡𝑜𝑝: (𝑥, 𝑦) ⟼ 𝑥 𝜙 𝑡𝑜𝑝 −1 : (𝑥) ⟼ (𝑥, 1 − 𝑥2) • Atlas: charts covered the whole circle • Transition map 𝑇 𝑎 = 𝜙 𝑟𝑖𝑔ℎ𝑡 𝜙 𝑡𝑜𝑝 −1 𝑎 2016/8/11 7 𝑥 𝑦 = 𝜙 𝑟𝑖𝑔ℎ𝑡(𝑎, 1 − 𝑎2) = 1 − 𝑎2 𝑎 𝜙 𝑡𝑜𝑝 −1 𝑎 𝜙 𝑟𝑖𝑔ℎ𝑡 𝜙 𝑡𝑜𝑝 −1 𝑎 http://en.wikipedia.org/wiki/Manifold
  • 8. Tangent space • 𝑘-dimensional affine subspace of ℝ 𝑁 𝑇𝑝ℳ 𝑘 ⊂ ℝ 𝑁 𝑝 2016/8/11 8
  • 9. Tangent vectors and curves • Tangent vectors <———> curves. Geometric Methods and Manifold Learning – p. 1 𝜙 𝑡 : ℝ → ℳ 𝑘 𝑑 𝜙 𝑡 𝑑 𝑡 |0 = 𝑉 𝑣 𝜙 𝑡 𝑝 2016/8/11 9
  • 10. Tangent vectors as derivatives • Tangent vectors <———> Directional derivatives Geometric Methods and Manifold Learning – p. 1 𝜙 𝑡 : ℝ → ℳ 𝑘 𝑓 𝜙 𝑡 : ℝ → ℝ 𝑑𝑓 𝑑𝑣 = 𝑑 𝜙 𝑡 𝑑 𝑡 |0 𝑣 𝜙 𝑡 𝑓: ℳ 𝑘 → ℝ𝑝 2016/8/11 10
  • 11. Riemannian geometry • Norms and angles in tangent space Geometric Methods and Manifold Learning – p. 1 < 𝑣, 𝑤 > 𝑣 , 𝑤 𝑣 𝑤𝑝 2016/8/11 11
  • 12. Length of curves and geodesics • Can measure length using norm in tangent space. • Geodesic — shortest curve between two points. Geometric Methods and Manifold Learning – p. 1 𝜙 𝑡 : [0,1] → ℳ 𝑘 𝑙 𝜙 = 0 1 𝑑𝜙 𝑑𝑡 𝑑𝑡 𝑝 2016/8/11 12
  • 13. Gradient • Tangent vectors <———> Directional derivatives • Gradient points in the direction of maximum change. Geometric Methods and Manifold Learning – p. 1 < 𝛻𝑓, 𝑣 >≡ 𝑑𝑓 𝑑𝑣 𝑣 𝜙 𝑡 𝑓: ℳ 𝑘 → ℝ𝑝 2016/8/11 13
  • 14. Exponential map • Geodesic: 𝜙 𝑡 • 𝜙 0 = 𝑝, 𝜙 𝑣 = 𝑞, 𝑑𝜙 𝑡 𝑑𝑡 |0 = 𝑣 Geometric Methods and Manifold Learning – p. 1 exp 𝑝: 𝑇𝑝ℳ 𝑘 → ℳ 𝑘 exp 𝑝 𝑣 = 𝑟 exp 𝑝 𝑤 = 𝑞𝑞 𝑝 𝑟 𝑣𝑤 𝜙 𝑡 2016/8/11 14
  • 15. Laplace-Beltrami operator • Orthonormal coordinate system. Geometric Methods and Manifold Learning – p. 1 𝑝 𝑥2 𝑥1 𝑓: ℳ 𝑘 → ℝ exp 𝑝: 𝑇𝑝ℳ 𝑘 → ℳ 𝑘 2016/8/11 15
  • 16. Linear Manifold Learning • Principal Components Analysis • Multidimensional Scaling 2016/8/11 16
  • 17. Principal Components Analysis • Given x1, x2… , x 𝑛 ∈ ℝ 𝐷 with mean 0 • Find 𝑦1, 𝑦2 … , 𝑦𝑛 ∈ ℝ such that 𝑦𝑖 = w ∙ x 𝑖 • And argmax w 𝑣𝑎𝑟({𝑦𝑖}) = 𝑖 𝑦𝑖 2 = w 𝑇 𝑖 x𝑖x𝑖 𝑇 w • w∗ is leading eigenvectors of 𝑖 x𝑖x𝑖 𝑇 2016/8/11 17
  • 18. Multidimensional Scaling • MDS: exploring similarities or dissimilarities in data. • Given 𝑁 data points with distance function is defined as: 𝛿𝑖,𝑗 • The dissimilarity matrix can be defined as: Δ ≔ 𝛿1,1 … 𝛿1,𝑁 ⋮ ⋱ ⋮ 𝛿 𝑁,1 … 𝛿 𝑁,𝑁 Find x1, x2… , x 𝑁 ∈ ℝ 𝐷 such that min x1,... ,x 𝑁 𝑖<𝑗 ( x 𝑖 − x𝑗 − 𝛿𝑖,𝑗)2 2016/8/11 18
  • 19. Nonlinear Manifold Learning • ISOMAP (Tenenbaum, et al, 00) • LLE (Roweis, Saul, 00) • Laplacian Eigenmaps (Belkin, Niyogi, 01) 2016/8/11 19
  • 20. Algorithmic framework • Neighborhood graph common to all methods. 2016/8/11 20
