SlideShare a Scribd company logo
© 2013 Nokia Solutions and Networks. All rights reserved.
LTE TDD Overview
October 2013
Bong Youl (Brian) Cho, 조 봉 열
brian.cho@nsn.com
Disclaimer
본 자료의 내용은 LTE 기술 자체에 대한 내용을 위주로 한 것으로서,
NSN 제품전략 및 계획 등과는 반드시 일치하지 않을 수도 있습니다.
TTA LTE Standards/Technology Training
2 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE TDD market overview
Quick comparison b/w WiMAX & LTE TDD
LTE TDD Technology Overview
TDD Carrier Aggregation
TDD Enhancement in Rel-12 and beyond
TTA LTE Standards/Technology Training
3 © 2013 Nokia Solutions and Networks. All rights reserved.
Difference b/w 3G-TDD and 4G-TDD
Note:
• 3GPP 표준에는 GSM, WCDMA/HSPA, LTE 기술이 모두 포함되어 있으며, 3가지 기술 모두가 지속적으로 진화함
• LTE-Advanced는 LTE와는 별도의 기술이 아니라 LTE의 진화의 한 경로 혹은 단계임
2000 2001 2002 2003 2004 2005
Release 99
Release 4
Release 5
Release 6
1.28Mcps TDD
HSDPA
W-CDMA
HSUPA, MBMS
2006 2007 2008 2009
Release 7 HSPA+ (MIMO, HOM etc.)
Release 8
2010 2011
LTE (FDD, TDD)
Release 9
Release 10
Minor LTE enhancements
2012 2013
Release 11
ITU-R M.1457
IMT-2000 Recommendation
LTE-AdvancedITU-R M.2012
IMT-Advanced Recommendation
2014
Release 12
1999
TTA LTE Standards/Technology Training
4 © 2013 Nokia Solutions and Networks. All rights reserved.
TTA LTE Standards/Technology Training
5 © 2013 Nokia Solutions and Networks. All rights reserved.
TTA LTE Standards/Technology Training
6 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE FDD+LTE TDD make “the best LTE”
From etnews.com on May 28, 2013
“LTE FDD is only the half part of LTE”
• The number of LTE TDD operators at the moment is small, but those are big operators
• LTE TDD has very high commonality with LTE FDD, and works also with 3G
• Many WiMAX operators are considering migration to LTE TDD
• 2.3GHz and 2.6GHz are two key bands for LTE TDD
TTA LTE Standards/Technology Training
7 © 2013 Nokia Solutions and Networks. All rights reserved.
Key countries updates
Japan: >1M LTE TDD subs.
Interest in 3.5GHz
Australia: Optus launch LTE TDD
Europe: LTE TDD spectrum
auctioned, TDD will follow FDD
Clearwire ready for major LTE
TDD roll-out
China Mobile bid process on-
going for 200,000 eNodeB,
1M LTE TDD terminals
RoW
Dell’Oro January 2013:
•Increased Near Term Outlook for
TDD
•Expects Europe will augment FDD
with TDD
TTA LTE Standards/Technology Training
8 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE TDD devices overview
LTE TDD device band support*
2300 MHz Band 40: 82 devices
2600 MHz Band 38: 88 devices
2600 MHz Band 41: 19 devices
The largest supported LTE TDD eco-system is:
Bands 38 (2.6 GHz) and 40 (2.3 GHz) have the
largest ecosystems of LTE TDD user devices currently :
• Terminal support for band 38 is 71%
• Terminal support for band 40 is 66%
• Band 41 (2.6GHz) will be deployed by Softbank, CMCC and
Clearwire so terminal ecosystem will be substantial in future
• Support for 1.9 GHz (band 39)
and 3.5 GHz (bands 42, 43) is also picking up
124 LTE TDD user devices (dongles, MiFi, CPE, smartphones)
LTE TDD eco-system is ready!
* January 2013
GSA report
New dual mode Samsung handsets to supercharge
Optus' 4G Network, 2013-08-05, Sydney
https://www.optus.com.au/aboutoptus/About+Optus/Medi
a+Centre/Media+Releases/2013/New+dual+mode+Sams
ung+handsets+to+supercharge+Optus'+4G+Network
TTA LTE Standards/Technology Training
9 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE TDD DL/UL Config
Brings Higher DL PDR & Flexibility
Peak data rate
[Mbps]
Similar Spectrum Efficiency
with FDD LTE
DL/UL(3:1) to DL service
up to 110Mbps
TTA LTE Standards/Technology Training
10 © 2013 Nokia Solutions and Networks. All rights reserved.
3GPP E-UTRA TDD frequency bands
E-UTRA
Operating
Band
Uplink (UL) operating band
BS receive UE transmit
Downlink (DL) operating band
BS transmit UE receive Duplex
Mode
FUL_low – FUL_high FDL_low – FDL_high
33 1900 MHz – 1920 MHz 1900 MHz – 1920 MHz TDD
34 2010 MHz – 2025 MHz 2010 MHz – 2025 MHz TDD
35 1850 MHz – 1910 MHz 1850 MHz – 1910 MHz TDD
36 1930 MHz – 1990 MHz 1930 MHz – 1990 MHz TDD
37 1910 MHz – 1930 MHz 1910 MHz – 1930 MHz TDD
38 2570 MHz – 2620 MHz 2570 MHz – 2620 MHz TDD
39 1880 MHz – 1920 MHz 1880 MHz – 1920 MHz TDD
40 2300 MHz – 2400 MHz 2300 MHz – 2400 MHz TDD
41 2496 MHz – 2690 MHz 2496 MHz – 2690 MHz TDD
42 3400 MHz – 3600 MHz 3400 MHz – 3600 MHz TDD
43 3600 MHz – 3800 MHz 3600 MHz – 3800 MHz TDD
44 703 MHz – 803 MHz 703 MHz – 803 MHz TDD
TTA LTE Standards/Technology Training
11 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE FDD, LTE TDD Integration
Standards Integration
Product Integration
Maximized commonality b/w FDD and TDD
for high level of integration/interworking
LTE FDD
LTE TDD
GlobalRoaming
LTE FDD & TDD
LTEFDD&TDD
Transparenthandover
Fully integrated over time
TTA LTE Standards/Technology Training
12 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE TDD market overview
Quick comparison b/w WiMAX & LTE TDD
LTE TDD Technology Overview
TDD Carrier Aggregation
TDD Enhancement in Rel-12 and beyond
TTA LTE Standards/Technology Training
13 © 2013 Nokia Solutions and Networks. All rights reserved.
DL OFDMA & UL SC-FDMA in LTE
• DL: OFDMA (Orthogonal Frequency Division Multiple Access)
– Less critical AMP efficiency in BS side
– Concerns on high RX complexity in terminal side
• UL: SC-FDMA (Single Carrier-FDMA), aka DFTS-OFDM
– Less critical RX complexity in BS side
– Critical AMP complexity in terminal side (Cost, power Consumption, UL coverage)
Making MS cheap as much as
possible by moving all the
burdens from MS to BS
TTA LTE Standards/Technology Training
14 © 2013 Nokia Solutions and Networks. All rights reserved.
CM (Cubic Metric) of OFDMA & SC-FDMA
OFDMA
SC-FDMA
16QAM
SC-FDMA
QPSK
SC-FDMA
pi/2-BPSK
TTA LTE Standards/Technology Training
15 © 2013 Nokia Solutions and Networks. All rights reserved.
SC-FDMA: A good introductory paper
TTA LTE Standards/Technology Training
16 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE Physical channels and signals: DL
LTE WCDMA/HSPA WiMAX
PDSCH
(DL data delivery and others)
HS-PDSCH, SCCPCH DL Data Burst
PBCH
(MIB delivery)
PCCPCH DCD, Preamble
PMCH
(MBMS)
DL Data Burst
PCFICH
(Header for PDCCH)
FCH
PDCCH
(Header for PDSCH, PUSCH)
HS-SCCH, E-AGCH, E-
RGCH
DL-MAP, UL-MAP
PHICH
(HARQ Ack/Nack for UL)
E-HICH DL Data Burst
Cell-specific Reference Signal
(Common pilot)
CPICH with primary
scrambling code
Pilot Signal (common)
UE-specific Reference Signal
(UE dedicated pilot)
With secondary scrambling
code
Pilot Signal (dedicated)
Sync Signal
(UE initial DL synchronization)
SCH Preamble
TTA LTE Standards/Technology Training
17 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE WCDMA/HSPA WiMAX
PUSCH
(UL data delivery and CSI delivery)
(E-DPDCH) UL Data Burst
PUCCH
(CSI delivery, HARQ Ack/Nack for DL,
SR delivery)
HS-DPCCH CQICH, ACKCH, BW
Request Ranging
PRACH
(Random access)
PRACH Initial Ranging
Demodulation RS
(Pilot for PUSCH, PUCCH)
(E-DPCCH) Pilot Signal
Sounding RS
(Additional pilot for other purposes)
Sounding Signal
LTE Physical channels and signals: UL
TTA LTE Standards/Technology Training
18 © 2013 Nokia Solutions and Networks. All rights reserved.
Quick comparison: OFDM parameter, MIMO
TTA LTE Standards/Technology Training
19 © 2013 Nokia Solutions and Networks. All rights reserved.
WiMAX-Advanced DL Performance*
• FDD: DL cell spectral efficiency in bit/s/Hz/cell
• FDD: DL cell edge user spectral efficiency in bit/s/Hz/cell
• TDD: DL cell spectral efficiency in bit/s/Hz/cell
• TDD: DL cell edge user spectral efficiency in bit/s/Hz/cell
InH UMi UMa RMa
Cell spectral efficiency 6.87 3.27 2.41 3.15
ITU-R requirement 3.0 2.6 2.2 1.1
InH UMi UMa RMa
Cell spectral efficiency 0.253 0.097 0.069 0.091
ITU-R requirement 0.1 0.075 0.06 0.04
InH UMi UMa RMa
Cell spectral efficiency 6.93 3.22 2.41 3.23
ITU-R requirement 3.0 2.6 2.2 1.1
InH UMi UMa RMa
Cell spectral efficiency 0.260 0.092 0.069 0.093
ITU-R requirement 0.1 0.075 0.06 0.04
* IMT-ADV/4-E
TTA LTE Standards/Technology Training
20 © 2013 Nokia Solutions and Networks. All rights reserved.
WiMAX-Advanced UL Performance*
• FDD: UL cell spectral efficiency in bit/s/Hz/cell
• FDD: UL cell edge user spectral efficiency in bit/s/Hz/cell
• TDD: UL cell spectral efficiency in bit/s/Hz/cell
• TDD: UL cell edge user spectral efficiency in bit/s/Hz/cell
InH UMi UMa RMa
Cell spectral efficiency 5.99 2.58 2.57 2.66
ITU-R requirement 2.25 1.8 1.4 0.7
InH UMi UMa RMa
Cell spectral efficiency 0.426 0.111 0.109 0.119
ITU-R requirement 0.07 0.05 0.03 0.015
InH UMi UMa RMa
Cell spectral efficiency 6.23 2.72 2.69 2.77
ITU-R requirement 2.25 1.8 1.4 0.7
InH UMi UMa RMa
Cell spectral efficiency 0.444 0.119 0.114 0.124
ITU-R requirement 0.07 0.05 0.03 0.015
* IMT-ADV/4-E
TTA LTE Standards/Technology Training
21 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE-Advanced DL Performance*
• FDD: DL cell spectral efficiency in bit/s/Hz/cell
• FDD: DL cell edge user spectral efficiency in bit/s/Hz/cell
• TDD: DL cell spectral efficiency in bit/s/Hz/cell
• TDD: DL cell edge user spectral efficiency in bit/s/Hz/cell
InH UMi UMa RMa
Cell spectral efficiency 4.1-6.6 2.8-4.5 2.4-3.8 1.8-4.1
ITU-R requirement 3.0 2.6 2.2 1.1
InH UMi UMa RMa
Cell spectral efficiency 0.19-0.26 0.087-0.15 0.066-0.10 0.057-0.13
ITU-R requirement 0.1 0.075 0.06 0.04
InH UMi UMa RMa
Cell spectral efficiency 4.1-6.7 2.7-4.6 2.4-3.7 1.6-4.0
ITU-R requirement 3.0 2.6 2.2 1.1
InH UMi UMa RMa
Cell spectral efficiency 0.19-0.24 0.085-0.12 0.067-0.10 0.049-0.12
ITU-R requirement 0.1 0.075 0.06 0.04
* IMT-ADV/8-E
TTA LTE Standards/Technology Training
22 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE-Advanced UL Performance*
• FDD: UL cell spectral efficiency in bit/s/Hz/cell
• FDD: UL cell edge user spectral efficiency in bit/s/Hz/cell
• TDD: UL cell spectral efficiency in bit/s/Hz/cell
• TDD: UL cell edge user spectral efficiency in bit/s/Hz/cell
InH UMi UMa RMa
Cell spectral efficiency 3.1-5.5 1.9-3.0 1.5-2.7 1.8-2.6
ITU-R requirement 2.25 1.8 1.4 0.7
InH UMi UMa RMa
Cell spectral efficiency 0.22-0.39 0.068-0.079 0.062-0.097 0.080-0.15
ITU-R requirement 0.07 0.05 0.03 0.015
InH UMi UMa RMa
Cell spectral efficiency 3.3-5.8 1.9-2.5 1.5-2.1 1.8-2.3
ITU-R requirement 2.25 1.8 1.4 0.7
InH UMi UMa RMa
Cell spectral efficiency 0.23-0.42 0.073-0.086 0.062-0.099 0.082-0.13
ITU-R requirement 0.07 0.05 0.03 0.015
* IMT-ADV/8-E
TTA LTE Standards/Technology Training
23 © 2013 Nokia Solutions and Networks. All rights reserved.
Comparison: Urban Microcell, TDD
• Cell spectral efficiency in bit/s/Hz/cell
• Cell edge user spectral efficiency in bit/s/Hz/cell
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
DL cell SE UL cell SE
WiMAX
LTE TDD min
LTE TDD max
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
DL 5% SE UL 5% SE
WiMAX
LTE TDD min
LTE TDD max
TTA LTE Standards/Technology Training
24 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE TDD market overview
Quick comparison b/w WiMAX & LTE TDD
LTE TDD Technology Overview
TDD Carrier Aggregation
TDD Enhancement in Rel-12 and beyond
TTA LTE Standards/Technology Training
25 © 2013 Nokia Solutions and Networks. All rights reserved.
Duplexing
• FDD
• TDD
TTA LTE Standards/Technology Training
26 © 2013 Nokia Solutions and Networks. All rights reserved.
Duplexing – cont’d
TTA LTE Standards/Technology Training
27 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE FDD vs LTE TDD
Same RF Structure, Same Resource Block => Same RF Power/Time/Bandwidth Density
Same Power Transmitted during the Same amount of time as LTE FDD
LTE FDD
10MHz
10W
5W
5MHz
5MHz
10ms
10ms
LTE TDD
DL
DLSingle UL Frame
Resource Block
5ms
Power
Time
Spectrum
1/5 W
UL
UL
1/5 W
TTA LTE Standards/Technology Training
28 © 2013 Nokia Solutions and Networks. All rights reserved.
3GPP LTE FDD vs. LTE TDD
High degree of commonality
Features LTE FDD LTE TDD
Frame structure 1ms sub-frame 1ms sub-frame
Switching points N/A 5ms periodicity and 10 ms
periodicity
BS Synchronization Asynchronous/Synchronous Synchronous
DL Control Channel Can schedule 1 DL and 1 UL
sub-frame at a time
(with CA, looks more similar)
Can schedule 1 DL and multiple
UL sub-frame at a time
UL Control Channel Single ACK/NAK corresponding
to 1 DL sub-frame
(with CA, looks more similar)
Multiple ACK/NAK corresponding
to multiple DL sub-frame
PRACH 0,1,2,3 0,1,2,3,4 (Short RACH)
Special slot usage N/A DwPTS: RS, Data and Control
UpPTS: SRS and Short RACH
Numerology, Coding,
Multiple Access, MIMO
support, RS etc.
Same Same
HARQ Timing N=8 stop-and-wait protocol
DL: Async, UL: Sync
TBD
DL: Async, UL: Sync
High Degree of Commonality
TTA LTE Standards/Technology Training
29 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE FDD vs. TDD performance comparison
FDD-LTELTE TDD
Negligible advantage (No need of switching)Spectral Efficiency
DL/UL Balancing
LTE TDD can adapt to DL/UL traffic ratio
(typical of internet traffic)
Fix bandwidth for DL & UL
(typical of voice traffic)
Real Life Performance
Latency
Dedicated UL/DL pipes (no need to “wait” for
UL or DL slot)
Comparable Subscriber Experience
Slightly longer latency
Coverage
Spectrum Flexibility
New Spectrum Pricing
Because of higher demand FDD has so far
sold for higher $/MHz
TDD Spectrum had traditionally auctioned for
lower $/MHz
Coexistence
Coexistence requirement for adjacent
frequency in the same geographic area
+
+
+
+
+
Better in big-sized cells
+
Paired-band is not needed, no duplexing gap
+
TTA LTE Standards/Technology Training
30 © 2013 Nokia Solutions and Networks. All rights reserved.
Frame Structure
#0 #1 #2 #3 #19
One slot, Tslot = 15360Ts = 0.5 ms
One radio frame, Tf = 307200Ts=10 ms
#18
One subframe
Type 2 for TDD
Type 1 for FDD
One slot,
Tslot=15360Ts
GP UpPTSDwPTS
One radio frame, Tf = 307200Ts = 10 ms
One half-frame, 153600Ts = 5 ms
30720Ts
One subframe,
30720Ts
GP UpPTSDwPTS
Subframe #2 Subframe #3 Subframe #4Subframe #0 Subframe #5 Subframe #7 Subframe #8 Subframe #9
TTA LTE Standards/Technology Training
31 © 2013 Nokia Solutions and Networks. All rights reserved.
Frame Structure: FDD/TDD
TTA LTE Standards/Technology Training
32 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE TDD: UL/DL configurations
Configuration Switch-point periodicity
Subframe number
0 1 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
1 5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
TTA LTE Standards/Technology Training
33 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE TDD: UL/DL configurations
TTA LTE Standards/Technology Training
34 © 2013 Nokia Solutions and Networks. All rights reserved.
* assuming Normal CP
LTE TDD:
Special subframe config for max cell range
TTA LTE Standards/Technology Training
35 © 2013 Nokia Solutions and Networks. All rights reserved.
System Information
• Master information block (MIB) includes the following information:
– Downlink cell bandwidth [4 bit]
– System Frame Number (SFN) except two LBSs
– Etc…
• LTE defines different SIBs:
– SIB1 includes info mainly related to whether an UE is allowed to camp on the cell. This includes info
about the operator(s) and about the cell (e.g. PLMN identity list, tracking area code, cell identity,
minimum required Rx level in the cell, etc), DL-UL subframe configuration in TDD case, and the
scheduling of the remaining SIBs. SIB1 is transmitted every 80ms.
– SIB2 includes info that UEs need in order to be able to access the cell. This includes info about the UL
cell BW, random access parameters, and UL power control parameters. SIBs also includes radio
resource configuration of common channels (RACH, BCCH, PCCH, PRACH, PDSCH, PUSCH,
PUCCH, and SRS).
– SIB3-4 mainly includes info related to cell-reselection.
– SIB5-8 include neighbor-cell-related info. (E-UTRAN, UTRAN, GERAN, cdma2000)
– SIB9 contains a home eNB identifier
– SIB10/11 contains ETWS (Earthquake and Tsunami Warning System) notification
– SIB12: CMAS
– SIB13: eMBMS
– More to be added
• MIB mapped to PBCH, Other SIBs mapped to PDSCH
TTA LTE Standards/Technology Training
36 © 2013 Nokia Solutions and Networks. All rights reserved.
Mapping of control channels to TDD config #1
<cf> FDD LTE
TTA LTE Standards/Technology Training
37 © 2013 Nokia Solutions and Networks. All rights reserved.
Typical RF interference scenario for a TDD
TTA LTE Standards/Technology Training
38 © 2013 Nokia Solutions and Networks. All rights reserved.
Coexistence among neighboring TDD systems
TTA LTE Standards/Technology Training
39 © 2013 Nokia Solutions and Networks. All rights reserved.
Coexistence b/w WiMAX (16e) and LTE TDD
TTA LTE Standards/Technology Training
40 © 2013 Nokia Solutions and Networks. All rights reserved.
Coexistence b/w TDD and FDD
TTA LTE Standards/Technology Training
41 © 2013 Nokia Solutions and Networks. All rights reserved.
MIMO Spatial Multiplexing (SM)
Multiple Input Multiple Output (MIMO)
Multiple antennas at both transmitter and receiver
MIMO uses multipath to advantage to “multiply data rate”
• Transmits different data along different paths (simplified view)
• MxN MIMO can multiply data rate by M or N (whichever is less) if there is enough multipath.
– Best in urban high-multipath environment (and indoors)
– Less effective in suburban and rural low-multipath environments
TTA LTE Standards/Technology Training
42 © 2013 Nokia Solutions and Networks. All rights reserved.
SVD MIMO as a closed-loop MIMO
?
• In CL-SU-MIMO, SVD-MIMO is the optimum
TTA LTE Standards/Technology Training
43 © 2013 Nokia Solutions and Networks. All rights reserved.
MIMO Channel Decomposition
TTA LTE Standards/Technology Training
44 © 2013 Nokia Solutions and Networks. All rights reserved.
x~
x
V VH U UH
y
minn
1 1
~w
min
~
nw

Pre-processing Post-processing
Channel
),0(~,, 0 r
rt
n
nn
NΝCC Iwyx
wHxy


y~
With number of transmitting antenna=nt and receiving antenna=nr,
MIMO Channel Decomposition
TTA LTE Standards/Technology Training
45 © 2013 Nokia Solutions and Networks. All rights reserved.
wxDy ~~~ 
wUxD
wxVUDVU
wxUDVU
wHxU
yUy
H
HH
HH
H
H





~
)~(
)(
)(
~
Channel Diagonalization
TTA LTE Standards/Technology Training
46 © 2013 Nokia Solutions and Networks. All rights reserved.
3GPP Release 8 DL transmission modes
Two approaches to multi-antenna transmission
MCS
CQI
PMI
Rank
CQI
MCS
PMI
Rank
PDSCH Channel estimation based on
common reference signal (CRS)
MIMO Beamforming
PDSCH Channel estimation based on
dedicated reference signal (DRS)
CRS
DRS
SRS
Closed loop, codebook precoding (TM4) Open loop, non-codebook precoding (TM7)
If UE uses multiple receive
antennas, it also has to
transmit SRS on multiple
antennas in order for UL
measurements to fully
reflect DL channel state
TTA LTE Standards/Technology Training
47 © 2013 Nokia Solutions and Networks. All rights reserved.
• Diversity
– Same data on all the pipes (mode 2)
 Increased coverage and link quality
– But, the all pipes can be combined to make a kind-of beamforming
• MIMO
– Different data streams on different pipes (mode 4)
 Increased spectral efficiency (increased overall throughput)
 Power is split among the data streams
• Beamforming
– Data stream on only the strongest pipe (mode 7)
 Utilize different amplitude/phase at all pipes to optimally match per-UE
radio condition
 Increased coverage and signal SNR
Multi-Antenna Technology Summary
TTA LTE Standards/Technology Training
48 © 2013 Nokia Solutions and Networks. All rights reserved.
3GPP Release 9/10 DL transmission modes
Enhanced beamforming: dual-layer beamforming (TM8) 
Multi-layer (TM9)
With cross polar antennas in mind TDD
operators have been eager to extend Rel8
Beamforming to support two streams.
Spatial multiplexing supported
- Up to 2 layers per user (SU-MIMO)
- Up to 4 layer in total (MU-MIMO)
CRS based PMI and rank reporting supported
for beamforming
- Similar feedback schemes as for Rel-8 SU-
MIMO
(tx-mode 4)
- TxD CQI also supported
- One CRS per polarization via sector beam
virtualization (as in Rel-9)
CQI
PMI
Rank
MCS
Rank
PDSCH Channel estimation
based on DRS
DRS
SRS
TTA LTE Standards/Technology Training
49 © 2013 Nokia Solutions and Networks. All rights reserved.
PDSCH Transmission Modes
Mode Details
1 Single-antenna transmission (CRS)
2 Transmit diversity (CRS)
3 Open-loop codebook-based precoding in the case of more than one layer,
transmit diversity in the case of rank-one transmission (CRS)
4 Closed-loop codebook-based precoding (CRS)
5 Multi-user-MIMO version of transmission mode 4 (CRS)
6 Special case of closed-loop codebook-based precoding limited to single-layer
transmission (CRS)
7 Release-8 non-codebook-based precoding supporting only single-layer
transmission (UE-specific RS, but this mode will not be used)
8 Release-9 non-codebook-based precoding supporting up to two layers (DM-RS)
9 Release-10 non-codebook-based precoding supporting up to eight layers (DM-RS)
* UE specific RS and DM-RS are basically the same, i.e. both are not cell-specific but can be UE-specific.
But, two have different names and different scalability, DM-RS introduced in Rel-9/10 can be superset of
UE specific RS in Rel-8. So, UE specific RS will not be used mostly.
TTA LTE Standards/Technology Training
50 © 2013 Nokia Solutions and Networks. All rights reserved.
Cell-Specific RS Mapping for TM1-6
Normal CP Extended
CP
1 Tx ant 4.76% 5.56%
2 Tx ant 9.52% 11.11%
4 Tx ant 14.29% 15.87%
0l
0R
0R
0R
0R
6l 0l
0R
0R
0R
0R
6l
OneantennaportTwoantennaports
Resource element (k,l)
Not used for transmission on this antenna port
Reference symbols on this antenna port
0l
0R
0R
0R
0R
6l 0l
0R
0R
0R
0R
6l 0l
1R
1R
1R
1R
6l 0l
1R
1R
1R
1R
6l
0l
0R
0R
0R
0R
6l 0l
0R
0R
0R
0R
6l 0l
1R
1R
1R
1R
6l 0l
1R
1R
1R
1R
6l
Fourantennaports
0l 6l 0l
2R
6l 0l 6l 0l 6l
2R
2R
2R
3R
3R
3R
3R
even-numbered slots odd-numbered slots
Antenna port 0
even-numbered slots odd-numbered slots
Antenna port 1
even-numbered slots odd-numbered slots
Antenna port 2
even-numbered slots odd-numbered slots
Antenna port 3
RS Overhead
TTA LTE Standards/Technology Training
51 © 2013 Nokia Solutions and Networks. All rights reserved.
UE-specific RS (R5) on top of CRS for TM7
• UE-specific RS (antenna port 5)
– 12 symbols per RB pair
• DL CQI estimation is always based on cell-specific RS (common RS)
TTA LTE Standards/Technology Training
52 © 2013 Nokia Solutions and Networks. All rights reserved.
New DM-RS for scalability for TM8-9
TTA LTE Standards/Technology Training
53 © 2013 Nokia Solutions and Networks. All rights reserved.
• Diversity
– Same data on all the pipes (mode 2)
 Increased coverage and link quality
– But, the all pipes can be combined to make a kind-of beamforming
• MIMO
– Different data streams on different pipes (mode 4)
 Increased spectral efficiency (increased overall throughput)
 Power is split among the data streams
• Beamforming
– Data stream on only the strongest pipe (mode 7)
 Utilize different amplitude/phase at all pipes to optimally match per-UE
radio condition
 Increased coverage and signal SNR
– Not any more focusing on the strongest pipe in transmission mode 8 in
R9 and mode 9 in R10
Multi-Antenna Technology Summary
TTA LTE Standards/Technology Training
54 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE FDD vs TDD link budget comparison
- Example
TTA LTE Standards/Technology Training
55 © 2013 Nokia Solutions and Networks. All rights reserved.
From 8T8R to 2T2R in real fields
Ground based cabinet
FSMF + RRH in cabinet
GSM/TDLTE co-sited
Antenna on 25M tower
8T8R RFM
8T8R RFM
GSM MCPA
GSM MCPA
8T8R RFM
TDLTE BBU
Dense traffic areas
1 RFM serves up to 4 sectors
Small, discrete 2x2 antennas
Approx. 300x100mm
TTA LTE Standards/Technology Training
56 © 2013 Nokia Solutions and Networks. All rights reserved.
HARQ Retransmission Timing
• Acknowledgement of a transport block in subframe n is transmitted in subframe
n + k , where k ≧ 4 and is selected such that n + k is an uplink subframe
TTA LTE Standards/Technology Training
57 © 2013 Nokia Solutions and Networks. All rights reserved.
HARQ Acknowledgement Bundling
• For DL transmissions, there are some configurations where DL-SCH receipt in multiple DL
subframes needs to be acknowledged in a single UL subframe
– Multiplexing
Independent acknowledgements for each of the received transport blocks are fed back to the
eNodeB. This allows independent retransmission of erroneous transport blocks. However, it also
implies that multiple bits need to be transmitted from the terminal.
– Bundling of acknowledgements
The outcome of the decoding of DL transport blocks from multiple DL subframes can be combined
into a single hybrid-ARQ acknowledgement transmitted in UL. Only if both of the DL transmissions
in subframes 0 and 3 in the example below are correctly decoded will a positive acknowledgement
be transmitted in UL subframe 7.
The downlink assignment index in the scheduling assignment on the PDCCH is used to avoid
confusion
TTA LTE Standards/Technology Training
58 © 2013 Nokia Solutions and Networks. All rights reserved.
UL Grant Timing
• For TDD configurations 1–6, the uplink transmission occurs in subframe n + k , where k is
the smallest value larger than or equal to 4 such that subframe n + k is an uplink
subframe.
• For TDD configuration 0 there are more UL subframes than DL subframes, which calls for
the possibility to schedule transmissions in multiple UL subframes from a single DL
subframe. For DL-UL configuration 0, the index field specifies which UL subframe(s) a
grant received in a DL subframe applies to.
TTA LTE Standards/Technology Training
59 © 2013 Nokia Solutions and Networks. All rights reserved.
PRACH format 4
• Short PRACH preamble (format 4) only for TDD (to utilize UpPTS in small cells)
• For TDD, multiple random-access regions can be configured in a single subframe.
The reason is the smaller number of uplink subframes per radio frame in TDD. To
maintain the same random-access capacity as in FDD, frequency-domain
multiplexing is sometimes necessary.
TTA LTE Standards/Technology Training
60 © 2013 Nokia Solutions and Networks. All rights reserved.
Better Utilization of SRS
• SRS (Sounding Reference Signal)
– SRS can be used for both DL beamforming and UL CAS
• Calibration needed for channel reciprocity
Model to illustrate the impact from RF units to channel reciprocity
(capital letters indentify matrixes)
TTA LTE Standards/Technology Training
61 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE TDD market overview
Quick comparison b/w WiMAX & LTE TDD
LTE TDD Technology Overview
TDD Carrier Aggregation
TDD Enhancement in Rel-12 and beyond
TTA LTE Standards/Technology Training
62 © 2013 Nokia Solutions and Networks. All rights reserved.
TDD CA Combinations
• CA_39A-41A, CMCC Rel’12
 20MHz + 20MHz
Completed
Ongoing
New
Inter-band CA combinations
Intra-band contiguous CA combinations
• CA_40C, CMCC Rel’10
 40MHz
• CA_41C, Clearwire Rel’11
 40MHz
• CA_38C, CMCC Rel’11
 40MHz
• CA_39C, CMCC Rel’12
 35MHz
• CA_41D, Sprint Rel’12
 60MHz
Intra-band non-contiguous CA combinations
• CA_41A-41A, CMCC Rel’12
 20MHz + 20MHz
• CA_41A-41A, Sprint Rel’12
 20MHz + 20MHz (dual uplink)
TTA LTE Standards/Technology Training
63 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE_CA_TDD_FDD-Core
Core part: TDD-FDD joint operation
• Rapporteur: Nokia
• Schedule: Start (June 2013) – Finish (Dec 2014, estimated)
• Latest WID: RP-131399 (RAN#61)
– Objective
 The objective is to enhance LTE TDD – FDD joint operation with LTE TDD-FDD carrier
aggregation feature and potentially also with other TDD-FDD joint operation solutions
depending on the outcome of the initial scenario evaluation phase of the work item.
 Technical Report on TDD-FDD Joint Operation scenarios from RAN#60 until RAN#62
• Identify deployment scenarios of joint operation on FDD and TDD spectrum, and network/UE requirement
to support joint FDD/TDD operation.
• Based on the identified deployment scenarios and network/UE requirements, identify possible other
solutions for FDD-TDD joint operation for example multi-stream aggregation and dual-mode UE supporting
simultaneous operation on both modes in addition to LTE TDD-FDD carrier aggregation.
 Based on the work above consider whether such solutions, if any, need to be added to the
Work Item itself, or in separate Work Items
 Introduction of LTE TDD-FDD Carrier Aggregation in Rel-12 specification from RAN#61 until
RAN#64:
• Latest Status Report: RP-131371, RP-130999
• Latest 3GPP TR and/or TS: 36.847 and related TS’s (36.101, 104, 133, etc)
TTA LTE Standards/Technology Training
64 © 2013 Nokia Solutions and Networks. All rights reserved.
TR 36.847
Study on LTE TDD-FDD joint operation including Carrier Aggregation
• Deployment Scenarios
– FDD+TDD co-located (CA scenarios 1-3), and FDD+TDD non-co-located with ideal backhaul
(CA scenario 4)
– FDD+TDD non-co-located (small cell scenarios 2a, 2b, and macro-macro scenario), with non-ideal
backhaul, subject to the outcome of the non-ideal backhaul related study items where relevant.
• Carrier frequency related assumptions
– Carrier frequency of TDD is far away enough from joint operated FDD carrier frequencies
– Carrier frequency of TDD is near the UL band of joint operated FDD
– Carrier frequency of TDD is near the DL band of joint operated FDD
– Carrier frequency of TDD locates between the UL band and DL band of joint operated FDD
• Requirements
– UEs supporting FDD - TDD joint operation shall be able to access both legacy FDD and legacy
TDD single mode carriers.
– simultaneous reception on FDD and TDD carriers (i.e. DL aggregation)
simultaneous transmission on FDD and TDD (i.e. UL aggregation)
simultaneous transmission and reception on FDD and TDD (i.e. full duplex)
TTA LTE Standards/Technology Training
65 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE TDD market overview
Quick comparison b/w WiMAX & LTE TDD
LTE TDD Technology Overview
TDD Carrier Aggregation
TDD Enhancement in Rel-12 and beyond
TTA LTE Standards/Technology Training
66 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE_TDD_eIMTA
Further Enhancements to LTE TDD for DL-UL Interference
Management and Traffic Adaptation
• Rapporteur: CATT
• Schedule: Start (Dec 2012) – Finish (June 2014, estimated)
• Latest WID/SID: RP-121772 (RAN#58)
– The objective is to enable TDD UL-DL reconfiguration for traffic adaptation in small
cells, including
 Agree on the deployment scenarios for TDD UL-DL reconfigurations
 Agree on the supported time scale together with the necessary signaling mechanism(s) for TDD
UL-DL reconfiguration and specify the necessary (if any) enhancements for TDD UL-DL
reconfiguration with the agreed time scale and signaling mechanism(s)
 Agree on interference mitigation scheme(s) for systems with TDD UL-DL reconfiguration to
ensure coexistence in the agreed deployment scenarios
 Backward compatibility shall be maintained
• Latest Status Report: RP-130986, RP-130987
• Latest 3GPP TR and/or TS: related TS’s (36.101, 104, 133, etc)
TTA LTE Standards/Technology Training
67 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE_TDD_eIMTA: Scenarios
• At least the following scenarios should be supported
– Scenario 1: multiple Femto cells deployed on the same carrier frequency
– Scenario 2: multiple Femto cells deployed on the same carrier frequency and multiple
Macro cells deployed on an adjacent carrier frequency
– Scenario 3: multiple outdoor Pico cells deployed on the same carrier frequency
– Scenario 4: multiple outdoor Pico cells deployed on the same carrier frequency
and multiple Macro cells deployed on an adjacent carrier frequency
– In scenarios 2/4, all Macro cells have the same UL-DL configuration and
Femto/outdoor Pico cells can adjust UL-DL configuration
• Take scenarios 3-4 with the first priority for further evaluation and design
TTA LTE Standards/Technology Training
68 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE_TDD_eIMTA: Interference Mitigation
• ICI types in TD-LTE with dynamic UL-DL configuration
• Interference mitigation schemes
– Cell clustering interference mitigation (CCIM)
– Scheduling dependent interference mitigation (SDIM)
– Interference suppressing interference mitigation (ISIM)
– Interference mitigation based on legacy schemes (such as eICIC/FeICIC schemes,
CoMP schemes, MBSFN configuration schemes)
– Power control based schemes
* source: ETRI
TTA LTE Standards/Technology Training
69 © 2013 Nokia Solutions and Networks. All rights reserved.
More futuristic…
• Example: Full Duplex TDD
– Transmit and receive same time in same BW
– Self-interference is the main technical problem in the implementation
– Usable only in small cells
TTA LTE Standards/Technology Training
70 © 2013 Nokia Solutions and Networks. All rights reserved.
LTE TDD Summary
• Market potential is BIG
• High degree of commonality b/w LTE FDD and LTE TDD
• Slight difference in frame structure (FDD vs. TDD)
• Time synchronized network
• Need to ensure coexistence b/w neighboring TDD systems
• Better beamforming performance with channel reciprocity
• Smaller link budget which fits to capacity networks
• Flexible DL/UL capacity for various applications
71 ©2013 Nokia Solutions and Networks. All rights reserved.
THANK YOU!
0
2013. 10. 17
나민수 (minsoo.na@sk.com)
Network기술원
LTE Rel-11 LTE Advanced
(focusing on Carrier Aggregation)
SK Telecom Proprietary & confidential
1
Contents
SK Telecom Proprietary & confidential
LTE-A 주요 기술 소개
Carrier Aggregation 개요
Carrier Aggregation 기술 규격
결론 및 Q&A
LTE-A 표준화 현황
그 외 LTE-A 주요 기술
2
Contents
SK Telecom Proprietary & confidential
LTE-A 주요 기술 소개
Carrier Aggregation 개요
Carrier Aggregation 기술 규격
결론 및 Q&A
LTE-A 표준화 현황
그 외 LTE-A 주요 기술
3SK Telecom Proprietary & confidential
이동통싞 분야에서 사업자 중심의 NGMN & GTI 표준화 및 기술 중심의 3GPP 표준화가 짂행
*LTE : Long Term Evolution
*UMB:Ultra Mobile Broadband
*IW: Inter-working
1G 2G
High
(Up to 350 Km/h)
Medium
(Vehicular)
Low
(Nomadic)
Peak Data Rate14.4 Kbps 144 Kbps 384 Kbps ~ 50 Mbps ~100 Mbps
CDMA
GSM
AMPS
W-CDMA
HSDPA/HSUPA
CDMA2000/Ev-DV/DO
1995 2000 2005 2010
WiBro/M-WiMAX
IEEE
802.16e
IEEE
802.11a/b
802.16 a/d
Mobility