  • 21. Isomap: Motivation • PCA/MDS see just the Euclidean structure • Only geodesic distances reflect the true low-dimensional geometry of the manifold • The question: – How to approximate geodesic distances? 2016/8/11 21
  • 22. Isomap 1. Construct neighborhood graph 𝒅 𝒙(𝒊, 𝒋) using Euclidean distance – 𝜖-Isomap: neighbors within a radius 𝜖 – 𝐾-Isomap: 𝐾 nearest neighbors 2. Compute shortest path as the approximation of geodesic distance 1. 𝒅 𝑮 𝒊, 𝒋 = 𝒅 𝒙(𝒊, 𝒋) 2. For 𝒌 = 𝟏, 𝟐, … , 𝑵, replace all 𝒅 𝑮 𝒊, 𝒋 by 𝐦𝐢𝐧 𝒅 𝑮 𝒊, 𝒋 , 𝒅 𝑮 𝒊, 𝒌 + 𝒅 𝑮 𝒌, 𝒋 3. Construct 𝑑-dimensional embedding using MDS 2016/8/11 22
  • 23. Isomap: results 2016/8/11 23 Face varying in pose and illumination Hand varying in finger extension & wrist rotation
  • 24. Isomap: estimate the intrinsic dimensionality 2016/8/11 24
  • 25. Locally Linear Embedding • Intuition: each data point and its neighbors are expected to lie on or close to a locally linear patch of the manifold. 2016/8/11 25
  • 26. Locally Linear Embedding 1. Assign neighbours to each data point (𝑘-NN) 2. Reconstruct each point by a weighted linear combination of its neighbors. 3. Map each point to embedded coordinates. 2016/8/11 26 S T Roweis, and L K Saul Science 2000;290:2323-2326
  • 27. Steps of locally linear embedding • Suppose we have 𝑁 data points 𝑋𝑖 in a 𝐷 dimensional space. • Step 1: Construct neighborhood graph – 𝑘-NN neighborhood – Euclidean distance or normalized dot products 2016/8/11 27
  • 28. Steps of locally linear embedding • Step 2: Compute the weights 𝑊𝑖𝑗 that best linearly reconstruct 𝑋𝑖 from its neighbors by minimizing where 2016/8/11 28
  • 29. Steps of locally linear embedding • Step 3: Compute the low-dimensional embedding best reconstructed by 𝑊𝑖𝑗 by minimizing • Note: 𝑊 is a sparse matrix, and 𝑖-th row is barycentric coordinates (center of mass) of 𝑋𝑖 in the basis of its nearest neighbors. • Similar to PCA, using lowest eigenvectors of 𝐼 − 𝑊 𝑇(𝐼 − 𝑊) to embed. 2016/8/11 29
  • 30. LLE (Comments by Ruimao Zhang) 算法优点 • LLE算法可以学习任意维的局部线性 的低维流形. • LLE算法中的待定参数很少, K 和 d. • LLE算法中每个点的近邻权值在平 移, 旋转,伸缩变换下是保持不变的. • LLE算法有解析的整体最优解,不需 迭代. • LLE算法归结为稀疏矩阵特征值计 算, 计算复杂度相对较小, 容易执行. 算法缺点 • LLE算法要求所学习的流形只能是不 闭合的且在局部是线性的. • LLE算法要求样本在流形上是稠密采 样的. • LLE算法中的参数 K, d 有过多的选择. • LLE算法对样本中的噪音很敏感. 2016/8/11 30
  • 31. Laplacian Eigenmaps • Using the notion of the Laplacian of a graph to compute a low-dimensional representation of the data – The laplacian of a graph is analogous to the Laplace Beltrami operator on manifolds, of which the eigenfunctions have properties desirable for embedding (See M. Belkin and P. Niyogi for justification). 2016/8/11 31