3G
IEEE
802.11n
IMT-Advanced
Standard
~1 Gbps
3G Ev.
IEEE
802.20
LTE*
UMB*
WLAN
F-WiMAX
MBWA
IEE 802.11
VHT
IEEE
802.16m
LTE-A
Radio Link
 >100 Mbps (high mobility)
 ~1GHz (Fixed, Nomadic)
 High Spectral efficiency ( 5~10 bps/Hz)
Heterogeneous Network
Cost-effectiveness
Higher capacity & coverage
NGMN & GTI
4SK Telecom Proprietary & confidential
 3GPP의 의미는 3rd Generation Partnership Project 임
•Contribution 제출에 의해서 회의가 짂행되며 아래의 “Organizational partners”에 속한 회사
단위로 회의 참석
•현재 약 350개가 넘는 개별 맴버가 등록 되어 있음 (Operators, Vendors, Regulators)
 조직 및 규모
•GERAN, RAN, SA, CT의 Technical Standard Group으로 구성 됨
•매년 185회의 미팅이 개최되며 매 회의 마다 각 sub 미팅이 동일한 위치에서 열리는 경우가 많음
•한 미팅 장소에 약 600명 이상의 글로벌 업체의 delegate이 참석
유럽의 GSM에서 시작된 세계 최대의 무선 이동통싞 기술 표준화 단체
LTE, LTE-A, SAE 등 차세대 네트워크의 interface 개발을 수행
5SK Telecom Proprietary & confidential
 ’11년 6월 Release 10 (LTE-A) 스펙의 ASN.1 freezing 완료
 현재 Release 12 (Beyond 4G) 표준화 짂행 중이며 ’14년 9월 ASN.1 freezing 완료예정
Release
2009 2010 2011 2012 2013 2014
1H 2H 1H 2H 1H 2H 1H 2H 1H 2H 1H 2H
Rel-8
Rel-9
Rel-10
Rel-11
Rel-12
’09.03
ASN.1 Freeze
’10.03
ASN.1 Freeze
’09.12
Stage3Stage1
’08.12
’11.06
ASN.1 Freeze
’11.03
Stage3Stage1
’10.03
’13.03
ASN.1 Freeze
’12.09
Stage3Stage1
’11.09
’14.09
ASN.1 Freeze
’14.06
Stage3Stage1
’13.03
6
[참고] 3GPP 규격
3GPP 공식 Site에서 누구나 접속 가능 (3GPP Specification Numbering)
LTE, LTE-A 관렦 RAN 규격은 36 Series에서 확인
7
Contents
SK Telecom Proprietary & confidential
LTE-A 주요 기술 소개
Carrier Aggregation 개요
Carrier Aggregation 기술 규격
결론 및 Q&A
LTE-A 표준화 현황
그 외 LTE-A 주요 기술
8SK Telecom Proprietary & confidential
 LTE에서 확장된 기술 (Enhancement from Rel-8/9)
•Bandwidth/spectrum aggregation
•MIMO enhancement
•Hybrid multiple access scheme for UL
•DL/UL Inter-cell Interference Management
 새롭게 추가된 기술 (Emerging Tech.)
•Multi-hop transmission (Relay)
•Multi-cell cooperation (CoMP: Coordinated Multipoint Tx/Rx)
•Interference management in heterogeneous cell overlay
•Minimize drive test (MDT)
•Machine type communication (MTC)
LTE-A는 LTE로부터 확장된 기술과 새롭게 추가된 기술로 구성됨
9
Spectrum Aggregation Advanced MIMO
High-order MIMO
Enhanced
DL/UL MU-MIMO
UL SU-MIMO
FFR & Power Control
A
A
A
Frequency
Power Spectral Density
B
B
C
C
D
D
D
Reuse 1 Reuse 1/3
B C
Sector 1
Sector 2
Sector 3
UL Hybrid Multiple Access
Cluster
IFFT
P/S
Modulation
symbols
Time Domain
signalS/P
DFT
:mapping to a RB
SK Telecom Proprietary & confidential
10
Multihop Transmission (Relay) Multi-cell Cooperation (Collaborative MIMO)
eNBB
eNBA
eNBC
X2 interface
UE
Multi-cell MIMO user :
Single-cell MIMO user :
DL UE Data
CSI
Backhaul
Self Organizing Network (SON) Heterogeneous Cell Overlay
Pico eNB
Femto eNB
Relay eNB
Macro eNB
X2
Internet
Mobile
Core
Network
Femto-cell
Controller
SK Telecom Proprietary & confidential
11
LTE-Advanced
LTE
Higher Order
MIMO
Spectrum
Aggregation
CoMP
CoMP
Coverage Extension
HeNB/Relay
eNodeB
Data rate
SON
MIMO/CA를 통한 강젂계 사용자의 Throughput 향상
eICIC/Relay를 통한 약젂계 사용자의 QoS 향상
SK Telecom Proprietary & confidential
12
Contents
SK Telecom Proprietary & confidential
LTE-A 주요 기술 소개
Carrier Aggregation 개요
Carrier Aggregation 기술 규격
결론 및 Q&A
LTE-A 표준화 현황
그 외 LTE-A 주요 기술
13SK Telecom Proprietary & confidential
 ITU-R의 요구 사항을 만족시키기 위해 2008년 초부터 WiMAX와 3GPP 표준화를 통해 짂행
•3GPP에서는 Carrier Aggregation, WiMAX에서는 Multi-carrier라는 이름으로 짂행
•CA의 컨셉은 이미 3GPP2의 1xEV-DO REV. B 시스템과 3GPP의 HSDPA 4 carrier로
졲재하였지만, 두 경우 모두 carrier가 동일 band 및 동일 bandwidth를 가지는 것만을 가정
 주파수 자원의 부족과 파편적인 주파수 대역의 효율적 홗용에 대한 필요성 증대
•단위 캐리어의 크기는 LTE 시스템에서 정의된 1.4, 3, 5, 10, 15, 20MHz의 다양한 크기를 가질 수
있으며, 각 단위 캐리어의 크기는 서로 다를 수 있도록 규격화
ITU-R의 주요 요구 사항 중 Data 젂송률 달성 방법으로 단말이 복수의 캐리어를 수싞 방법 고려
주파수 대역의 부족과 산개되어 있는 주파수의 효율적 사용에 대한 필요성 증대
Frequency
System bandwidth,
e.g., 100 MHz
Component Carrier, e.g., 20 MHz
UE capabilities
• 100-MHz case
• 40-MHz case
• 20-MHz case (Rel. 8 LTE)
14SK Telecom Proprietary & confidential
CA를 통해 주파수 홗용성, 물리 계층/스케쥴링의 효율성을 향상 시킬 수 있음
Non-CA, 1FA Non-CA, 2FA (MC) CA, 2FA(2 carriers)
물리계층 효율성 높음
Guard subcarrier로 인한 L1
efficiency 감소
차후 release에서 Guard subcarrier의
홗용 및 제어채널 overhead 감소 가능
(Rel-10으로는 Non-CA 2FA와 동일)
Scheduling 효율성 높음
각 FA를 별도의 스케줄러가 관
장하여 multiplexing gain
떨어짐
Cross-carrier scheduling을 통한 캐리
어갂 multiplexing gain
이격 주파수 홗용성 N/A 가능 가능
20MHz+ 주파수 홗용성 불가능 불가능 가능
DL/UL 비대칭 지원 N/A 불가능 가능
20MHz
Scheduler
10
MHz
10
MHz
GuardSubcarrier
Sched. 1 Sched. 2
10
MHz
10
MHz
GuardSubcarrier
Cross-Carrier Scheduler
15SK Telecom Proprietary & confidential
LTE 단말에 대한 Backward Compatibility 보장하여 설계
Rel-10에서는 상향/하향 링크에 각각 2개의 단위 캐리어까지만 지원 가능
 동일 MAC에 LTE 물리계층의 병렧화
•단위 캐리어의 물리 계층 처리는 LTE coding chain을
독립적으로 처리
Mod.
Mapping
Channel
coding
HARQ
Mod.
Mapping
Channel
coding
HARQ
Mod.
Mapping
Channel
coding
HARQ
Mod.
Mapping
Channel
coding
HARQ
Transport
block
Transport
block
Transport
block
Transport
block
CC
 LTE 단말에 대한 Backward compatibility 보장
•각 캐리어별로 LTE 단말이 개별적으로 접속하고 LTE의 동작을 fully 수행 가능
 총 5개의 캐리어를 지원하나, Rel-10에서는 2개의 캐리어만을 지원
•시스템의 설계는 5개의 캐리어를 지원하도록 되어 있으나, 단말/기지국 RF 표준 규격이 2개의
캐리어만을 지원 (Rel-11도 3개 이상 지원 논의 없음)
CA 물리 계층 구조
Multiplexing
From RLC
L1 + RF(850MHz)
Logical Channels
Transport Channels
Scheduler
HARQ
Multiplexing
From RLC
L1 + RF(1.8GHz)
Scheduler
HARQ
Multiplexing
From RLC
L1 + RF(850MHz)
Scheduler
HARQ
L1 + RF(1.8GHz)
HARQ
MC 프로토콜 구조 CA 프로토콜 구조
16SK Telecom Proprietary & confidential
규격(TS36.300)에서는 CA 주파수 및 구축 방법에 따라 5가지 방안 정의
 CA 망 구축 시나리오 (F1 <F2)
1) Co-Location, 동일 커버리지
2) Co-Location, 안테나 방향 같고 커버리지 다름
3) Co-Location, 안테나 방향 달라 주파수 커버리지갂 Overlapping
4) 주파수 하나를 Small Cell 용도로 구축
5) 2번 망구축 시나리오 + Small Cell
17SK Telecom Proprietary & confidential
사업자 별 주파수 현황 및 젂략에 따라 CA 구축 방안 정립 필요
 CA를 통해서 얻을 수 있는 기대 효과
•복수개의 캐리어를 통해 data 젂송을 수행하여 단말의 Throughput 향상 기대
•추가 캐리어를 이용하여 coverage 확장과 단말의 mobility 향상 기대
•서로 다른 주파수의 캐리어를 갂섭 회피 용도로 홗용하여 단말의 QoS 향상 기대
 CA를 기대 효과 별 대표적인 망 구축의 예 (3GPP 표준화 5개의 시나리오 논의 중)
기대효과 구축 예 설명
Throughput
Enhancement
F1 F2
CA 의 기본 시나리오로 한 단말이 F1/F2 수싞
가능 지역에서 두 개의 캐리어를 통해 동시에
데이터 젂송을 송/수싞 함
Coverage
extension
단말이 F1 셀들의 경계지역에서는 F2 를 통해서
데이터를 송/수싞 함 (주로 F2 가 높은 path
loss 특성을 가지는 경우 홗용 가능)
Interference
Management
*Macro/small cell 모두 F1 과 F2 사용
HetNet 상황에서 홗용가능하며 Macro 셀에서는
F1 에서 Small 셀 지역의 단말은 F2 에서
제어채널을 수싞하도록 하여 제어 채널의 갂섭
제어가 가능
18
[참고] TS36.300 Annex J.1 CA Deployment Scenarios
1
F1 and F2 cells are co-located and overlaid, providing nearly the
same coverage. Both layers provide sufficient coverage and
mobility can be supported on both layers. Likely scenario is when
F1 and F2 are of the same band.
2
F1 and F2 cells are co-located and overlaid, but F2 has smaller
coverage due to larger path loss. Only F1 provides
sufficient coverage and F2 is used to improve throughput.
Mobility is performed based on F1 coverage. Likely scenario
when F1 and F2 are of different bands. (F1<F2)
3
F1 and F2 cells are co-located but F2 antennas are directed to
the cell boundaries of F1 so that cell edge throughput is
increased. F1 provides sufficient coverage but F2 potentially
has holes, e.g., due to larger path loss. Mobility is based on
F1 coverage. Likely scenario is when F1 and F2 are of
different bands. (F1<F2)
4
F1 provides macro coverage and on F2 Remote Radio Heads
(RRHs) are used to provide throughput at hot spots. Mobility is
performed based on F1 coverage. Likely scenario is when F1 and
F2 are of different bands. (F1<F2)
5
Similar to scenario #2, but frequency selective repeaters are
deployed so that coverage is extended for one of the carrier
frequencies. (F1<F2)
F1 F2
SK Telecom Proprietary & confidential
19SK Telecom Proprietary & confidential
LTE-A에서는 밴드 개수와 밴드안에서 CC의 위치에 따라 3가지 밴드 시나리오를 지원 함
 Intra-band Contiguous CA
•하나의 FFT 모듈과 하나의 Radio Front-end 처리 가능성
•Rel-10에서는 상향링크의 경우에는 단말의 RF 요구조건으로
Contiguous CA만을 고려함
 Intra-band Non-Contiguous CA
•한 밴드내에서 떨어져있는 스펙트럼을 홗용
 Inter-band Non-Contiguous CA
•사업자들이 가장 관심이 많은 시나리오이며, 떨어져있는 밴드의 주파수 스펙트럼을 홗용
One CC
One CC
20SK Telecom Proprietary & confidential
Rel-10 ASN.1 freezing 스펙은 완성되었으나, RF 스펙은 Release와 독립적으로 계속 짂행
 CA를 위한 3가지 Band 시나리오
 ’11년 6월로 ASN.1 스펙이 완성되었고, RF 관렦 스펙은 Release와 별도로 짂행 중
•표준화에서 Inter-band CA 구성 관렦 20개가 넘는 band combination이 논의
•RAN4의 과도한 업무로 인해 모든 combination을 ASN.1 freezing에 포함시키지 못하였음
구분 Intra-band Inter-band
Contiguous
(a) 밴드내/연속된 CC
갂
N/A
Non-
Contiguous
(b) 밴드내/불연속된
CC갂
(c)밴드갂/불연속된
CC갂
※ Band 1 : 2.1GHz 대역, Band 5: 800MHz, Band 40: 2.3GHz 대역
21SK Telecom Proprietary & confidential
 ’13.09월 DL 기준 Inter-band 31개, Intra-band Contiguous 6개, Non-Contiguous 3개
완료
 현재 한국 사업자 제공하고 있는 10M + 10M CA의 경우 표준화 완료
< 주요 주파수 대역 CA 규격 현황(TS36.101) >
E-UTRA
CA Band
E-UTRA
Band
Uplink (UL) operating band Downlink (DL) operating band Duplex
ModeBS receive / UE transmit BS transmit / UE receive
FUL_low – FUL_high FDL_low – FDL_high
CA_1-5
1 1920 MHz – 1980 MHz 2110 MHz – 2170 MHz
FDD
5 824 MHz – 849 MHz 869 MHz – 894 MHz
CA_1-18
1 1920 – 1980 MHz 2110 – 2170 MHz
FDD
18 815 – 830 MHz 860 – 875 MHz
CA_1-19
1 1920 MHz – 1980 MHz 2110 MHz – 2170 MHz
FDD
19 830 MHz – 845 MHz 875 MHz – 890 MHz
CA_1-21
1 1920 MHz – 1980 MHz 2110 MHz – 2170 MHz
FDD
21 1447.9 MHz – 1462.9 MHz 1495.9 MHz – 1510.9 MHz
CA_2-17
2 1850 MHz – 1910 MHz 1930 MHz – 1990 MHz
FDD
17 704 MHz – 716 MHz 734 MHz – 746 MHz
CA_2-29
2 1850 MHz – 1910 MHz 1930 MHz – 1990 MHz
FDD
29 N/A 717 MHz – 728 MHz
CA_3-5
3 1710 MHz – 1785 MHz 1805 MHz – 1880 MHz
FDD
5 824 MHz – 849 MHz 869 MHz – 894 MHz
CA_3-7
3 1710 MHz – 1785 MHz 1805 MHz – 1880 MHz
FDD
7 2500 MHz – 2570 MHz 2620 MHz – 2690 MHz
CA_3-8
3 1710 MHz 1785 MHz 1805 MHz 1880 MHz
FDD
8 880 MHz 915 MHz 925 MHz 960 MHz
CA_3-20
3 1710 MHz – 1785 MHz 1805 MHz – 1880 MHz
FDD
20 832 MHz – 862 MHz 791 MHz – 821 MHz
LGU(’99.:월)
SKT(’92.9월)
KT(’92.92월)
22SK Telecom Proprietary & confidential
KT
LTE
5M
SKT
CDMA
5M
UL 819 824 839 849 905 915
DL 864 869 884 894 950 960
8/900MHz
Band 5, 8, 26
LGU+
LTE
10M
KT
LTE
10M
1.8GHz
Band 3
10M 5M10M
KT
LTE 10M
UL 1710 1715 1725 1735 1745 1755 1765 1770 1780 1785
DL 1805 1810 1820 1830 1840 1850 1860 1870 1880
SKT
LTE 10M
LGU+ UL
CDMA
2.1GHz
Band1
UL 1920 1930 1960 1980
DL 2110 2120 2150 2170
KT
UMTS 20MHz
10M
SKT
UMTS 30MHz
LGU+
LTE10M
LGU+ DL
UMTS Frequency band: 2.1G(30MHz)
WiBro TD 2300 2327 2330 2360
SKT
WiBro 27MHz
Allocated on 30th Aug. 2013
SKT
LTE
10M
Similar to
Band 40
2.6GHz
Band 7
20MHz
UL 2500 2520 2540 2570
DL 2620 2640 2660 2690
20M
Allocated on 30th
Aug. 2013
KT
WiBro 30MHz
Not allocated
SKT KT
LGU+
※ Spectrum Auction Result
(30th Aug. 2013)
SKT: 20MHz in Band 3
KT : 10MHz in Band 3
LG U+: 20MHz in Band 7
Re-farming
23SK Telecom Proprietary & confidential
기지국은 모뎀 및 스케줄러 기능 추가를 위한 S/W 변경 필요
단말은 RF 모듈 및 싞규 모뎀 추가를 위한 H/W 변경 필요
 기지국은 MAC/PHY (채널카드) 변경이 필요하며 RF부는 MC와 동일
 단말은 복수개 Carrier 동시 수싞 가능한 RF 모듈 및 모뎀 추가 필요
【Downlink PHY Parameter per ue-Category】 【 Qualcomm Chipset Spec】
24
Contents
SK Telecom Proprietary & confidential
LTE-A 주요 기술 소개
Carrier Aggregation 개요
Carrier Aggregation 기술 규격
결론 및 Q&A
LTE-A 표준화 현황
그 외 LTE-A 주요 기술
25SK Telecom Proprietary & confidential
 Rel8/9 UE와 Backward Compatible하며 CA Capable UE에 CA Feature 선별 적용 가능
PHY/MAC Layer 최소 변경 및 Rel.8/9 Upper Layer 재사용
 Non-CA(Rel. 8/9) VS CA(Rel.10/11)
구분 Rel. 8/9 Rel. 10
Max Bandwidth 20 MHz 5 x 20 MHz
Peak Data Rate
DL 300 Mbps 3 Gbps (8 layer 시)
UL 75 Mbps 1.5 Gbps (4 layer 시)
규격 Rel. 98 (’99.6) Rel. 99 (’9:.:) Rel. 92 (’9;.9)
L1/L2
• DL/UL CA protocol 구조
및 control signaling
(최대 5 carrier)
• Multiple UL TA 지원
• TDD carrier간 다른
DL/UL 설정 지원
• TDD-FDD Joint
Operation
• New Carrier Type
(Drop)
 3GPP Release 별 표준 현황
26SK Telecom Proprietary & confidential
Component Carrier (CC)는 CA의 단위 캐리어를 의미하며 다양한 BW를 가질 수 있음
Rel-10/11에서는 Backward Compatible CC만을 대상으로 함
 Component Carrier (CC)는 CA의 단위 캐리어로 써 다양한 bandwidth를 가질 수 있음
 CA의 CC로써 Rel-10/11에는 Backward Compatible Carrier만을 대상
 Backward compatible 캐리어의 특징
•현졲하는 모든 LTE (Rel-8/9)단말이 Accessible 함 (Sync./Reference Sig., System Info. 젂송)
•CA의 한 부분으로써 동작하거나 single carrier 기반 (stand-alone)으로도 동작 가능
Segment 1
Segment 2
B
B0
Rel-8
compatible
Carrier 0
PDCCH
 차후 Release에서 고려될 수 있는 캐리어 종류
•Non-backward compatible carrier: LTE 단말은 access가
불가하나 LTE-A 단말은 가능 함
•Extension carrier: Stand-alone으로 동작이 불가능한 carrier
•Carrier segment: Backward compatible carrier에서 대역
확장된 carrier
Carrier Segment
27SK Telecom Proprietary & confidential
CC의 구성, 홗성화, 비홗성화는 시스템 단위가 아닌 UE 별로 설정
단말이 초기 Access한 CC가 해당 단말의 Primary CC가 되며 주요 제어 채널 젂달 용도
단말 구성(Configured) CC들 중 하나의 Primary CC를 제외한 나머지가 Secondary CC 임
 Primary CC (PCC 또는 PCell)
•UE별로 초기 access한 backward compatible CC가 해당 UE의 Primary CC가 됨
•UL Primary CC는 SIB2 linkage에 의해서 결정되며 상향 물리 제어 채널이 젂송됨
•DL Primary CC는 비홗성화(Deactivation) 되지 못하며, Inter-Frequency H/O를 통해서 변경
 Secondary CC (SCC 또는 SCell)
•단말 별 구성된 CC들 중 Primary CC가 아닌 CC를 Secondary CC라고 함
 CC의 홗성화(Activation)과 비홗성화 (Deactivation)
•UE의 CC별로 홗성화와 비홗성화가 가능함
•단말은 비홗성화된 CC에 대해서는 제어/데이터 채널의 수싞 동작을 수행하지 않고, CQI 측정과
리포팅도 수행하지 않음
•특정 CC가 시스템내의 모든 단말에 의해서 사용되지 않으면 네트워크가 switch-off 가능
 CC의 구성, 홗성화, 비홗성화는 시스템 단위가 아닌 UE별로
이루어 짐
•UE-specific dedicated 시그날링을 통해서 DL/UL CC가 구성
정보가 젂달
System
CC 1 CC 2
UE 1 UE 2
CC 3
PCC SCC
SCCPCC
28SK Telecom Proprietary & confidential
 Primary Cell (PCell), Secondary Cell (SCell) ?
•PCell, SCell은 고정적으로 정해져 있는 것이 아니라 단말에 따라 달라짐
예) 단말A: 800M PCell + 1.8G SCell, 단말B: 800M SCell + 1.8G PCell,
•단말이 RACH 올려서 RRC 접속한 CC가 PCell이고, 다른 나머지 CC가 SCell
예) 단말이 1.8G로 RACH 올려서 접속하면 1.8G가 PCell이 되고, 800M가 Scell
•단말이 PCell을 변경하려면 HO 젃차로 변경 필요. SCell 변경은 HO가 아닌 별도 젃차
예) 단말이 1.8G PCell에서 800M PCell로 변경하려면 주파수갂 HO 필요
 Primary Cell (PCell)
• 접속 상태(Active)에서 항상 단말로 DL 모니터링 (기졲 Non-CA와 동일)
•단말은 PCell의 UL CC만을 사용
• PCell UL통해 SCell DL에 대한 Feedback(CQI/PMI/RI, ACK/NACK 등) 젂송
 Secondary Cell (SCell)
• RRC 접속시 단말별 사용 가능한 SCell을 지정하고, SCell의 시스템 정보도 RRC 메시지로 젂송
• 단말에 SCell 젂송 여부에 따라 SCell을 Activation/Deactivation(MAC CE)하여 사용
29
29
• has always both DL and UL resources
• provides security inputs and NAS mobility
functions
• used for random access, initial connection
establishment, and RRC connection
reestablishment procedures
• used for radio link monitoring
• used for PUCCH transmission
• DL/UL SPS is limited to PCell only.
• can be changed only by handover
• cannot be deactivated
• cannot be cross-scheduled
• can be different for UEs served by the same
eNB
• can have both DL and UL resources or DL
only resource
• provides additional resources for UE’s
connection
• added/modified/released via dedicated
RRC reconfiguration signaling
• System information is obtained via
dedicated RRC signaling (as in handover).
• can be deactivated (both UL and DL are
deactivated simultaneously)
• can be cross-scheduled from PCell or
another SCell configured by dedicated RRC
signaling
Primary Cell (PCell)
same as a Rel. 8/9 serving cell
Secondary Cell (SCell)
configurable based on UE capability
SK Telecom Proprietary & confidential
30SK Telecom Proprietary & confidential
CA 는 Resource 할당을 위한 제어채널과 데이터채널을 서로 다른 CC에 젂송하는
Cross-Carrier Scheduling 정의
Cross Carrier Scheduling 기능은 Optional 기능이며 초기 시스템/단말은 미구현
 제어 채널 (PDCCH)와 데이터 채널 (PDSCH/PUSCH) 젂송 방법
•각 PDSCH/PUSCH를 위한 Resource Assignment 정보는 개별적으로 encoding된 PDCCH를
통해 젂송 (CA가 적용되지 않은 LTE에서도 동일한 형태로 제어채널/데이터 채널을 젂송)
 캐리어 갂 스케쥴링 (Cross Carrier Scheduling)
•3bit의 Carrier indicator field (CIF)를 기졲 PDCCH의 payload에 추가하여 Resource 할당 시
PDSCH/PUSCH가 젂송되는 CC를 지정할 수 있도록 함
•Primary Cell에 젂송되는 PDSCH/PUSCH는 cross-carrier scheduling이 불가함
•하나의 Cell에 포함되어 있는 DL CC와 UL CC는 모두 같은 CC에서 cross-carrier scheduling 함
※ PDCCH: Physical Downlink Control Channel, PDSCH: Physical Downlink Shared Channel, PUSCH: Physical Uplink Shared Channel
31
Interference Limited 홖경 (HetNet 등)에서 Cross Carrier Scheduling 홗용 시
제어채널 갂섭 제어 가능
 Rel-8 ICIC 혹은 Advanced Receiver 기술은
data에는 적용되나 control은 적용 불가
 CA의 Cross-carrier scheduling을 홗용하면
control에 대한 ICIC 가 가능
•Pico BS는 f1과 f2를 모두 사용하고 제어정보(PDCCH)를
f2에서 젂송
•Macro BS는 f1과 f2를 모두 사용하고
제어정보(PCCCH)를 f1에서 젂송
•f2에는 최소한의 제어채널 (예, sync, PBCH)만을
젂송
 Cross-scheduling을 받는 CC의 제어채널을 위한 심볼
수는 갂섭제어를 위해 조정
32
 DL 제어채널 (PDCCH)
• PCell 할당정보를 PCell PDCCH로, SCell 할당정보를 SCell PDCCH로 젂송
• PCell PDCCH로 SCell 할당정보를 젂송 가능 (Optional Feature, Cross-Carrier Scheduling)
- Cross-Carrier Scheduling 여부는 단말별로 사젂에 RRC Reconfig.로 설정되어 있어야 하며,
- PDCCH내 CIF(Carrier Indication Field)가 포함
- 초기 CA 시스템/단말에서 Cross-Carrier Scheduling 기능 미포함
< Cross-Carrier Scheduling하려면 RRC Reconfiguration 메시지내 아래 필드 포함해야함 >
CrossCarrierSchedulingConfig-r10 ::= SEQUENCE {
schedulingCellInfo CHOICE {
own SEQUENCE { // No Cross Carrier Scheduling
cif-Presence BOOLEAN // SCell PDCCH내 CIF 포함 여부
},
other SEQUENCE {// Cross Carrier Scheduling
schedulingCellId-r10 ServCellIndex-r10, // SCell PDCCH가 송신되는 CC의 Index
pdsch-Start-r10 INTEGER (1..4) // SCell PDSCH가 시작하는 Symbol 위치
}
},
}
 UL 제어채널 (PUCCH)
• PCell의 PUCCH를 통해 Activation되어 있는 SCell의 CQI/PMI/RI 및 ACK/NACK 젂송
- Deactivation되어 있는 SCell에 대해서는 Feedback 없음
-각 단말의 SCell의 Feedback을 위한 PUCCH 자원을 RRC Reconfig로 별도 지정
SK Telecom Proprietary & confidential
33
 동기 채널 (PSS/SSS), Broadcast 채널 (PBCH), PHICH, PCFICH
• 기졲 LTE Rel.9과 동일하게 CC별로 송싞
 시스템 정보 (SIB)
• 기졲 LTE Rel.9과 동일하게 CC별로 송싞
• 각 CC의 SIB에는 해당 CC의 시스템 정보만을 포함
• SCell Activation 시 SCell 시스템 정보는 SCell의 SIB가 아니라 PCell을 통해 RRC Reconfig.로 수싞
SK Telecom Proprietary & confidential
34
34
A1: Serving becomes better than threshold
A2: Serving becomes worse than threshold
• SCell Release 판단
A3: Neighbour becomes offset better than PCell
A4: Neighbour becomes better than threshold
• SCell Add 판단
A5: PCell becomes worse than threshold1 and neighbour becomes better than
threshold2
A6: Neighbour becomes offset better than SCell (싞규 추가)
• SCell Change 판단
35
 I) PCell Selection, II) SCell Add/Release, III) SCell Handling 젃차를 통해 CA 젃차 짂행
SK Telecom Proprietary & confidential
UE
Cell I
(PCell)
Cell II
(SCell)
3. RRC Establishment
4. SCell Add/Release
1. LTE Attach
6. SCell Activation
5. Data Transmission via PCell
7. Data Transmission via SCell
II . SCell Add/Release
III . SCell Handling
I . PCell Selection
2. PCell Selection (Idle Mode Reselection)
8. SCell Deactivation
36
UE Cell1(f1)
Measurement Configuration
Measurement Report
Measurement to decide
whether to add SCell or not
Cell2(f2)
eNB
RRCConnectionReconfiguration
(sCellToAddModList)
RRCConnectionReconfigurationComplete
Cell2 is added as SCell and
SCell config is applied
Activation MAC CE
Cell2 is activated
RRC:
SCell addition
sCellDeactivationTimer starts
Deactivation MAC CE
or sCellDeactivationTimer expires
Cell2 is deactivated
RRCConnectionReconfiguration
(sCellToReleaseList)
MAC:
SCell activation
MAC:
SCell deactivation
RRC:
SCell release
RRC Connection Procedure (Rel.8/9)
SCell Measure없이
지정된 SCell을 바로 Add하는 것도 가능
2
3
4
5
SCell RRC로 설정된 후에 별도 Activation
없으면Deactivation 상태로 관리
UE Capability Information1
 Overall Call Flow
SK Telecom Proprietary & confidential
37
 초기 접속시 CA 지원 단말 구분
• 초기 접속시 단말이 기지국으로 보내는 UE Capability Information 메시지 내
단말이 지원하는 주파수 대역, CA 대역이 포함되어 있음
1
UE Capability Information 메시지 내 아래 필드 포함
단말이 지원하는 주파수 대역, CA 대역 정보를 기지국에 알려줌
<기존 LTE Rel.8/9에도 있던 지원 주파수 대역 정보>
SupportedBandListEUTRA ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandEUTRA
SupportedBandEUTRA ::= SEQUENCE {
bandEUTRA INTEGER (1..64),
halfDuplex BOOLEAN
}
<CA 대역 정보>
SupportedBandCombination-r10 ::= SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-r10
BandCombinationParameters-r10 ::= SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-r10
BandParameters-r10 ::= SEQUENCE {
bandEUTRA-r10 INTEGER (1..64),
}
SK Telecom Proprietary & confidential
38
 SCell Add/Mod 및 Release
• 호접속 후 PCell과 Pairing되어 있는 SCell을 조건없이 Add하거나
• SCell에 대한 Measurement Report 보고 Add 여부 결정 가능
• Add 후에는 SCell Deactive로 관리하며 MAC단에서 별도 Activation/Deactivation 관리
• SCell Release 여부도 Measurement Report 보고 결정 가능
2
RRCConnectionReconfiguration 메시지 내 아래 필드 포함
SCell을 Add 또는 Modification
SCellToAddMod-r10 ::= SEQUENCE {
sCellIndex-r10 SCellIndex-r10, // SCell Index 지정
cellIdentification SEQUENCE {
physCellId-r10 PhysCellId, // SCell의 PCID
dl-CarrierFreq ARFCN-ValueEUTRA // SCell의 주파수 정보
}
radioResourceConfigCommon-r10 RadioResourceConfigCommonSCell-r10 // SCell의 시스템 정보
radioResourceConfigDedicated-r10 RadioResourceConfigDedicatedSCell-r10
...
}
SCellToReleaseList-r10 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF SCellIndex-r10
5
RRCConnectionReconfiguration 메시지 내 아래 필드 포함
SCell을 Release
SK Telecom Proprietary & confidential
39
 SCell Activation/Deactivation
• MAC Control Element를 통해 Activation/Deactivation 설정
• Activation(Deact.) 메시지 수싞후 8ms 이후부터 SCell로 수싞 가능(불가)
• 호접속시 RRC Reconfig.로 Deactivation Timer가 20ms~infinity로 설정되며
• Activation시 Deactivation Timer 동안 SCell 데이터 없으면 자동으로 Deactivaiton
3,4 SCell을 Activation 또는 Deactivation
MAC Control Element에 아래 1 Byte 포함
Ci가 i번째 SCell의 Activation 유무를 표현 (1: Act, 0: Deact)
Oct 1C6C7 C5 C4 C3 C2 C1 R
MAC Control
element 1
...
R/R/E/LCID
sub-header
MAC header
MAC payload
R/R/E/LCID
sub-header
R/R/E/LCID/F/L
sub-header
R/R/E/LCID/F/L
sub-header
... R/R/E/LCID/F/L
sub-header
R/R/E/LCID padding
sub-header
MAC Control
element 2
MAC SDU MAC SDU
Padding
(opt)
sCellDeactivationTimer-r10 ENUMERATED {rf2, rf4, rf8, rf16, rf32, rf64, rf128, infinity}
Deactivation Timer 설정을 위해
RRCConnectionReconfiguration 메시지 내 아래 필드 포함
SK Telecom Proprietary & confidential
40
 HO 이후 바로 SCell이 Add되도록 하는 젃차 및 메시지
sCellToAddModList-r10
Handover response
UE s-eNB t-eNB
MeasResultServFreqList
MeasResultServFreqList
Handover request
Decide to add SCells
sCellToAddModList-r10
Handover command
Carrier Aggregation right after handover
MeasResultServFreq-r10 ::= SEQUENCE {
servFreqId ServCellIndex-r10,
measResultSCell SEQUENCE {
rsrpResultSCell RSRP-Range,
rsrqResultSCell RSRQ-Range
}
measResultBestNeighCell SEQUENCE {
physCellId PhysCellId,
rsrpResultNCell RSRP-Range,
rsrqResultNCell RSRQ-Range
}
}
6 6 Measurement Report 메시지 내에 아래 필드 포함
SK Telecom Proprietary & confidential
41
Contents
SK Telecom Proprietary & confidential
LTE-A 주요 기술 소개
Carrier Aggregation 개요
Carrier Aggregation 기술 규격
결론 및 Q&A
LTE-A 표준화 현황
그 외 LTE-A 주요 기술
42SK Telecom Proprietary & confidential
갂섭 제어는 주파수 효율성을 높이기 위한 co-channel 구성 하에서 SINR을 높이기 위한 방법
 셀룰러 홖경에서의 갂섭 제어
•셀룰러 통싞은 주파수 효율성을 높이기 위해 co-channel상에 복수개의 셀을 구성
•Co-channel 구성하에서 SINR을 높여주기 위한 방법으로 갂섭을 줄여주는 젂송 방법 필요
 LTE 시스템에서 갂섭 제어
•LTE와 같은 OFDMA 시스템의 경우에는 주파수 축으로 Resource Block(RB) 할당이 가능
•기지국 별 사용자 수가 증가하게 되면, 기지국갂 coordination이 없을 경우 동일 RB를 동시에
사용하게 되는 “인접 기지국갂 사용 자원 충돌 (collision)”이 자주 발생하게 되어 이는 해당
단말들의 SINR 열화를 가져옴 (아래의 예)
43SK Telecom Proprietary & confidential
주파수 축으로 사용 RB별 정보를 비트맵 형태로 기지국갂 X2 인테페이스로 젂달
상향 링크의 갂섭제어는 Proactive/Reactive한 방법, 하향링크의 경우 Proactive한 방법 이용
 상향 링크의 ICIC
•Overload indicator (OI): X2 interface로 주변 셀로 젂달되는 resource block(RB)별 bitmap
정보로써, RB별 측정 interference 상태가 상/중/하인지를 나타냄 (complaining signal)
•High interference indicator (HII): X2 interface로 주변 셀로 젂달되는 resource block별
bitmap 정보로써, 특정 RB에 셀 경계 단말의 상향링크를 스케쥴링할 의도를 나타냄 (warning
signal)
 하향 링크의 ICIC
•Relative narrow band Tx. power indicator (RNTPI): 셀에서 RB별 하향 링크 파워 제한을
표시하는 정보로서 X2 interface로 주변 셀로 젂달
•상향 링크에 비해서는 충분한 power가 보장되므로 효용성이 떨어지며, power limitation으로
인해서 젂송 데이터률의 감소를 가져올 수 있음
44SK Telecom Proprietary & confidential
HeNet의 도입으로 인해 갂섭의 크기가 싞호의 세기보다 10dB 이상 크게 들어오는 경우 발생
LTE ICIC의 경우 주파수 축으로 분산되어 젂송되는 제어 정보의 경우 갂섭 회피가 힘듬
 Heterogeneous Network (HetNet) – TR 36.814
•Output power, user access 방법, backhaul 구성이 상이한 cell들이 섞여서 구성되고, 낮
은 power의 노드들이 매크로 셀과 겹쳐서 위치하는 네트워크 구성 방법
 주파수 축 ICIC의 한계
•제어 채널 (예, PCFICH/PHICH/PDCCH)의 경우 젂체 시스템 bandwidth에 분산 (Cell-specific
interleaving)되어 젂송되므로 아래의 예에서 보는 것과 같이 갂섭 우위 상황에서는 주파수 축으로
RB 별로 ICIC하는 것이 의미가 없음
Node
Transmission
Power
User Access Backhaul
Macro eNB 46~49 dBm Open to all users
RRH 24~30 dBm Open to all users
Several µs latency to
macro
Pico eNB 24~30 dBm Open to all users X2
Home eNB 20 dBm
Closed subscribe
group (CSG)
No X2 as baseline
Relay node 30~37 dBm Open to all users
Through air-interface
with a macro-cell (for
in-band RN case)
Time
Freq
Aggressor
Victim
Subframe
Time
Freq
PDSCH
PDSCH
PDSCH
UE_A
UE_V1
UE_V2
45SK Telecom Proprietary & confidential
Interference-dominant 상황을 피하기 위해 시갂 축으로 갂섭 제어 (ABS)
ABS에서도 Rel-8/9 단말의 정상적인 동작을 위해서 일부 제어 채널은 여젂히 젂송함
 시갂 축으로의 갂섭 제어
•주파수 축이 아닌 시갂축으로 특정한 subframe을 통째로 비워주는 방법 – Blank subframe
 Almost Blank Subframe (ABS)
•Rel-8/9 LTE 단말의 Backward compatible한 동작을 위해서 몇몇 제어 채널은 젂송해야 함
•Backward compatibility때문에 단말은 특정 Subframe이 ABS인지 여부를 알 수 없음
•ABS를 사용하더라도 여젂히 제어채널에 갂섭이 영향을 줄 수 있으며, Rel-11이나 이후 Release에
해당 갂섭 제거 방법에 대한 논의 예정
Time
Freq
Aggressor
Victim
Subframe
Time
Freq
PDSCH
PDSCH
PDSCHUE_A
UE_V1
UE_V2
PDSCH
UE_V3
Almost
Blank
Subframe
ABS에 젂송해야하는 제어 채널
•CRS (not in data region if configured as MBSFN
subframe)
•PSS, SSS, and PBCH
•PRS and CSI-RS
•SIB1/Paging with associated PDCCH
46SK Telecom Proprietary & confidential
기지국갂 X2 Interface를 통해서 ABS 관렦 정보를 주고 받음
 X2 Interface를 통한 기지국갂 정보 교홖
•ABS information: 기지국 설정한 ABS에 관렦된 정보를 인접 기지국에 젂달
•ABS status: ABS 패턴의 변화 필요성을 판단하기 위한 도움 정보
 ABS Information
•기지국이 ABS로 설정한 subframe의 패턴을 표시하는 bitmap 정보와 ABS subframe중
단말에게 measurement를 추천하는 subframe을 표시하는 bitmap 정보
•40ms 단위로 ABS pattern 정의
Macro eNB
Home eNB
Macro UE
Home UE
ABS
pattern
ABS
 ABS Status
•ABS를 통해서 보호된 UE를 위해서 할당된 ABS의
resource block의 비율
•사용할 수 있는 ABS pattern
 동작 예
•Macro가 Pico에게 ABS pattern을 X2
interface를 통해서 젂달하여 Pico에 제어를 받는
Pico 단말이 우선적으로 서비스를 받을 수 있도록
함
47SK Telecom Proprietary & confidential
eICIC의 성능을 위해서는 단말이 Resource-specific 한 Measurement를 수행해야 함
 단말의 무선 채널 Measurement 방법의 변화
•데이터 수싞 관점에서는 단말이 ABS를 인식하지 못하므로 기졲의 Rel-8/9의 LTE 단말과 동일한
subframe 수싞 process를 가짐 (Backward compatibility)
•ABS로 인해서 갂섭 레벨이 subframe 마다 심하게 변하게 되며, UE는 ABS와 Normal
subframe을 구분하지 못하므로, 부정확한 measurement 정보가 측정될 수 있음
 Resource-specific한 Measurement
•eICIC의 성공적인 홗용을 위해서는 단말에서 “Resource-specific” 한 measurement 가
지원되어야 함
Aggressor ABS ABS ABS ABS
Time
Signal
Interference
Indicated as a
more static ABS
RLM/RRM X X X X X X X X XO
CSI 1
CSI 2
X O X O X X X O XO
O X O X O O O X OX
48SK Telecom Proprietary & confidential
경계 단말이 small cell 을 serving cell로 인식하도록 하여 coverage를 확장하는 기술
Rel-10에는 반영되지 않았으며, Rel-11에서 논의 중
 Cell Range Expansion (CRE) & Resource Partitioning
•Pico나 Femto 노드는 Macro에 비해 상대적으로 저젂력이므로, 충분한 단말을 수용 못함
•단말의 셀 선택 시 사용하는 RSRP 값에 의도적인 offset을 둬, Pico의 coverage를 늘리는 방법
•Offset 값은 Macro와 Pico갂의 resource partitioning을 의미하며, 시스템에 지원하는 단말의
수의 비에 따라서, semi-static 혹은 dynamic하게 업데이트 될 수 있음
 기술 이슈 및 표준화
•CRE에의해서 수용된 단말의 경우에는 ABS를
적용하더라도 Macro CRS로부터의
interference가 심각할 수 있으므로,
Interference Cancellation 기술 접목이
필요
•Rel-10에서는 CRE 및 Resource
Partitioning (CRE offset update) 방법의
가능성에 대해서만 검증하였고, 실제 적용
여부는 Rel-11으로 미뤄짐 Macro RSRP > Pico RSRP+Offset
Pico RSRP > Macro RSRP
Pico RSRP+Offset > Macro RSRP
Goal is to extended the coverage of
the pico node to increase the off-load
from the macro-layer
Pico
Macro
49SK Telecom Proprietary & confidential
CoMP는 eICIC에 비해 다차원적인 갂섭 제어 방법을 포함하며, 기지국갂 교홖 정보 양이나
업데이트 주기가 빨라 단말/기지국에 부담이 큼
Rel-10에는 반영되지 않았으며, Rel-11에서 추가
 정성적 비교
Features eICIC (Rel-10 반영 feature) CoMP (Rel-11 예상 feature)
간섭회피 dimension 시간 (e.g. 서브프레임)
시간/주파수/안테나
(e.g. 스케쥴링 Granularity)
송신 기지국 수 Serving Cell만 복수 기지국 송신 가능 (Joint Transmission)
전송 pattern 변화 Semi-static (40ms 단위) Dynamic (1 ms)
기지국간 교환 정보양 상대적으로 적음 상대적으로 많음
UE Feedback 정보 Serving Cell에 대한 feedback Neighbor Cell에 대한 Interference 정보도 필요
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
SB1
SB2
SB3
SB1
SB2
SB3
SB1
SB2
SB3
Macro1
RRH1
Macro2
Macro transmission
RRH transmission
Potential macro transmission
Potential RRH transmission
Rel-10 eICIC HetNet CoMP
Resource semi-statically blanked by all macro cells
 동작 예
•eICIC의 경우에는 Macro 셀 1, 2가 RRH1의 젂송에
해당하는 1, 5, 9번 subframe을 ABS로 적용한
Time-division-multiplexing (TDM) 형태로 갂섭
제어를 수행함
•CoMP의 경우에는 Macro1과 RRH1이 CSI
feedback을 통해서 적젃한 주파수 축에서의 비갂섭
영역을 결정하여 스케쥴링을 수행함
※본 예에서는 Macro2와 RRH1은 CoMP를 수행하지 않음을 가정
50
Contents
SK Telecom Proprietary & confidential
LTE-A 주요 기술 소개
LTE-A Demo in MWC 2013
Carrier Aggregation
결론 및 Q&A
LTE-A 표준화 현황
그 외 LTE-A 주요 기술
51SK Telecom Proprietary & confidential
 LTE-A 주요 기술
• 파편화된 주파수를 묶어 단말 최대 속도 및 주파수 효율성을 높여주는 Carrier Aggregation
• LTE ICIC 기술의 한계를 극복하기 위한 eICIC
•Cell 갂 Dynamic Coordination을 통해 주파수 효율성 및 갂섭을 제어하는 CoMP 를 주요 기술로
함
 CA 기술
•CA를 통해 주파수 홗용성, 물리 계층/스케쥴링의 효율성을 향상 시킬 수 있음
• 한국은 Carrier Aggregation을 세계 최초 상용화하며 LTE-A 짂화를 Leading 중
52SK Telecom Proprietary & confidential
[1]3GPP TR 25.913: "Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN
(E-UTRAN)".
[2] 3GPP TR 36.913: "Requirements for Further advancements for Evolved UTRA (E-
UTRA) (LTE-Advanced)(Release10)".
[3] 3GPP TR 36.912: ”Feasibility study for Further Advancements for E-UTRA (LTE-
Advanced)”
[4] 3GPP TS 36.101: "User Equipment (UE) radio transmission and reception".
[5] 3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
layer procedures
[6] 3GPP TS36.331: “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio
Resource Control (RRC) protocol specification”
53SK Telecom Proprietary & confidential
[7] :GPP TS:6.:29: “Evolved Univers=l Terrestri=l R=dio A??ess (E-UTRA); Medium Access
Control (MAC) proto?ol spe?ifi?=tion”
[<] :GPP TS :6.299: “Evolved Univers=l Terrestri=l R=dio A??ess (E-UTRA); Physical
channels and modulation
[9] :GPP TS :6.:86: “Evolved Univers=l Terrestri=l R=dio A??ess (E-UTRA); User Equipment
(UE) r=dio =??ess ?=p=>ilities”
[98] :GPP TS :6.:88: “Evolved Univers=l Terrestri=l R=dio A??ess (E-UTRA) and Evolved
Universal Terrestrial Radio Access Network (E-UTRAN); Over=ll des?ription; St=ge 2”
54
Thank You!
Q&A
End of Document
© 2013 Nokia Solutions and Networks. All rights reserved.
LTE Small Cell Evolution
October 2013
Bong Youl (Brian) Cho, 조 봉 열
brian.cho@nsn.com
Disclaimer
본 자료의 내용은 LTE 기술 자체에 대한 내용을 위주로 한 것으로서,
NSN 제품전략 및 계획 등과는 반드시 일치하지 않을 수도 있습니다.
TTA LTE Standards/Technology Training
2 © 2013 Nokia Solutions and Networks. All rights reserved.
Why Small Cell?
Pico cell and eICIC/FeICIC
Relay
Small Cell Enhancement in Release 12
TTA LTE Standards/Technology Training
3 © 2013 Nokia Solutions and Networks. All rights reserved.
Our vision: Mobile networks are able to deliver one
Gigabyte of personalized data per user per day profitably
Key requirements for networks towards 2020…
Support up
to 1000
times more
capacity
Teach
networks to
be self-
aware
Reinvent
Telcos for
the cloud
Flatten total
energy
consumption
Reduce
latency to
milliseconds
Personalize
network
experience
…for profitability and a quantum leap in flexibility
TTA LTE Standards/Technology Training
4 © 2013 Nokia Solutions and Networks. All rights reserved.
1000x capacity can be done with tech evolution
ASA
Smart
Scheduler
New bands
Carrier
Aggregation
HetNet
management
Advanced
macros
Flexible
small cells
MIMO &
adv. receiver
eCoMP
TTA LTE Standards/Technology Training
5 © 2013 Nokia Solutions and Networks. All rights reserved.
시스템 성능 향상을 할 수 있는 방안?
• 셀룰러망 (cellular network)에서의 주파수 재사용 (frequency reuse)의 극대화?
• 동일한 주파수를 최대한 자주 재사용하여 전체 망의 용량을 증대
• 기존의 AMPS의 주파수 재사용율 7에 비해 CDMA부터 재사용율 1을 사용 (즉, 인접 셀들이 모두
같은 주파수를 사용)
• 셀의 크기가 작아지고 셀의 개수가 많아지면 전체 망의 용량이 증대될 수 있음
 Small cell: Macro > Micro > Pico > Femto
 HetNet (Heterogeneous Network) with Interference Management
• 셀룰러 망의 문제점 극복?
• 인접 셀들 사이에서 동일한 주파수를 사용하면서 서로 다른 데이터를 전송하면 이들 사이에는
필연적으로 간섭이 존재
• 셀 가장자리의 data rate 저하
• 이를 극복하는 방안 중 하나가 협력통신 (Cooperative Multi-Point transmission and reception,
CoMP)
• 안테나 사용의 극대화?
• Higher order & advaned MIMO: 2x2  4x4  8x8  AAS, 3D beamforming, FD-MIMO, etc…
• 더 많은 주파수의 사용?
• 용량 = 주파수 효율 x 주파수 사용량
• 주파수 효율을 올리기 힘들면, 주파수를 많이 사용하자  “모바일 광개토 플랜”
• 이왕 여러 주파수를 사용하는 바에는 이를 하나처럼 합치자  Carrier Aggregation
TTA LTE Standards/Technology Training
6 © 2013 Nokia Solutions and Networks. All rights reserved.
Radio Technology Evolution
LTE
Rel-8 and Rel-9
LTE Advanced
Rel-10 and Rel-11
LTE Advanced
Evolution
Rel-12 and Rel-13
5G
2010+
2013+
2015+
2020+
Optimize data
performance and
architecture
Squeeze
macro cells
Small cells &
new service
enablers
Small Cell
Enhancements
Macro Cell
Enhancements
Machine-Type
Communication,
Device-to-Device
SON, WLAN
Integration, Public
Safety
TTA LTE Standards/Technology Training
7 © 2013 Nokia Solutions and Networks. All rights reserved.
3GPP* LTE Base Station Classes (1/2)
• 3GPP* defined RF requirements separately per BS class
– Wide area
– Medium range
– Local areas
– Home
• The BS classes
– Defined based on distance between user and antennas
– Measured as Minimum Coupling Loss (MCL)
• Differences in RF requirements
– Frequency stability
– Spurious emissions
– Sensitivity
– Dynamic range
– Blocking requirements
• RF requirements for small BSs
– More relaxed than for high power BSs
– Make it further possible to reduce the cost of RF sections
* 3GPP TS 36.104
TTA LTE Standards/Technology Training
8 © 2013 Nokia Solutions and Networks. All rights reserved.
3GPP* LTE Base Station Classes (2/2)
Cells MCL Power level Description Deployment
Macro >70dB
Typical up to 100 W per
sector (no upper limit),
3-6 sectors
Big, outdoors, high
power
Operators deploy
thousands nationwide
Micro >53dB Max 5 W