  • 32. Laplacian matrix (discrete Laplacian) • Laplacian matrix is a matrix representation of a graph 𝐿 = 𝐷 − 𝐴 – 𝐿 is the Laplacian matrix – 𝐷 is the degree matrix – 𝐴 is the adjacent matrix 2016/8/11 32
  • 35. Laplacian Eigenmaps 2016/8/11 mlss09us_niyogi_belkin_gmml 35 𝑫: Degree matrix 𝑾 : (Weighted) adjacent matrix 𝑳 : Laplacian matrix 𝐷−1 𝐿𝑓 = 𝜆𝑓
  • 36. Justification of optimal embedding • We have constructed a weighted graph 𝐺 = 𝑉, 𝐸 • We want to map 𝐺 to a line 𝒚 so that connected points stay as close together as possible 𝒚 = 𝑦1, 𝑦2, … , 𝑦𝑛 𝑻 • This can be done by minimizing the objective function 𝑖𝑗 𝑦𝑖 − 𝑦𝑗 2 𝑊𝑖𝑗 • It incurs a heavy penalty if neighboring points are mapped far apart. 2016/8/11 36
  • 37. Justification of optimal embedding (Cont.) 𝑖𝑗 𝑦𝑖 − 𝑦𝑗 2 𝑊𝑖𝑗 = 𝑖𝑗 𝑦𝑖 2 + 𝑦𝑗 2 − 2𝑦𝑖 𝑦𝑗 𝑊𝑖𝑗 = ( 𝑖 𝑦𝑖 2 𝐷𝑖𝑖 + 𝑗 𝑦𝑗 2 𝐷𝑗𝑗) − 2 𝑖,𝑗 𝑦𝑖 𝑦𝑗 𝑊𝑖𝑗 = 2𝒚 𝑇 𝐷𝒚 − 2𝒚 𝑇 𝑊𝒚 = 2𝒚 𝑇(𝐷 − 𝑊)𝒚 = 2𝒚 𝑇 𝐿𝒚 2016/8/11 37 1 2 𝑖𝑗 𝑦𝑖 − 𝑦𝑗 2 𝑊𝑖𝑗 = 𝒚 𝑇 𝐿𝒚
  • 38. Justification of optimal embedding (Cont.) The minimization problem reduces to finding Note the constraint removes an arbitrary scaling factor in the embedding. Using Lagrange multiplier and setting the derivative with respect to 𝒚 equal to zero, we obtain The optimum is given by the minimum eigenvalue solution to the generalized eigenvalue problem (trivial solution: 𝒚 = 𝟏, 𝜆 = 0). 2016/8/11 38
  • 39. More methods for non-linear manifold learning 2016/8/11 39
  • 41. Super-Resolution Through Neighbor Embedding • Intuition: small patches in the low- and high-resolution images form manifolds with similar local geometry in two distinct spaces. • X: low-resolution image Y: target high-resolution image • The algorithm is extremely analogous to LLE! – Step 1: construct neighborhood of each patch in X – Step 2: compute the reconstructing weights of the neighbors that minimize the reconstruction error – Step 3: perform high-dimensional embedding to (as opposed to the low-dimensional embedding of LLE) – Step 4: Construct the target high-resolution image Y by enforcing local compatibility and smoothness constraints between adjacent patches obtained in step 3. 2016/8/11 41 Chang, Hong, Dit-Yan Yeung, and Yimin Xiong. "Super-resolution through neighbor embedding." CVPR 2004.
  • 42. Super-Resolution Through Neighbor Embedding • Training parameters – The number of nearest neighbors K – The patch size – The degree of overlap 2016/8/11 42 Chang, Hong, Dit-Yan Yeung, and Yimin Xiong. "Super-resolution through neighbor embedding." CVPR 2004.
  • 43. Super-Resolution Through Neighbor Embedding 2016/8/11 43 Chang, Hong, Dit-Yan Yeung, and Yimin Xiong. "Super-resolution through neighbor embedding." CVPR 2004.