Small, outdoors,
medium power
Operators deploy in
selected urban areas
Pico >45dB Max 0.25 W
Small, indoors, low
power
Operators or integrators
deploy in enterprises
Femto - Max 0.10 W
Very small, indoors,
very low power
Consumers deploy up to
millions
* MCL = Minimum Coupling Loss between terminal and base station antennas
* 3GPP TS 36.104
TTA LTE Standards/Technology Training
9 © 2013 Nokia Solutions and Networks. All rights reserved.
Frequency Use Options for small cells
TTA LTE Standards/Technology Training
10 © 2013 Nokia Solutions and Networks. All rights reserved.
Why Small Cell?
Pico cell and eICIC/FeICIC
Relay
Small Cell Enhancement in Release 12
TTA LTE Standards/Technology Training
11 © 2013 Nokia Solutions and Networks. All rights reserved.
Network Densification
• Homogeneous network
• Heterogeneous network
TTA LTE Standards/Technology Training
12 © 2013 Nokia Solutions and Networks. All rights reserved.
HetNet – problems in non-homogeneous deployment
• Consist of deployments where low power nodes are placed throughout a
macro-cell layout
• The interference characteristics in a heterogeneous deployment can be
significantly different than in a homogeneous deployment
• Mainly, two different heterogeneous scenarios are under consideration
– Macro-Femto (CSG: Closed Subscriber Group) case
– Macro-Pico case
TTA LTE Standards/Technology Training
13 © 2013 Nokia Solutions and Networks. All rights reserved.
Range Extension (of picocell)
• The current “cell selection” algorithm is DL oriented
• So, it may not be the optimum for UL perspective.
• Further more, too high DL power of macro cell is too costly in cellular network
 Range extension of picocell
 but, this can lead to significant interference issue in extended range
TTA LTE Standards/Technology Training
14 © 2013 Nokia Solutions and Networks. All rights reserved.
Motivation for new ICIC techniques
• The frequency domain ICIC (defined in Rel-8) is not sufficient.
– Because DL control channels (PCFICH/PHICH/PDCCH) are spread over the entire
system bandwidth.
– With a cell-specific interleaving structure
• ICIC in another resource domain becomes necessary
TTA LTE Standards/Technology Training
15 © 2013 Nokia Solutions and Networks. All rights reserved.
Why “ALMOST” blank subframe?
• Because some channels/signals should be transmitted for the legacy UE
operation.
– CRS (If ABS coincides with MBSFN subframe not carrying any signal in data region, CRS is not
present in data region )
– PSS, SSS, and PBCH
– PRS and CSI-RS
– SIB1/Paging with associated PDCCH
• No other signal is transmitted
• Some interference still exists.
– To be studied in the next release.
TTA LTE Standards/Technology Training
16 © 2013 Nokia Solutions and Networks. All rights reserved.
Almost Blank Subframe (ABS) introduced
• Aggressor cell silences for some time
– For victim cell to have protected resources
– Still PSS, SSS, PRS, CSI-RS, SIB1, Paging transmitted for backward compatibility, so called it
“Almost”
• Victim cell makes use of the silences time
– For victim cell to schedule UEs in victim cell
– For UE in victim cell to check its serving cell radio condition
– For UE in victim cell to measure its serving cell
– For UE in other cell to measure victim cell
TTA LTE Standards/Technology Training
17 © 2013 Nokia Solutions and Networks. All rights reserved.
Coordination between two cell layers
TTA LTE Standards/Technology Training
18 © 2013 Nokia Solutions and Networks. All rights reserved.
TDM eICIC Principle
- example with macro & HeNBs
Requires strict time-synchronization between macro & HeNBs
Macro-layer
HeNB-layer
One sub-frame
Macro-UEs close to non-allowed CSG HeNBs:
(i) To be scheduled in sub-frames where the HeNB
layer is ”muted”.
(ii) Should ideally also only do RLF monitoring in
subframes where the HeNB layer is ”muted”.
Otherwise, RLF may be triggered, even though
the UE can actually get data.
HeNB-UEs only scheduled in ”normal”
subframes.
Macro-UEs that does not experience
excessive interference from non-allowed
CSG HeNBs can be scheduled also in sub-
frames where the HeNB-layer is not muted.
Almost blank, or
MBSFN sub-frame
Sub-frame with
normal transmission
TTA LTE Standards/Technology Training
19 © 2013 Nokia Solutions and Networks. All rights reserved.
TDM eICIC Principle
- example with macro & Pico
Requires strict time-synchronization between macro & Pico
Macro-layer
Pico-layer
One sub-frame
Other pico-UEs that are closer to their serving pico
node and therefore less restricted by macro-layer
interfence canbe scheduled in any subframe.
Pico-UEs sensitive to macro-cell
interference are only scheduled in
subframes where Macro use ABS.
This allows scheduling of pico-UEs
using larger pico node cell selection
offsets (range extension).
Almost blank, or
MBSFN sub-frame
Sub-frame with
normal transmission
TTA LTE Standards/Technology Training
20 © 2013 Nokia Solutions and Networks. All rights reserved.
TDM eICIC Principle
- combined macro+pico+HeNB case
Almost blank, or
MBSFN sub-frame
Sub-frame with
normal transmission
Macro-layer
Pico-layer
HeNB-layer
Pico-nodes can schedule UEs
with larger RE, if not interfered
from non-allowed CSG HeNB(s)
Macro-eNBs and Pico-eNBs can schedule also
users that are close to non-allowed CSG
HeNB(s), but not pico-UEs with larger RE.
Pico-UEs with
larger RE,
close to CSG
HeNB(s) are
schedulable
(as well as
pico-UEs
without RE).
TTA LTE Standards/Technology Training
21 © 2013 Nokia Solutions and Networks. All rights reserved.
Baseline Assumptions for
Network Configuration of Muting Patterns: HeNB
• Macro + HeNB scenario:
– Muting patterns are assumed to be statically configured from OAM
– Both macro and HeNB needs to know the muting pattern:
 HeNB will apply the muting pattern (i.e. will mute some of its subframes)
 Macro-eNB needs to know so it only schedule its users close to non-allowed CSG
HeNBs during muted subframes + can configured Rel-10 UEs with appropriate
measurement restrictions.
Centralized concept
TTA LTE Standards/Technology Training
22 © 2013 Nokia Solutions and Networks. All rights reserved.
Baseline Assumptions for
Network Configuration of Muting Patterns: pico
• Macro + pico scenario:
– Muting patterns are assumed to be dynamically configured, assisted by new
X2 signalling introduced in Rel-10.
– Both macro and pico needs to know the muting pattern:
 Macro-eNB will apply the muting pattern (i.e. will mute some of its subframes)
 Pico-eNB needs to know so it only schedule its users with large range extension
during muted subframes + can configured Rel-10 UE measurement restrictions for
those UEs.
Distributed concept
TTA LTE Standards/Technology Training
23 © 2013 Nokia Solutions and Networks. All rights reserved.
New X2 eICIC Related Signalling
• ABS information in IE
– This IE provides information about which subframes
the sending eNB is configuring as ABS and
which subset of ABS are recommended
for configuring measurements towards the UE.
– Macro can signal ABS muting pattern to the pico nodes in ABS information IE.
– A neighbouring macro-cell receiving this information may aim at using similar muting
pattern (but it is optional if macro-eNB follows such recommendation).
• Invoke information IE
– This IE provides an indication that the sending eNB would like to receive ABS
information.
– Can be used by pico nodes to suggest macro-eNB to start scheduling ABS,
i.e. that the pico serves UEs suffering high interference.
• Both the ABS information IE and/or Invoke IE is part of the LOAD
INFORMATION message. Therefore, both of them can be exchanged between
any two eNBs connected with X2, also between macros.
X2-AP: LOAD INFORMATION
eNBeNB
TTA LTE Standards/Technology Training
24 © 2013 Nokia Solutions and Networks. All rights reserved.
TS36.423 X2AP: Load Information
9.1.2.1 LOAD INFORMATION
This message is sent by an eNB to neighbouring eNBs to transfer load and interference co-ordination
information.
Direction: eNB1  eNB2.
IE/Group Name Presence Range IE type and
reference
Semantics
description
Criticality Assigned
Criticality
Message Type M YES ignore
Cell Information M YES ignore
>Cell Information Item 1 .. <maxCelline
NB>
EACH ignore
>>Cell ID M ECGI Id of the
source cell
– –
>>UL Interference
Overload Indication
O – –
>>UL High Interference
Information
0 .. <maxCelline
NB>
– –
>>>Target Cell ID M ECGI Id of the cell
for which the
HII is meant
– –
>>>UL High Interference
Indication
M – –
>>Relative Power (RNTP) O – –
>>ABS Information O 9.2.54 YES ignore
>>Invoke Indication O 9.2.55 YES ignore
TTA LTE Standards/Technology Training
25 © 2013 Nokia Solutions and Networks. All rights reserved.
TS36.423 Invoke IE & ABS Information IE
IE/Group Name Presence Range IE type and
reference
Semantics description
CHOICE ABS Information M – –
>FDD – –
>>ABS Pattern Info M BIT STRING
(SIZE(40))
Each position in the bitmap represents a DL
subframe, for which value "1" indicates ‘ABS’
and value "0" indicates ’non ABS’.
The first position of the ABS pattern
corresponds to subframe 0 in a radio frame
where SFN = 0. The ABS pattern is
continuously repeated in all radio frames.
The maximum number of subframes is 40.
>>Number Of Cell-specific
Antenna Ports
M ENUMERATED
(1, 2, 4, …)
P (number of antenna ports for cell-specific
reference signals) defined in TS 36.211 [10]
>>Measurement Subset M BIT STRING
(SIZE(40))
Indicates a subset of the ABS Pattern Info
above, and is used to configure specific
measurements towards the UE.
IE/Group Name Presence Range IE type and
reference
Semantics description
Invoke Indication M ENUMERATED (A
BS Information, …)
–
TTA LTE Standards/Technology Training
26 © 2013 Nokia Solutions and Networks. All rights reserved.
New X2 eICIC Related Signalling (cont’)
• Macro-eNB can send a resource request
to the pico-eNB.
• Pico-eNB response with ”ABS status”
• The ”ABS status” is basically a load measure of how much the pico-eNB uses the subframes where the
macro-eNB is muted.
• It is intended that only ABS allocated to UEs that would not cope otherwise are reported
• This information can be used by the macro-eNB to get an idea of the consequences of
increasing/decreasing the number of muted subframes. It can be combined with information about
overall load in the pico.
9.2.58 ABS Status
The ABS Status IE is used to aid the eNB designating ABS to evaluate the need for modification of the ABS pattern.
eNB1 eNB2
RESOURCE STATUS REQUEST
RESOURCE STATUS RESPONSE
DL ABS status M INTEGER (0..100) Percentage of resource blocks of ABS allocated for UEs
protected by ABS from inter-cell interference. This
includes resource blocks of ABS unusable due to other
reasons. The denominator of the percentage calculation is
indicated in the Usable ABS Information.
>> Usable ABS Pattern Info M BIT STRING (SIZE(40)) Each position in the bitmap represents a subframe, for which
value "1" indicates ‘ABS that has been designated as
protected from inter-cell interference’ and value "0" indicates
‘ABS that is not usable as protected ABS from inter-cell
interference’.
The pattern represented by the bitmap is a subset of, or the
same as, the corresponding ABS Pattern Info IE conveyed in
the LOAD INDICATION message.
TTA LTE Standards/Technology Training
27 © 2013 Nokia Solutions and Networks. All rights reserved.
ABS patterns
• Pattern 1: RRM/RLM measurement resources restriction for the serving cell
• Serving cell RLM results look more stable. As a result,
– For PUE (UE under Pico), RLF declaration avoided at CRE of pico cell
– For MUE (UE under Macro), RLF declaration avoided at femto cell area
TTA LTE Standards/Technology Training
28 © 2013 Nokia Solutions and Networks. All rights reserved.
ABS patterns – cont’d
• Pattern 2: RRM measurement resources restriction for neighboring cells
• Neighboring cell looks more optimistic
– MUE can be handed over to in CRE area of pico cell
• One pattern with PCI list
TTA LTE Standards/Technology Training
29 © 2013 Nokia Solutions and Networks. All rights reserved.
ABS patterns – cont’d
• Pattern 3: Resources restriction for CSI measurement of the serving cell
• Two subsets for pattern 3: for eNB to obtain multiple channel status
measurement for scheduling, e.g.,
– CSI measurement on ABS
– CSI measurement on non-ABS
TTA LTE Standards/Technology Training
30 © 2013 Nokia Solutions and Networks. All rights reserved.
UE Operation for eICIC: Example
TTA LTE Standards/Technology Training
31 © 2013 Nokia Solutions and Networks. All rights reserved.
Performance enhancement example
through Pico Cells and eICIC
UE1
UE2 UE3
Macro
Pico Pico
0
10
20
30
40
50
60
70
UE1 UE2 UE3 Total
Mbps
No eICIC
eICIC with 50% ABS
System Capacity with
HetNet and eICIC +50%
TTA LTE Standards/Technology Training
32 © 2013 Nokia Solutions and Networks. All rights reserved.
CA approach to interference avoidance in HetNet
TTA LTE Standards/Technology Training
33 © 2013 Nokia Solutions and Networks. All rights reserved.
With or without cross-carrier scheduling
TTA LTE Standards/Technology Training
34 © 2013 Nokia Solutions and Networks. All rights reserved.
FeICIC in Rel-11
• eICIC is introduced in LTE Rel-10 and further enhanced in Rel-11
– eICIC = enhanced Inter Cell Interference Coordination
– FeICIC = Further enhanced Inter Cell Interference Coordination
• eICIC consists of three design principles
– Time domain interference management (Rel-10)
 Severe interference limits the association of terminals to low power cells
– Cell range expansion (Rel-10/11)
 Time domain resource partitioning enables load balancing between high and low power cells
 Resource partitioning needs to adapt to traffic load
– Interference cancellation receiver in the terminal (Rel-11/12)
 Ensures that weak cells can be detected
Inter cell interference cancellation for control signals (pilots, synchronization signals)
 Ensures that remaining interference is removed
Inter cell interference cancellation for control and data channels (PDCCH/PDSCH)
* source: Qualcomm
TTA LTE Standards/Technology Training
35 © 2013 Nokia Solutions and Networks. All rights reserved.
eICIC and FeICIC
• FeICIC (Further enhanced non CA-based ICIC for LTE)
– WI was completed in Dec. 2012
– Support of larger CRE(up to 9dB) for better load balancing
 Macro eNB provides Pico’s SIB1 to the UE in larger CRE region via dedicated signaling
* source: ETRI
eICIC in Rel-10 FeICIC in Rel-11
TTA LTE Standards/Technology Training
36 © 2013 Nokia Solutions and Networks. All rights reserved.
FeICIC Performance
* source: Qualcomm
TTA LTE Standards/Technology Training
37 © 2013 Nokia Solutions and Networks. All rights reserved.
FeICIC Performance – cont’d
* source: Qualcomm
TTA LTE Standards/Technology Training
38 © 2013 Nokia Solutions and Networks. All rights reserved.
Why Small Cell?
Pico cell and eICIC/FeICIC
Relay
Small Cell Enhancement in Release 12
TTA LTE Standards/Technology Training
39 © 2013 Nokia Solutions and Networks. All rights reserved.
Relay
• Relay as a tool to improve, e.g.
– the coverage of high data rates
– group mobility
– temporary network deployment
– the cell-edge throughput
– provide coverage in new areas
• Various relay types
– Type1 vs. Type2
– In-band vs. out-band
– Stationary vs. mobile
– Single hop vs. multi-hop
– Etc…
TTA LTE Standards/Technology Training
40 © 2013 Nokia Solutions and Networks. All rights reserved.
Proxy Functionality
• DeNB plays S1/X2-AP and S-GW proxy role for RN
• DeNB appears to RN as
– Control plane: MME for S1, eNB for X2
– User Plane: S-GW
TTA LTE Standards/Technology Training
41 © 2013 Nokia Solutions and Networks. All rights reserved.
In-band Relay
• Interference b/w access link and backhaul link
• Inband relay - Un and Uu links are isolated in time
TTA LTE Standards/Technology Training
42 © 2013 Nokia Solutions and Networks. All rights reserved.
In-band Relay – cont’d
• Using MBSFN subframe for relay operation
 Multiplexing b/w access and backhaul links
• RN subframe configuration
TTA LTE Standards/Technology Training
43 © 2013 Nokia Solutions and Networks. All rights reserved.
RN Startup Procedure - Phase I
• Attach for RN Pre-configuration
TTA LTE Standards/Technology Training
44 © 2013 Nokia Solutions and Networks. All rights reserved.
RN Startup Procedure - Phase II
• Attach for RN Operation
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°
Lte àà¿ë ±â¼ú ±³à°

More Related Content

What's hot

Pci mod3,6,30 analysis and auto optimization
Pci mod3,6,30 analysis and auto optimizationPci mod3,6,30 analysis and auto optimization
Pci mod3,6,30 analysis and auto optimization
Shuangquan Lei
 
Throughput calculation for LTE TDD and FDD systems
Throughput calculation for LTE TDD and FDD systemsThroughput calculation for LTE TDD and FDD systems
Throughput calculation for LTE TDD and FDD systems
Pei-Che Chang
 
Bts installation & commisioning.ppt
Bts installation & commisioning.pptBts installation & commisioning.ppt
Bts installation & commisioning.ppt
AIRTEL
 
Channel element
Channel elementChannel element
Channel element
Syed Zahid Shah
 
Part 1 fundamentals of 3 g
Part 1  fundamentals of 3 gPart 1  fundamentals of 3 g
Part 1 fundamentals of 3 g
Henry Chikwendu
 
Kpi 2g troubleshootin
Kpi 2g troubleshootinKpi 2g troubleshootin
Kpi 2g troubleshootin
Abd Yehia
 
83092299 rru3804-overview
83092299 rru3804-overview83092299 rru3804-overview
83092299 rru3804-overview
Serik123
 
4G-3G-2G TRAINING || Youtube channel-ANKUR TOMAR BADAYLA
4G-3G-2G TRAINING || Youtube channel-ANKUR TOMAR BADAYLA4G-3G-2G TRAINING || Youtube channel-ANKUR TOMAR BADAYLA
4G-3G-2G TRAINING || Youtube channel-ANKUR TOMAR BADAYLA
ankur tomar
 
How to dimension user traffic in LTE
How to dimension user traffic in LTEHow to dimension user traffic in LTE
How to dimension user traffic in LTE
Althaf Hussain
 
UMTS/3G RAN Capacity Management Guideline Part-02 (Sectorization))
UMTS/3G RAN Capacity Management Guideline Part-02 (Sectorization))UMTS/3G RAN Capacity Management Guideline Part-02 (Sectorization))
UMTS/3G RAN Capacity Management Guideline Part-02 (Sectorization))
Md Mustafizur Rahman
 
2G Network Optimization
2G Network Optimization2G Network Optimization
2G Network Optimization
MrrRith2
 
toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...
toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...
toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...
anteneh amsalu
 
Cs fallback feature
Cs fallback featureCs fallback feature
Cs fallback feature
Achmad Salsabil
 
Lte1841
Lte1841Lte1841
Lte1841
KRUNALSHAH171
 
Lte optimization
Lte optimizationLte optimization
Lte optimization
tharinduwije
 
2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...
2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...
2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...
Jean de la Sagesse
 
Intermediate: 5G Network Architecture Options (Updated)
Intermediate: 5G Network Architecture Options (Updated)Intermediate: 5G Network Architecture Options (Updated)
Intermediate: 5G Network Architecture Options (Updated)
3G4G
 
Training document e ran2.2_lte tdd system multiple antenna techniques(mimo an...
Training document e ran2.2_lte tdd system multiple antenna techniques(mimo an...Training document e ran2.2_lte tdd system multiple antenna techniques(mimo an...
Training document e ran2.2_lte tdd system multiple antenna techniques(mimo an...ProcExpl
 
lte advanced
lte advancedlte advanced
lte advanced
Vikas Gandhi
 

What's hot (20)

Pci mod3,6,30 analysis and auto optimization
Pci mod3,6,30 analysis and auto optimizationPci mod3,6,30 analysis and auto optimization
Pci mod3,6,30 analysis and auto optimization
 
Throughput calculation for LTE TDD and FDD systems
Throughput calculation for LTE TDD and FDD systemsThroughput calculation for LTE TDD and FDD systems
Throughput calculation for LTE TDD and FDD systems
 
Bts installation & commisioning.ppt
Bts installation & commisioning.pptBts installation & commisioning.ppt
Bts installation & commisioning.ppt
 
Channel element
Channel elementChannel element
Channel element
 
LTE Planning
LTE PlanningLTE Planning
LTE Planning
 
Part 1 fundamentals of 3 g
Part 1  fundamentals of 3 gPart 1  fundamentals of 3 g
Part 1 fundamentals of 3 g
 
Kpi 2g troubleshootin
Kpi 2g troubleshootinKpi 2g troubleshootin
Kpi 2g troubleshootin
 
83092299 rru3804-overview
83092299 rru3804-overview83092299 rru3804-overview
83092299 rru3804-overview
 
4G-3G-2G TRAINING || Youtube channel-ANKUR TOMAR BADAYLA
4G-3G-2G TRAINING || Youtube channel-ANKUR TOMAR BADAYLA4G-3G-2G TRAINING || Youtube channel-ANKUR TOMAR BADAYLA
4G-3G-2G TRAINING || Youtube channel-ANKUR TOMAR BADAYLA
 
How to dimension user traffic in LTE
How to dimension user traffic in LTEHow to dimension user traffic in LTE
How to dimension user traffic in LTE
 
UMTS/3G RAN Capacity Management Guideline Part-02 (Sectorization))
UMTS/3G RAN Capacity Management Guideline Part-02 (Sectorization))UMTS/3G RAN Capacity Management Guideline Part-02 (Sectorization))
UMTS/3G RAN Capacity Management Guideline Part-02 (Sectorization))
 
2G Network Optimization
2G Network Optimization2G Network Optimization
2G Network Optimization
 
toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...
toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...
toaz.info-zte-fdd-lte-radio-network-optimization-guideline-v14-1-pr_2dc3a4737...
 
Cs fallback feature
Cs fallback featureCs fallback feature
Cs fallback feature
 
Lte1841
Lte1841Lte1841
Lte1841
 
Lte optimization
Lte optimizationLte optimization
Lte optimization
 
2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...
2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...
2 g and 3g kpi improvement by parameter optimization (nsn, ericsson, huawei) ...
 
Intermediate: 5G Network Architecture Options (Updated)
Intermediate: 5G Network Architecture Options (Updated)Intermediate: 5G Network Architecture Options (Updated)
Intermediate: 5G Network Architecture Options (Updated)
 
Training document e ran2.2_lte tdd system multiple antenna techniques(mimo an...
Training document e ran2.2_lte tdd system multiple antenna techniques(mimo an...Training document e ran2.2_lte tdd system multiple antenna techniques(mimo an...
Training document e ran2.2_lte tdd system multiple antenna techniques(mimo an...
 
lte advanced
lte advancedlte advanced
lte advanced
 

Viewers also liked

TDD LTE 頻譜分佈,晶片,與終端簡介 20130710
TDD LTE 頻譜分佈,晶片,與終端簡介 20130710TDD LTE 頻譜分佈,晶片,與終端簡介 20130710
TDD LTE 頻譜分佈,晶片,與終端簡介 20130710
呂誠彬 Champion Lu
 
LTE: Introduction, evolution and testing
LTE: Introduction, evolution and testingLTE: Introduction, evolution and testing
LTE: Introduction, evolution and testing
Rohde & Schwarz North America
 
4 td lte(ᶺà¿-) (1)
4 td lte(ᶺà¿-) (1)4 td lte(ᶺà¿-) (1)
4 td lte(ᶺà¿-) (1)
mnajib171
 
Overview lte
Overview lteOverview lte
Overview lte
ProcExpl
 
Nokia Siemens Networks Lte Analyst Webcast Dec10
Nokia Siemens Networks  Lte Analyst Webcast Dec10Nokia Siemens Networks  Lte Analyst Webcast Dec10
Nokia Siemens Networks Lte Analyst Webcast Dec10Sylwia Boguszewska
 
Tdd Versus Fdd
Tdd Versus FddTdd Versus Fdd
Tdd Versus Fdd
darcypoulin
 
TDD & FDD Interference on TD-LTE B Network
TDD & FDD Interference on TD-LTE B NetworkTDD & FDD Interference on TD-LTE B Network
TDD & FDD Interference on TD-LTE B Network
Ray KHASTUR
 
MIMO OFDM
MIMO OFDMMIMO OFDM
MIMO OFDM
Darshan Patil
 
Lte radio netwok planning
Lte   radio netwok planning Lte   radio netwok planning
Lte radio netwok planning
tharinduwije
 
E nodeb commissioning guide(v100r005c00 04)(pdf)-en
E nodeb commissioning guide(v100r005c00 04)(pdf)-enE nodeb commissioning guide(v100r005c00 04)(pdf)-en
E nodeb commissioning guide(v100r005c00 04)(pdf)-en
Vugar Ali
 
MPLS-based Metro Ethernet Networks
MPLS-based Metro Ethernet NetworksMPLS-based Metro Ethernet Networks
MPLS-based Metro Ethernet Networks
APNIC
 
LTE Basics - II
LTE Basics - IILTE Basics - II
LTE Basics - II
Praveen Kumar
 
Presentation of NSN training
Presentation of NSN trainingPresentation of NSN training
Presentation of NSN training
Bhavin_Halani
 
Nokia kpi and_core_optimization
Nokia kpi and_core_optimizationNokia kpi and_core_optimization
Nokia kpi and_core_optimization
debasish goswami
 
Nokia dictionary
Nokia dictionaryNokia dictionary
Nokia dictionaryJetal Patel
 
Bts installation & commisioning
Bts installation & commisioningBts installation & commisioning
Bts installation & commisioning
AIRTEL
 

Viewers also liked (17)

TDD LTE 頻譜分佈,晶片,與終端簡介 20130710
TDD LTE 頻譜分佈,晶片,與終端簡介 20130710TDD LTE 頻譜分佈,晶片,與終端簡介 20130710
TDD LTE 頻譜分佈,晶片,與終端簡介 20130710
 
LTE: Introduction, evolution and testing
LTE: Introduction, evolution and testingLTE: Introduction, evolution and testing
LTE: Introduction, evolution and testing
 
4 td lte(ᶺà¿-) (1)
4 td lte(ᶺà¿-) (1)4 td lte(ᶺà¿-) (1)
4 td lte(ᶺà¿-) (1)
 
Overview lte
Overview lteOverview lte
Overview lte
 
Nokia Siemens Networks Lte Analyst Webcast Dec10
Nokia Siemens Networks  Lte Analyst Webcast Dec10Nokia Siemens Networks  Lte Analyst Webcast Dec10
Nokia Siemens Networks Lte Analyst Webcast Dec10
 
Tdd Versus Fdd
Tdd Versus FddTdd Versus Fdd
Tdd Versus Fdd
 
Nokia 3G UTRAN
Nokia 3G UTRANNokia 3G UTRAN
Nokia 3G UTRAN
 
TDD & FDD Interference on TD-LTE B Network
TDD & FDD Interference on TD-LTE B NetworkTDD & FDD Interference on TD-LTE B Network
TDD & FDD Interference on TD-LTE B Network
 
MIMO OFDM
MIMO OFDMMIMO OFDM
MIMO OFDM
 
Lte radio netwok planning
Lte   radio netwok planning Lte   radio netwok planning
Lte radio netwok planning
 
E nodeb commissioning guide(v100r005c00 04)(pdf)-en
E nodeb commissioning guide(v100r005c00 04)(pdf)-enE nodeb commissioning guide(v100r005c00 04)(pdf)-en
E nodeb commissioning guide(v100r005c00 04)(pdf)-en
 
MPLS-based Metro Ethernet Networks
MPLS-based Metro Ethernet NetworksMPLS-based Metro Ethernet Networks
MPLS-based Metro Ethernet Networks
 
LTE Basics - II
LTE Basics - IILTE Basics - II
LTE Basics - II
 
Presentation of NSN training
Presentation of NSN trainingPresentation of NSN training
Presentation of NSN training
 
Nokia kpi and_core_optimization
Nokia kpi and_core_optimizationNokia kpi and_core_optimization
Nokia kpi and_core_optimization
 
Nokia dictionary
Nokia dictionaryNokia dictionary
Nokia dictionary
 
Bts installation & commisioning
Bts installation & commisioningBts installation & commisioning
Bts installation & commisioning
 

Similar to Lte àà¿ë ±â¼ú ±³à°

Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01
Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01
Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01Deepak Sharma
 
LTE and LTE Advanced Introduction
LTE and LTE Advanced IntroductionLTE and LTE Advanced Introduction
LTE and LTE Advanced Introduction
BP Tiwari
 
Lte technology-for-engineers
Lte technology-for-engineersLte technology-for-engineers
Lte technology-for-engineersa8us
 
109885868-LTE-Technology-for-Engineers.pdf
109885868-LTE-Technology-for-Engineers.pdf109885868-LTE-Technology-for-Engineers.pdf
109885868-LTE-Technology-for-Engineers.pdf
MohamedShabana37
 
Lte tdd-the-global-solution-for-unpaired-spectrum
Lte tdd-the-global-solution-for-unpaired-spectrumLte tdd-the-global-solution-for-unpaired-spectrum
Lte tdd-the-global-solution-for-unpaired-spectrumMuhammad Rauf Akram
 
Wireless Lab NUI 070610
Wireless Lab NUI 070610Wireless Lab NUI 070610
Wireless Lab NUI 070610John Holland
 
Just Fact: Using 4G mobile and fixed services on a dual mode WiMAX/LTE network
Just Fact: Using 4G mobile and fixed services on a dual mode WiMAX/LTE networkJust Fact: Using 4G mobile and fixed services on a dual mode WiMAX/LTE network
Just Fact: Using 4G mobile and fixed services on a dual mode WiMAX/LTE networkBSP Media Group
 
LTE-Advanced Enhancements and Future Radio Access Toward 2020
 LTE-Advanced Enhancements and Future Radio Access Toward 2020 LTE-Advanced Enhancements and Future Radio Access Toward 2020
LTE-Advanced Enhancements and Future Radio Access Toward 2020
Praveen Kumar
 
lte_principle (1).pptx
lte_principle (1).pptxlte_principle (1).pptx
lte_principle (1).pptx
Saif Haider
 
1-LTE&NR Architecture & principles EMERSON EDUARDO RODRIGUES.pptx
1-LTE&NR  Architecture & principles EMERSON EDUARDO RODRIGUES.pptx1-LTE&NR  Architecture & principles EMERSON EDUARDO RODRIGUES.pptx
1-LTE&NR Architecture & principles EMERSON EDUARDO RODRIGUES.pptx
EMERSON EDUARDO RODRIGUES
 
1-LTE&NR Architecture & principles EMERSON EDUARDO RODRIGUES.pptx
1-LTE&NR  Architecture & principles EMERSON EDUARDO RODRIGUES.pptx1-LTE&NR  Architecture & principles EMERSON EDUARDO RODRIGUES.pptx
1-LTE&NR Architecture & principles EMERSON EDUARDO RODRIGUES.pptx
EMERSON EDUARDO RODRIGUES
 
3 g lte long term evolution tutorial
3 g lte long term evolution tutorial3 g lte long term evolution tutorial
3 g lte long term evolution tutorial
waaway
 
Technology briefing 11 nov2010_media_kit (1)
Technology briefing 11 nov2010_media_kit (1)Technology briefing 11 nov2010_media_kit (1)
Technology briefing 11 nov2010_media_kit (1)Abe Olandres
 
01 lte radio_parameters_lte_overview_rl1
01 lte radio_parameters_lte_overview_rl101 lte radio_parameters_lte_overview_rl1
01 lte radio_parameters_lte_overview_rl1
Md.Akm Sahansha
 
Lte continuing the evolution of mobile broadband networks
Lte continuing the evolution of mobile broadband networksLte continuing the evolution of mobile broadband networks
Lte continuing the evolution of mobile broadband networksRafael Junquera
 