  • 44. Laplacianfaces • Mapping face images in the image space via Locality Preserving Projections (LPP) to low-dimensional face subspace (manifold), called Laplacianfaces. • LLP is analogous to Laplacian Eigenmaps except the objective function – Laplacian Eigenmaps: – LLP: 2016/8/11 44 He, Xiaofei, et al. "Face recognition using laplacianfaces." Pattern Analysis and Machine Intelligence, IEEE Transactions on 27.3 (2005): 328-340.
  • 45. Laplacianfaces Learning Laplacianfaces for Representation 1. PCA projection (kept 98 percent information in the sense of reconstruction error) 2. Constructing the nearest-neighbor graph 3. Choosing the weights 4. Optimize The k lowest eigenvectors of are choosing to form is the so-called Laplacianfaces. 2016/8/11 45
  • 46. Laplacianfaces Two-dimensional linear embedding of face images by Laplacianfaces. 2016/8/11 46
  • 47. Reference and Resources • 浅谈流形学习. Pluskid. 2010-05-29. http://blog.pluskid.org/?p=533&cpage=1 • Wikipedia: MDS, Manifold, Laplacian Matrix • PCA: M. Bishop, PRML • Eigenvalue decomposition and SVD:机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 • General Eigenvalue Problem: wolfram, tutorial • Video lecture: Geometric Methods and Manifold Learning. Mikhail Belkin, Partha Niyogi (author of Laplacian eigenmap) • MANI fold Learning Matlab Demo: http://www.math.ucla.edu/~wittman/mani/index.html 2016/8/11 47

Editor's Notes

  1. swissroll: 展開後只有2D (不考慮厚度) 地球: 大三角是曲面, 但局部小三角可近似為曲面, 且必須要兩個card才能完全覆蓋地球.
  2. image can be identified with a point in an abstract image space. M is continuous because the image varies smoothly as the face is rotated. It is a curve because it is generated by varying a single degree of freedom, the angle of rotation.
  3. http://zh.wikipedia.org/wiki/流形 流形,是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。 一般说来, 流行都可以嵌入一个高维的欧式空间中. 流形可以视为近看起来象欧几里得空间或其他相对简单的空间的物体[1]:1。例如,人们曾经以为地球是平的。这是因为相对于地球来说我们实在太小,我们看到的地面是地球表面微小的一部分。所以,尽管知道地球实际上差不多是一个圆球,如果只需要考虑其中微小的一部分上发生的事情,比如测量操场跑道的长度或进行房地产交易时,我们仍然把地面看成一个平面。一个理想的数学上的球面在足够小的区域上的特性就像一个平面,这表明它是一个流形[2]:283。但是球面和平面的整体结构是完全不同的:如果你在球面上沿一个固定方向走,你最终会回到起点,而在一个平面上,你可以一直走下去。 回到地球的例子。我们出行的时候,会用平面的地图来指示方位。如果将整个地球的各个地区的地图合订成一本地图集,那么在观看各个地区的地图后,我们就可以在脑海中“拼接”出整个地球的景貌。为了能让阅读者顺利从一张地图接到下一张,相邻的地图之间会有重叠的部分,以便我们在脑海里“粘合”两张图。类似地,在数学中,也可以用一系列“地图”(称为坐标图或坐标卡)组成的“地图集”(称为图册)来描述一个流形[2]:283。而“地图”之间重叠的部分在不同的地图里如何变换,则描述了不同“地图”的相互关系。 描述一个流形往往需要不止一个“地图”,因为一般来说流形并不是真正的欧几里得空间。举例来说,地球就没法用一张平面的地图来合适地描绘。
  4. Charts: 坐标图/坐标卡:圆的上半部,坐标大于零的部分(右图中黄色的部分),任何一点都可以用坐标确定。投影映射: 把上半圆映射到开区间。反过来,给定一个,就是上半圆的一点: 这样的一个映射就是一个坐标图。 Transition map: 坐标变换映射:注意圆上部和右部的重叠部分,也就是位于圆上和坐标大于0的四分之一圆弧。两个坐标图和都将这部分双射到区间(0, 1)。这样我们有一个从到它自己的双射:首先取(0, 1)上面一点(黄色线段右半部分的点)a黄色坐标图的逆映射到达圆上的对应点(a, sqrt(1-a^2)),再通过绿色坐标图映射到(0,1)上:
  5. 切空间(tangent space)是在某一点所有的切向量组成的线性空间。 如果所研究的流形是一个三维空间中的曲面,则在每一点的切向量,就是和该曲面相切的向量,切空间就是和该曲面相切的平面。 通常情形下,因为所有流形可以嵌入欧几里得空间,切空间也可以理解为在该点和流形相切的欧几里得空间的仿射子空间。 过流行M的点P可以做一个tangent space. 维度和M的一样.