Lte epc ieee_comsoc_rao_april_8_2010
Lte epc ieee_comsoc_rao_april_8_2010Lte epc ieee_comsoc_rao_april_8_2010
Lte epc ieee_comsoc_rao_april_8_2010
Supachok Sappasri
 
4G LTE full tutorial
4G LTE full tutorial4G LTE full tutorial
4G LTE full tutorial
Afzaal Anwar
 
Ppt2
Ppt2Ppt2
Ppt2
Deepa s
 
01 FO_BT1101_C01_1 LTE FDD Principles and Key Technologies.pptx
01 FO_BT1101_C01_1 LTE FDD Principles and Key Technologies.pptx01 FO_BT1101_C01_1 LTE FDD Principles and Key Technologies.pptx
01 FO_BT1101_C01_1 LTE FDD Principles and Key Technologies.pptx
SudheeraIndrajith
 

Similar to Lte àà¿ë ±â¼ú ±³à° (20)

Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01
Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01
Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01
 
LTE and LTE Advanced Introduction
LTE and LTE Advanced IntroductionLTE and LTE Advanced Introduction
LTE and LTE Advanced Introduction
 
Lte technology-for-engineers
Lte technology-for-engineersLte technology-for-engineers
Lte technology-for-engineers
 
109885868-LTE-Technology-for-Engineers.pdf
109885868-LTE-Technology-for-Engineers.pdf109885868-LTE-Technology-for-Engineers.pdf
109885868-LTE-Technology-for-Engineers.pdf
 
Lte tdd-the-global-solution-for-unpaired-spectrum
Lte tdd-the-global-solution-for-unpaired-spectrumLte tdd-the-global-solution-for-unpaired-spectrum
Lte tdd-the-global-solution-for-unpaired-spectrum
 
Wireless Lab NUI 070610
Wireless Lab NUI 070610Wireless Lab NUI 070610
Wireless Lab NUI 070610
 
Just Fact: Using 4G mobile and fixed services on a dual mode WiMAX/LTE network
Just Fact: Using 4G mobile and fixed services on a dual mode WiMAX/LTE networkJust Fact: Using 4G mobile and fixed services on a dual mode WiMAX/LTE network
Just Fact: Using 4G mobile and fixed services on a dual mode WiMAX/LTE network
 
LTE-Advanced Enhancements and Future Radio Access Toward 2020
 LTE-Advanced Enhancements and Future Radio Access Toward 2020 LTE-Advanced Enhancements and Future Radio Access Toward 2020
LTE-Advanced Enhancements and Future Radio Access Toward 2020
 
lte_principle (1).pptx
lte_principle (1).pptxlte_principle (1).pptx
lte_principle (1).pptx
 
1-LTE&NR Architecture & principles EMERSON EDUARDO RODRIGUES.pptx
1-LTE&NR  Architecture & principles EMERSON EDUARDO RODRIGUES.pptx1-LTE&NR  Architecture & principles EMERSON EDUARDO RODRIGUES.pptx
1-LTE&NR Architecture & principles EMERSON EDUARDO RODRIGUES.pptx
 
1-LTE&NR Architecture & principles EMERSON EDUARDO RODRIGUES.pptx
1-LTE&NR  Architecture & principles EMERSON EDUARDO RODRIGUES.pptx1-LTE&NR  Architecture & principles EMERSON EDUARDO RODRIGUES.pptx
1-LTE&NR Architecture & principles EMERSON EDUARDO RODRIGUES.pptx
 
3 g lte long term evolution tutorial
3 g lte long term evolution tutorial3 g lte long term evolution tutorial
3 g lte long term evolution tutorial
 
Technology briefing 11 nov2010_media_kit (1)
Technology briefing 11 nov2010_media_kit (1)Technology briefing 11 nov2010_media_kit (1)
Technology briefing 11 nov2010_media_kit (1)
 
01 lte radio_parameters_lte_overview_rl1
01 lte radio_parameters_lte_overview_rl101 lte radio_parameters_lte_overview_rl1
01 lte radio_parameters_lte_overview_rl1
 
Lte continuing the evolution of mobile broadband networks
Lte continuing the evolution of mobile broadband networksLte continuing the evolution of mobile broadband networks
Lte continuing the evolution of mobile broadband networks
 
Lte epc ieee_comsoc_rao_april_8_2010
Lte epc ieee_comsoc_rao_april_8_2010Lte epc ieee_comsoc_rao_april_8_2010
Lte epc ieee_comsoc_rao_april_8_2010
 
4G LTE full tutorial
4G LTE full tutorial4G LTE full tutorial
4G LTE full tutorial
 
Ppt2
Ppt2Ppt2
Ppt2
 
01 FO_BT1101_C01_1 LTE FDD Principles and Key Technologies.pptx
01 FO_BT1101_C01_1 LTE FDD Principles and Key Technologies.pptx01 FO_BT1101_C01_1 LTE FDD Principles and Key Technologies.pptx
01 FO_BT1101_C01_1 LTE FDD Principles and Key Technologies.pptx
 
1 tmo18023 umts overview
1 tmo18023 umts overview1 tmo18023 umts overview
1 tmo18023 umts overview
 