  6. 定义了tangent space后, 由于他是仿射空间, 因此也可以在上面定义vector, 叫做tangent vector. 假定过点P有一条曲线curve, 那么可以通过对曲线求导来定义vecotr.
  7. 方向导数(Directional derivative)是一个多变量可微函数上的任意一点沿着某一向量方向的瞬时变化率。 http://zh.wikipedia.org/wiki/%E6%96%B9%E5%90%91%E5%AF%BC%E6%95%B0 F是流行上的点到实数的映射, phi(t)是实数到流行上的点的映射. F关于v求方向导数, 实际上就是曲线在p点的梯度.
  8. 为了研究流形, 我们已经定义了切空间切向量的, 因此过流形上某一点的向量也可以有norm, angles. 即可以用对应的tangent space的性质来研究流形局部的性质.
  9. 有了前面的准备之后, 就可以引入一个重要的概念了, length of curve 和Geodesic, 测地线距离. Curve是从[0,1]映射到Mk的, 如果求导, 则可以得到一个向量, 即切向量, d(phi)/dt实际上就是曲线上某点的切向量. 测地线距离是用积分定义的, 因此其物理意义就是流形上两点间的最短距离.
  10. PCA can only learn linear manifolds. PCA希望找到最能区分数据的投影方向. project data in high dimentional space to a line (1D space). find a projection that maximize the variation of the data. Note in the PPT xi has mean zero.
  11. 具体怎么优化有很多方法, 这里就不提了. 在原有空间里, 数据的相似性是可以度量的, MDS希望在新的空间里找到一种数据的”空间位置”, 使得数据间的相似性得以保留. 如果原有的相似性度量是欧式距离, 可以证明MDS和PCA是等价的.
  12. we got some points from manifold. we use mesh or graph structure to approximate the structure of manifold (and this may be bad). connect nearby points together, and we can only measure EU distance in EU space. and if we want to do something on manifold, I will do them on this graph instead.
  13. 不知道manifold的结构, 因此不可能准确计算geo dis. 只能够估算.
  14. ISOmap数据点越多时逼近得越好, 因为对Geodesic距离的估计会更加精确. 优点: 不用事先确定降到多少维. 但是采样点不够多的话, neighbor graph就会不准确, 导致geodesic distance估计不准确.
  15. The intrinsic dimensionality of the data can be estimated by looking for the “elbow” at which this curve ceases to decrease significantly with added dimensions. Open triangles: PCA, MDS(A-C) Open circle: MDS Solid circle: Isomap A: face varying in pose & illumination B: Swiss roll C: hand: finger extension & wrist rotation D: digit 2
  16. The locally linear embedding algorithm of Roweis and Saul computes a different local quantity, the coefficients of the best approximation to a data point by a weighted linear combination of its neighbors. Then the algorithm finds a set of low-dimensional points, each of which can be linearly approximated by its neighbors with the same coefficients that were determined from the high-dimensional data points. Both algorithms yield impressive results on some benchmark artificial data sets, as well as on “real world” data sets. Importantly, they succeed in learning nonlinear manifolds, in contrast to algorithms such as PCA. 动机: 每个点及他的邻居可以认为处于同一块(或相近的)manifold上的线性patch上. 这样该点就可以由其邻居线性组合来表达.
  17. The locally linear embedding algorithm of Roweis and Saul computes a different local quantity, the coefficients of the best approximation to a data point by a weighted linear combination of its neighbors. Then the algorithm finds a set of low-dimensional points, each of which can be linearly approximated by its neighbors with the same coefficients that were determined from the high-dimensional data points. Both algorithms yield impressive results on some benchmark artificial data sets, as well as on “real world” data sets. Importantly, they succeed in learning nonlinear manifolds, in contrast to algorithms such as principal co
  18. We show that the embedding provided by the Laplacian eigenmap algorithm preserves local information optimally in a certain sense. 这里考虑一维的情况
  19. We show that the embedding provided by the Laplacian eigenmap algorithm preserves local information optimally in a certain sense. 这里考虑一维的情况
  20. We show that the embedding provided by the Laplacian eigenmap algorithm preserves local information optimally in a certain sense. 这里考虑一维的情况