Lte àà¿ë ±â¼ú ±³à°

  • 1. © 2013 Nokia Solutions and Networks. All rights reserved. LTE TDD Overview October 2013 Bong Youl (Brian) Cho, 조 봉 열 brian.cho@nsn.com Disclaimer 본 자료의 내용은 LTE 기술 자체에 대한 내용을 위주로 한 것으로서, NSN 제품전략 및 계획 등과는 반드시 일치하지 않을 수도 있습니다.
  • 2. TTA LTE Standards/Technology Training 2 © 2013 Nokia Solutions and Networks. All rights reserved. LTE TDD market overview Quick comparison b/w WiMAX & LTE TDD LTE TDD Technology Overview TDD Carrier Aggregation TDD Enhancement in Rel-12 and beyond
  • 3. TTA LTE Standards/Technology Training 3 © 2013 Nokia Solutions and Networks. All rights reserved. Difference b/w 3G-TDD and 4G-TDD Note: • 3GPP 표준에는 GSM, WCDMA/HSPA, LTE 기술이 모두 포함되어 있으며, 3가지 기술 모두가 지속적으로 진화함 • LTE-Advanced는 LTE와는 별도의 기술이 아니라 LTE의 진화의 한 경로 혹은 단계임 2000 2001 2002 2003 2004 2005 Release 99 Release 4 Release 5 Release 6 1.28Mcps TDD HSDPA W-CDMA HSUPA, MBMS 2006 2007 2008 2009 Release 7 HSPA+ (MIMO, HOM etc.) Release 8 2010 2011 LTE (FDD, TDD) Release 9 Release 10 Minor LTE enhancements 2012 2013 Release 11 ITU-R M.1457 IMT-2000 Recommendation LTE-AdvancedITU-R M.2012 IMT-Advanced Recommendation 2014 Release 12 1999
  • 4. TTA LTE Standards/Technology Training 4 © 2013 Nokia Solutions and Networks. All rights reserved.
  • 5. TTA LTE Standards/Technology Training 5 © 2013 Nokia Solutions and Networks. All rights reserved.
  • 6. TTA LTE Standards/Technology Training 6 © 2013 Nokia Solutions and Networks. All rights reserved. LTE FDD+LTE TDD make “the best LTE” From etnews.com on May 28, 2013 “LTE FDD is only the half part of LTE” • The number of LTE TDD operators at the moment is small, but those are big operators • LTE TDD has very high commonality with LTE FDD, and works also with 3G • Many WiMAX operators are considering migration to LTE TDD • 2.3GHz and 2.6GHz are two key bands for LTE TDD
  • 7. TTA LTE Standards/Technology Training 7 © 2013 Nokia Solutions and Networks. All rights reserved. Key countries updates Japan: >1M LTE TDD subs. Interest in 3.5GHz Australia: Optus launch LTE TDD Europe: LTE TDD spectrum auctioned, TDD will follow FDD Clearwire ready for major LTE TDD roll-out China Mobile bid process on- going for 200,000 eNodeB, 1M LTE TDD terminals RoW Dell’Oro January 2013: •Increased Near Term Outlook for TDD •Expects Europe will augment FDD with TDD
  • 8. TTA LTE Standards/Technology Training 8 © 2013 Nokia Solutions and Networks. All rights reserved. LTE TDD devices overview LTE TDD device band support* 2300 MHz Band 40: 82 devices 2600 MHz Band 38: 88 devices 2600 MHz Band 41: 19 devices The largest supported LTE TDD eco-system is: Bands 38 (2.6 GHz) and 40 (2.3 GHz) have the largest ecosystems of LTE TDD user devices currently : • Terminal support for band 38 is 71% • Terminal support for band 40 is 66% • Band 41 (2.6GHz) will be deployed by Softbank, CMCC and Clearwire so terminal ecosystem will be substantial in future • Support for 1.9 GHz (band 39) and 3.5 GHz (bands 42, 43) is also picking up 124 LTE TDD user devices (dongles, MiFi, CPE, smartphones) LTE TDD eco-system is ready! * January 2013 GSA report New dual mode Samsung handsets to supercharge Optus' 4G Network, 2013-08-05, Sydney https://www.optus.com.au/aboutoptus/About+Optus/Medi a+Centre/Media+Releases/2013/New+dual+mode+Sams ung+handsets+to+supercharge+Optus'+4G+Network
  • 9. TTA LTE Standards/Technology Training 9 © 2013 Nokia Solutions and Networks. All rights reserved. LTE TDD DL/UL Config Brings Higher DL PDR & Flexibility Peak data rate [Mbps] Similar Spectrum Efficiency with FDD LTE DL/UL(3:1) to DL service up to 110Mbps
  • 10. TTA LTE Standards/Technology Training 10 © 2013 Nokia Solutions and Networks. All rights reserved. 3GPP E-UTRA TDD frequency bands E-UTRA Operating Band Uplink (UL) operating band BS receive UE transmit Downlink (DL) operating band BS transmit UE receive Duplex Mode FUL_low – FUL_high FDL_low – FDL_high 33 1900 MHz – 1920 MHz 1900 MHz – 1920 MHz TDD 34 2010 MHz – 2025 MHz 2010 MHz – 2025 MHz TDD 35 1850 MHz – 1910 MHz 1850 MHz – 1910 MHz TDD 36 1930 MHz – 1990 MHz 1930 MHz – 1990 MHz TDD 37 1910 MHz – 1930 MHz 1910 MHz – 1930 MHz TDD 38 2570 MHz – 2620 MHz 2570 MHz – 2620 MHz TDD 39 1880 MHz – 1920 MHz 1880 MHz – 1920 MHz TDD 40 2300 MHz – 2400 MHz 2300 MHz – 2400 MHz TDD 41 2496 MHz – 2690 MHz 2496 MHz – 2690 MHz TDD 42 3400 MHz – 3600 MHz 3400 MHz – 3600 MHz TDD 43 3600 MHz – 3800 MHz 3600 MHz – 3800 MHz TDD 44 703 MHz – 803 MHz 703 MHz – 803 MHz TDD
  • 11. TTA LTE Standards/Technology Training 11 © 2013 Nokia Solutions and Networks. All rights reserved. LTE FDD, LTE TDD Integration Standards Integration Product Integration Maximized commonality b/w FDD and TDD for high level of integration/interworking LTE FDD LTE TDD GlobalRoaming LTE FDD & TDD LTEFDD&TDD Transparenthandover Fully integrated over time
  • 12. TTA LTE Standards/Technology Training 12 © 2013 Nokia Solutions and Networks. All rights reserved. LTE TDD market overview Quick comparison b/w WiMAX & LTE TDD LTE TDD Technology Overview TDD Carrier Aggregation TDD Enhancement in Rel-12 and beyond
  • 13. TTA LTE Standards/Technology Training 13 © 2013 Nokia Solutions and Networks. All rights reserved. DL OFDMA & UL SC-FDMA in LTE • DL: OFDMA (Orthogonal Frequency Division Multiple Access) – Less critical AMP efficiency in BS side – Concerns on high RX complexity in terminal side • UL: SC-FDMA (Single Carrier-FDMA), aka DFTS-OFDM – Less critical RX complexity in BS side – Critical AMP complexity in terminal side (Cost, power Consumption, UL coverage) Making MS cheap as much as possible by moving all the burdens from MS to BS
  • 14. TTA LTE Standards/Technology Training 14 © 2013 Nokia Solutions and Networks. All rights reserved. CM (Cubic Metric) of OFDMA & SC-FDMA OFDMA SC-FDMA 16QAM SC-FDMA QPSK SC-FDMA pi/2-BPSK
  • 15. TTA LTE Standards/Technology Training 15 © 2013 Nokia Solutions and Networks. All rights reserved. SC-FDMA: A good introductory paper
  • 16. TTA LTE Standards/Technology Training 16 © 2013 Nokia Solutions and Networks. All rights reserved. LTE Physical channels and signals: DL LTE WCDMA/HSPA WiMAX PDSCH (DL data delivery and others) HS-PDSCH, SCCPCH DL Data Burst PBCH (MIB delivery) PCCPCH DCD, Preamble PMCH (MBMS) DL Data Burst PCFICH (Header for PDCCH) FCH PDCCH (Header for PDSCH, PUSCH) HS-SCCH, E-AGCH, E- RGCH DL-MAP, UL-MAP PHICH (HARQ Ack/Nack for UL) E-HICH DL Data Burst Cell-specific Reference Signal (Common pilot) CPICH with primary scrambling code Pilot Signal (common) UE-specific Reference Signal (UE dedicated pilot) With secondary scrambling code Pilot Signal (dedicated) Sync Signal (UE initial DL synchronization) SCH Preamble
  • 17. TTA LTE Standards/Technology Training 17 © 2013 Nokia Solutions and Networks. All rights reserved. LTE WCDMA/HSPA WiMAX PUSCH (UL data delivery and CSI delivery) (E-DPDCH) UL Data Burst PUCCH (CSI delivery, HARQ Ack/Nack for DL, SR delivery) HS-DPCCH CQICH, ACKCH, BW Request Ranging PRACH (Random access) PRACH Initial Ranging Demodulation RS (Pilot for PUSCH, PUCCH) (E-DPCCH) Pilot Signal Sounding RS (Additional pilot for other purposes) Sounding Signal LTE Physical channels and signals: UL
  • 18. TTA LTE Standards/Technology Training 18 © 2013 Nokia Solutions and Networks. All rights reserved. Quick comparison: OFDM parameter, MIMO
  • 19. TTA LTE Standards/Technology Training 19 © 2013 Nokia Solutions and Networks. All rights reserved. WiMAX-Advanced DL Performance* • FDD: DL cell spectral efficiency in bit/s/Hz/cell • FDD: DL cell edge user spectral efficiency in bit/s/Hz/cell • TDD: DL cell spectral efficiency in bit/s/Hz/cell • TDD: DL cell edge user spectral efficiency in bit/s/Hz/cell InH UMi UMa RMa Cell spectral efficiency 6.87 3.27 2.41 3.15 ITU-R requirement 3.0 2.6 2.2 1.1 InH UMi UMa RMa Cell spectral efficiency 0.253 0.097 0.069 0.091 ITU-R requirement 0.1 0.075 0.06 0.04 InH UMi UMa RMa Cell spectral efficiency 6.93 3.22 2.41 3.23 ITU-R requirement 3.0 2.6 2.2 1.1 InH UMi UMa RMa Cell spectral efficiency 0.260 0.092 0.069 0.093 ITU-R requirement 0.1 0.075 0.06 0.04 * IMT-ADV/4-E
  • 20. TTA LTE Standards/Technology Training 20 © 2013 Nokia Solutions and Networks. All rights reserved. WiMAX-Advanced UL Performance* • FDD: UL cell spectral efficiency in bit/s/Hz/cell • FDD: UL cell edge user spectral efficiency in bit/s/Hz/cell • TDD: UL cell spectral efficiency in bit/s/Hz/cell • TDD: UL cell edge user spectral efficiency in bit/s/Hz/cell InH UMi UMa RMa Cell spectral efficiency 5.99 2.58 2.57 2.66 ITU-R requirement 2.25 1.8 1.4 0.7 InH UMi UMa RMa Cell spectral efficiency 0.426 0.111 0.109 0.119 ITU-R requirement 0.07 0.05 0.03 0.015 InH UMi UMa RMa Cell spectral efficiency 6.23 2.72 2.69 2.77 ITU-R requirement 2.25 1.8 1.4 0.7 InH UMi UMa RMa Cell spectral efficiency 0.444 0.119 0.114 0.124 ITU-R requirement 0.07 0.05 0.03 0.015 * IMT-ADV/4-E
  • 21. TTA LTE Standards/Technology Training 21 © 2013 Nokia Solutions and Networks. All rights reserved. LTE-Advanced DL Performance* • FDD: DL cell spectral efficiency in bit/s/Hz/cell • FDD: DL cell edge user spectral efficiency in bit/s/Hz/cell • TDD: DL cell spectral efficiency in bit/s/Hz/cell • TDD: DL cell edge user spectral efficiency in bit/s/Hz/cell InH UMi UMa RMa Cell spectral efficiency 4.1-6.6 2.8-4.5 2.4-3.8 1.8-4.1 ITU-R requirement 3.0 2.6 2.2 1.1 InH UMi UMa RMa Cell spectral efficiency 0.19-0.26 0.087-0.15 0.066-0.10 0.057-0.13 ITU-R requirement 0.1 0.075 0.06 0.04 InH UMi UMa RMa Cell spectral efficiency 4.1-6.7 2.7-4.6 2.4-3.7 1.6-4.0 ITU-R requirement 3.0 2.6 2.2 1.1 InH UMi UMa RMa Cell spectral efficiency 0.19-0.24 0.085-0.12 0.067-0.10 0.049-0.12 ITU-R requirement 0.1 0.075 0.06 0.04 * IMT-ADV/8-E
  • 22. TTA LTE Standards/Technology Training 22 © 2013 Nokia Solutions and Networks. All rights reserved. LTE-Advanced UL Performance* • FDD: UL cell spectral efficiency in bit/s/Hz/cell • FDD: UL cell edge user spectral efficiency in bit/s/Hz/cell • TDD: UL cell spectral efficiency in bit/s/Hz/cell • TDD: UL cell edge user spectral efficiency in bit/s/Hz/cell InH UMi UMa RMa Cell spectral efficiency 3.1-5.5 1.9-3.0 1.5-2.7 1.8-2.6 ITU-R requirement 2.25 1.8 1.4 0.7 InH UMi UMa RMa Cell spectral efficiency 0.22-0.39 0.068-0.079 0.062-0.097 0.080-0.15 ITU-R requirement 0.07 0.05 0.03 0.015 InH UMi UMa RMa Cell spectral efficiency 3.3-5.8 1.9-2.5 1.5-2.1 1.8-2.3 ITU-R requirement 2.25 1.8 1.4 0.7 InH UMi UMa RMa Cell spectral efficiency 0.23-0.42 0.073-0.086 0.062-0.099 0.082-0.13 ITU-R requirement 0.07 0.05 0.03 0.015 * IMT-ADV/8-E
  • 23. TTA LTE Standards/Technology Training 23 © 2013 Nokia Solutions and Networks. All rights reserved. Comparison: Urban Microcell, TDD • Cell spectral efficiency in bit/s/Hz/cell • Cell edge user spectral efficiency in bit/s/Hz/cell 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 DL cell SE UL cell SE WiMAX LTE TDD min LTE TDD max 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 DL 5% SE UL 5% SE WiMAX LTE TDD min LTE TDD max
  • 24. TTA LTE Standards/Technology Training 24 © 2013 Nokia Solutions and Networks. All rights reserved. LTE TDD market overview Quick comparison b/w WiMAX & LTE TDD LTE TDD Technology Overview TDD Carrier Aggregation TDD Enhancement in Rel-12 and beyond
  • 25. TTA LTE Standards/Technology Training 25 © 2013 Nokia Solutions and Networks. All rights reserved. Duplexing • FDD • TDD
  • 26. TTA LTE Standards/Technology Training 26 © 2013 Nokia Solutions and Networks. All rights reserved. Duplexing – cont’d
  • 27. TTA LTE Standards/Technology Training 27 © 2013 Nokia Solutions and Networks. All rights reserved. LTE FDD vs LTE TDD Same RF Structure, Same Resource Block => Same RF Power/Time/Bandwidth Density Same Power Transmitted during the Same amount of time as LTE FDD LTE FDD 10MHz 10W 5W 5MHz 5MHz 10ms 10ms LTE TDD DL DLSingle UL Frame Resource Block 5ms Power Time Spectrum 1/5 W UL UL 1/5 W
  • 28. TTA LTE Standards/Technology Training 28 © 2013 Nokia Solutions and Networks. All rights reserved. 3GPP LTE FDD vs. LTE TDD High degree of commonality Features LTE FDD LTE TDD Frame structure 1ms sub-frame 1ms sub-frame Switching points N/A 5ms periodicity and 10 ms periodicity BS Synchronization Asynchronous/Synchronous Synchronous DL Control Channel Can schedule 1 DL and 1 UL sub-frame at a time (with CA, looks more similar) Can schedule 1 DL and multiple UL sub-frame at a time UL Control Channel Single ACK/NAK corresponding to 1 DL sub-frame (with CA, looks more similar) Multiple ACK/NAK corresponding to multiple DL sub-frame PRACH 0,1,2,3 0,1,2,3,4 (Short RACH) Special slot usage N/A DwPTS: RS, Data and Control UpPTS: SRS and Short RACH Numerology, Coding, Multiple Access, MIMO support, RS etc. Same Same HARQ Timing N=8 stop-and-wait protocol DL: Async, UL: Sync TBD DL: Async, UL: Sync High Degree of Commonality
  • 29. TTA LTE Standards/Technology Training 29 © 2013 Nokia Solutions and Networks. All rights reserved. LTE FDD vs. TDD performance comparison FDD-LTELTE TDD Negligible advantage (No need of switching)Spectral Efficiency DL/UL Balancing LTE TDD can adapt to DL/UL traffic ratio (typical of internet traffic) Fix bandwidth for DL & UL (typical of voice traffic) Real Life Performance Latency Dedicated UL/DL pipes (no need to “wait” for UL or DL slot) Comparable Subscriber Experience Slightly longer latency Coverage Spectrum Flexibility New Spectrum Pricing Because of higher demand FDD has so far sold for higher $/MHz TDD Spectrum had traditionally auctioned for lower $/MHz Coexistence Coexistence requirement for adjacent frequency in the same geographic area + + + + + Better in big-sized cells + Paired-band is not needed, no duplexing gap +
  • 30. TTA LTE Standards/Technology Training 30 © 2013 Nokia Solutions and Networks. All rights reserved. Frame Structure #0 #1 #2 #3 #19 One slot, Tslot = 15360Ts = 0.5 ms One radio frame, Tf = 307200Ts=10 ms #18 One subframe Type 2 for TDD Type 1 for FDD One slot, Tslot=15360Ts GP UpPTSDwPTS One radio frame, Tf = 307200Ts = 10 ms One half-frame, 153600Ts = 5 ms 30720Ts One subframe, 30720Ts GP UpPTSDwPTS Subframe #2 Subframe #3 Subframe #4Subframe #0 Subframe #5 Subframe #7 Subframe #8 Subframe #9
  • 31. TTA LTE Standards/Technology Training 31 © 2013 Nokia Solutions and Networks. All rights reserved. Frame Structure: FDD/TDD
  • 32. TTA LTE Standards/Technology Training 32 © 2013 Nokia Solutions and Networks. All rights reserved. LTE TDD: UL/DL configurations Configuration Switch-point periodicity Subframe number 0 1 2 3 4 5 6 7 8 9 0 5 ms D S U U U D S U U U 1 5 ms D S U U D D S U U D 2 5 ms D S U D D D S U D D 3 10 ms D S U U U D D D D D 4 10 ms D S U U D D D D D D 5 10 ms D S U D D D D D D D 6 5 ms D S U U U D S U U D
  • 33. TTA LTE Standards/Technology Training 33 © 2013 Nokia Solutions and Networks. All rights reserved. LTE TDD: UL/DL configurations
  • 34. TTA LTE Standards/Technology Training 34 © 2013 Nokia Solutions and Networks. All rights reserved. * assuming Normal CP LTE TDD: Special subframe config for max cell range
  • 35. TTA LTE Standards/Technology Training 35 © 2013 Nokia Solutions and Networks. All rights reserved. System Information • Master information block (MIB) includes the following information: – Downlink cell bandwidth [4 bit] – System Frame Number (SFN) except two LBSs – Etc… • LTE defines different SIBs: – SIB1 includes info mainly related to whether an UE is allowed to camp on the cell. This includes info about the operator(s) and about the cell (e.g. PLMN identity list, tracking area code, cell identity, minimum required Rx level in the cell, etc), DL-UL subframe configuration in TDD case, and the scheduling of the remaining SIBs. SIB1 is transmitted every 80ms. – SIB2 includes info that UEs need in order to be able to access the cell. This includes info about the UL cell BW, random access parameters, and UL power control parameters. SIBs also includes radio resource configuration of common channels (RACH, BCCH, PCCH, PRACH, PDSCH, PUSCH, PUCCH, and SRS). – SIB3-4 mainly includes info related to cell-reselection. – SIB5-8 include neighbor-cell-related info. (E-UTRAN, UTRAN, GERAN, cdma2000) – SIB9 contains a home eNB identifier – SIB10/11 contains ETWS (Earthquake and Tsunami Warning System) notification – SIB12: CMAS – SIB13: eMBMS – More to be added • MIB mapped to PBCH, Other SIBs mapped to PDSCH
  • 36. TTA LTE Standards/Technology Training 36 © 2013 Nokia Solutions and Networks. All rights reserved. Mapping of control channels to TDD config #1 <cf> FDD LTE
  • 37. TTA LTE Standards/Technology Training 37 © 2013 Nokia Solutions and Networks. All rights reserved. Typical RF interference scenario for a TDD
  • 38. TTA LTE Standards/Technology Training 38 © 2013 Nokia Solutions and Networks. All rights reserved. Coexistence among neighboring TDD systems
  • 39. TTA LTE Standards/Technology Training 39 © 2013 Nokia Solutions and Networks. All rights reserved. Coexistence b/w WiMAX (16e) and LTE TDD
  • 40. TTA LTE Standards/Technology Training 40 © 2013 Nokia Solutions and Networks. All rights reserved. Coexistence b/w TDD and FDD
  • 41. TTA LTE Standards/Technology Training 41 © 2013 Nokia Solutions and Networks. All rights reserved. MIMO Spatial Multiplexing (SM) Multiple Input Multiple Output (MIMO) Multiple antennas at both transmitter and receiver MIMO uses multipath to advantage to “multiply data rate” • Transmits different data along different paths (simplified view) • MxN MIMO can multiply data rate by M or N (whichever is less) if there is enough multipath. – Best in urban high-multipath environment (and indoors) – Less effective in suburban and rural low-multipath environments
  • 42. TTA LTE Standards/Technology Training 42 © 2013 Nokia Solutions and Networks. All rights reserved. SVD MIMO as a closed-loop MIMO ? • In CL-SU-MIMO, SVD-MIMO is the optimum
  • 43. TTA LTE Standards/Technology Training 43 © 2013 Nokia Solutions and Networks. All rights reserved. MIMO Channel Decomposition
  • 44. TTA LTE Standards/Technology Training 44 © 2013 Nokia Solutions and Networks. All rights reserved. x~ x V VH U UH y minn 1 1 ~w min ~ nw  Pre-processing Post-processing Channel ),0(~,, 0 r rt n nn NΝCC Iwyx wHxy   y~ With number of transmitting antenna=nt and receiving antenna=nr, MIMO Channel Decomposition
  • 45. TTA LTE Standards/Technology Training 45 © 2013 Nokia Solutions and Networks. All rights reserved. wxDy ~~~  wUxD wxVUDVU wxUDVU wHxU yUy H HH HH H H      ~ )~( )( )( ~ Channel Diagonalization
  • 46. TTA LTE Standards/Technology Training 46 © 2013 Nokia Solutions and Networks. All rights reserved. 3GPP Release 8 DL transmission modes Two approaches to multi-antenna transmission MCS CQI PMI Rank CQI MCS PMI Rank PDSCH Channel estimation based on common reference signal (CRS) MIMO Beamforming PDSCH Channel estimation based on dedicated reference signal (DRS) CRS DRS SRS Closed loop, codebook precoding (TM4) Open loop, non-codebook precoding (TM7) If UE uses multiple receive antennas, it also has to transmit SRS on multiple antennas in order for UL measurements to fully reflect DL channel state
  • 47. TTA LTE Standards/Technology Training 47 © 2013 Nokia Solutions and Networks. All rights reserved. • Diversity – Same data on all the pipes (mode 2)  Increased coverage and link quality – But, the all pipes can be combined to make a kind-of beamforming • MIMO – Different data streams on different pipes (mode 4)  Increased spectral efficiency (increased overall throughput)  Power is split among the data streams • Beamforming – Data stream on only the strongest pipe (mode 7)  Utilize different amplitude/phase at all pipes to optimally match per-UE radio condition  Increased coverage and signal SNR Multi-Antenna Technology Summary
  • 48. TTA LTE Standards/Technology Training 48 © 2013 Nokia Solutions and Networks. All rights reserved. 3GPP Release 9/10 DL transmission modes Enhanced beamforming: dual-layer beamforming (TM8)  Multi-layer (TM9) With cross polar antennas in mind TDD operators have been eager to extend Rel8 Beamforming to support two streams. Spatial multiplexing supported - Up to 2 layers per user (SU-MIMO) - Up to 4 layer in total (MU-MIMO) CRS based PMI and rank reporting supported for beamforming - Similar feedback schemes as for Rel-8 SU- MIMO (tx-mode 4) - TxD CQI also supported - One CRS per polarization via sector beam virtualization (as in Rel-9) CQI PMI Rank MCS Rank PDSCH Channel estimation based on DRS DRS SRS
  • 49. TTA LTE Standards/Technology Training 49 © 2013 Nokia Solutions and Networks. All rights reserved. PDSCH Transmission Modes Mode Details 1 Single-antenna transmission (CRS) 2 Transmit diversity (CRS) 3 Open-loop codebook-based precoding in the case of more than one layer, transmit diversity in the case of rank-one transmission (CRS) 4 Closed-loop codebook-based precoding (CRS) 5 Multi-user-MIMO version of transmission mode 4 (CRS) 6 Special case of closed-loop codebook-based precoding limited to single-layer transmission (CRS) 7 Release-8 non-codebook-based precoding supporting only single-layer transmission (UE-specific RS, but this mode will not be used) 8 Release-9 non-codebook-based precoding supporting up to two layers (DM-RS) 9 Release-10 non-codebook-based precoding supporting up to eight layers (DM-RS) * UE specific RS and DM-RS are basically the same, i.e. both are not cell-specific but can be UE-specific. But, two have different names and different scalability, DM-RS introduced in Rel-9/10 can be superset of UE specific RS in Rel-8. So, UE specific RS will not be used mostly.
  • 50. TTA LTE Standards/Technology Training 50 © 2013 Nokia Solutions and Networks. All rights reserved. Cell-Specific RS Mapping for TM1-6 Normal CP Extended CP 1 Tx ant 4.76% 5.56% 2 Tx ant 9.52% 11.11% 4 Tx ant 14.29% 15.87% 0l 0R 0R 0R 0R 6l 0l 0R 0R 0R 0R 6l OneantennaportTwoantennaports Resource element (k,l) Not used for transmission on this antenna port Reference symbols on this antenna port 0l 0R 0R 0R 0R 6l 0l 0R 0R 0R 0R 6l 0l 1R 1R 1R 1R 6l 0l 1R 1R 1R 1R 6l 0l 0R 0R 0R 0R 6l 0l 0R 0R 0R 0R 6l 0l 1R 1R 1R 1R 6l 0l 1R 1R 1R 1R 6l Fourantennaports 0l 6l 0l 2R 6l 0l 6l 0l 6l 2R 2R 2R 3R 3R 3R 3R even-numbered slots odd-numbered slots Antenna port 0 even-numbered slots odd-numbered slots Antenna port 1 even-numbered slots odd-numbered slots Antenna port 2 even-numbered slots odd-numbered slots Antenna port 3 RS Overhead
  • 51. TTA LTE Standards/Technology Training 51 © 2013 Nokia Solutions and Networks. All rights reserved. UE-specific RS (R5) on top of CRS for TM7 • UE-specific RS (antenna port 5) – 12 symbols per RB pair • DL CQI estimation is always based on cell-specific RS (common RS)
  • 52. TTA LTE Standards/Technology Training 52 © 2013 Nokia Solutions and Networks. All rights reserved. New DM-RS for scalability for TM8-9
  • 53. TTA LTE Standards/Technology Training 53 © 2013 Nokia Solutions and Networks. All rights reserved. • Diversity – Same data on all the pipes (mode 2)  Increased coverage and link quality – But, the all pipes can be combined to make a kind-of beamforming • MIMO – Different data streams on different pipes (mode 4)  Increased spectral efficiency (increased overall throughput)  Power is split among the data streams • Beamforming – Data stream on only the strongest pipe (mode 7)  Utilize different amplitude/phase at all pipes to optimally match per-UE radio condition  Increased coverage and signal SNR – Not any more focusing on the strongest pipe in transmission mode 8 in R9 and mode 9 in R10 Multi-Antenna Technology Summary
  • 54. TTA LTE Standards/Technology Training 54 © 2013 Nokia Solutions and Networks. All rights reserved. LTE FDD vs TDD link budget comparison - Example
  • 55. TTA LTE Standards/Technology Training 55 © 2013 Nokia Solutions and Networks. All rights reserved. From 8T8R to 2T2R in real fields Ground based cabinet FSMF + RRH in cabinet GSM/TDLTE co-sited Antenna on 25M tower 8T8R RFM 8T8R RFM GSM MCPA GSM MCPA 8T8R RFM TDLTE BBU Dense traffic areas 1 RFM serves up to 4 sectors Small, discrete 2x2 antennas Approx. 300x100mm
  • 56. TTA LTE Standards/Technology Training 56 © 2013 Nokia Solutions and Networks. All rights reserved. HARQ Retransmission Timing • Acknowledgement of a transport block in subframe n is transmitted in subframe n + k , where k ≧ 4 and is selected such that n + k is an uplink subframe
  • 57. TTA LTE Standards/Technology Training 57 © 2013 Nokia Solutions and Networks. All rights reserved. HARQ Acknowledgement Bundling • For DL transmissions, there are some configurations where DL-SCH receipt in multiple DL subframes needs to be acknowledged in a single UL subframe – Multiplexing Independent acknowledgements for each of the received transport blocks are fed back to the eNodeB. This allows independent retransmission of erroneous transport blocks. However, it also implies that multiple bits need to be transmitted from the terminal. – Bundling of acknowledgements The outcome of the decoding of DL transport blocks from multiple DL subframes can be combined into a single hybrid-ARQ acknowledgement transmitted in UL. Only if both of the DL transmissions in subframes 0 and 3 in the example below are correctly decoded will a positive acknowledgement be transmitted in UL subframe 7. The downlink assignment index in the scheduling assignment on the PDCCH is used to avoid confusion
  • 58. TTA LTE Standards/Technology Training 58 © 2013 Nokia Solutions and Networks. All rights reserved. UL Grant Timing • For TDD configurations 1–6, the uplink transmission occurs in subframe n + k , where k is the smallest value larger than or equal to 4 such that subframe n + k is an uplink subframe. • For TDD configuration 0 there are more UL subframes than DL subframes, which calls for the possibility to schedule transmissions in multiple UL subframes from a single DL subframe. For DL-UL configuration 0, the index field specifies which UL subframe(s) a grant received in a DL subframe applies to.
  • 59. TTA LTE Standards/Technology Training 59 © 2013 Nokia Solutions and Networks. All rights reserved. PRACH format 4 • Short PRACH preamble (format 4) only for TDD (to utilize UpPTS in small cells) • For TDD, multiple random-access regions can be configured in a single subframe. The reason is the smaller number of uplink subframes per radio frame in TDD. To maintain the same random-access capacity as in FDD, frequency-domain multiplexing is sometimes necessary.
  • 60. TTA LTE Standards/Technology Training 60 © 2013 Nokia Solutions and Networks. All rights reserved. Better Utilization of SRS • SRS (Sounding Reference Signal) – SRS can be used for both DL beamforming and UL CAS • Calibration needed for channel reciprocity Model to illustrate the impact from RF units to channel reciprocity (capital letters indentify matrixes)
  • 61. TTA LTE Standards/Technology Training 61 © 2013 Nokia Solutions and Networks. All rights reserved. LTE TDD market overview Quick comparison b/w WiMAX & LTE TDD LTE TDD Technology Overview TDD Carrier Aggregation TDD Enhancement in Rel-12 and beyond
  • 62. TTA LTE Standards/Technology Training 62 © 2013 Nokia Solutions and Networks. All rights reserved. TDD CA Combinations • CA_39A-41A, CMCC Rel’12  20MHz + 20MHz Completed Ongoing New Inter-band CA combinations Intra-band contiguous CA combinations • CA_40C, CMCC Rel’10  40MHz • CA_41C, Clearwire Rel’11  40MHz • CA_38C, CMCC Rel’11  40MHz • CA_39C, CMCC Rel’12  35MHz • CA_41D, Sprint Rel’12  60MHz Intra-band non-contiguous CA combinations • CA_41A-41A, CMCC Rel’12  20MHz + 20MHz • CA_41A-41A, Sprint Rel’12  20MHz + 20MHz (dual uplink)
  • 63. TTA LTE Standards/Technology Training 63 © 2013 Nokia Solutions and Networks. All rights reserved. LTE_CA_TDD_FDD-Core Core part: TDD-FDD joint operation • Rapporteur: Nokia • Schedule: Start (June 2013) – Finish (Dec 2014, estimated) • Latest WID: RP-131399 (RAN#61) – Objective  The objective is to enhance LTE TDD – FDD joint operation with LTE TDD-FDD carrier aggregation feature and potentially also with other TDD-FDD joint operation solutions depending on the outcome of the initial scenario evaluation phase of the work item.  Technical Report on TDD-FDD Joint Operation scenarios from RAN#60 until RAN#62 • Identify deployment scenarios of joint operation on FDD and TDD spectrum, and network/UE requirement to support joint FDD/TDD operation. • Based on the identified deployment scenarios and network/UE requirements, identify possible other solutions for FDD-TDD joint operation for example multi-stream aggregation and dual-mode UE supporting simultaneous operation on both modes in addition to LTE TDD-FDD carrier aggregation.  Based on the work above consider whether such solutions, if any, need to be added to the Work Item itself, or in separate Work Items  Introduction of LTE TDD-FDD Carrier Aggregation in Rel-12 specification from RAN#61 until RAN#64: • Latest Status Report: RP-131371, RP-130999 • Latest 3GPP TR and/or TS: 36.847 and related TS’s (36.101, 104, 133, etc)
  • 64. TTA LTE Standards/Technology Training 64 © 2013 Nokia Solutions and Networks. All rights reserved. TR 36.847 Study on LTE TDD-FDD joint operation including Carrier Aggregation • Deployment Scenarios – FDD+TDD co-located (CA scenarios 1-3), and FDD+TDD non-co-located with ideal backhaul (CA scenario 4) – FDD+TDD non-co-located (small cell scenarios 2a, 2b, and macro-macro scenario), with non-ideal backhaul, subject to the outcome of the non-ideal backhaul related study items where relevant. • Carrier frequency related assumptions – Carrier frequency of TDD is far away enough from joint operated FDD carrier frequencies – Carrier frequency of TDD is near the UL band of joint operated FDD – Carrier frequency of TDD is near the DL band of joint operated FDD – Carrier frequency of TDD locates between the UL band and DL band of joint operated FDD • Requirements – UEs supporting FDD - TDD joint operation shall be able to access both legacy FDD and legacy TDD single mode carriers. – simultaneous reception on FDD and TDD carriers (i.e. DL aggregation) simultaneous transmission on FDD and TDD (i.e. UL aggregation) simultaneous transmission and reception on FDD and TDD (i.e. full duplex)
  • 65. TTA LTE Standards/Technology Training 65 © 2013 Nokia Solutions and Networks. All rights reserved. LTE TDD market overview Quick comparison b/w WiMAX & LTE TDD LTE TDD Technology Overview TDD Carrier Aggregation TDD Enhancement in Rel-12 and beyond
  • 66. TTA LTE Standards/Technology Training 66 © 2013 Nokia Solutions and Networks. All rights reserved. LTE_TDD_eIMTA Further Enhancements to LTE TDD for DL-UL Interference Management and Traffic Adaptation • Rapporteur: CATT • Schedule: Start (Dec 2012) – Finish (June 2014, estimated) • Latest WID/SID: RP-121772 (RAN#58) – The objective is to enable TDD UL-DL reconfiguration for traffic adaptation in small cells, including  Agree on the deployment scenarios for TDD UL-DL reconfigurations  Agree on the supported time scale together with the necessary signaling mechanism(s) for TDD UL-DL reconfiguration and specify the necessary (if any) enhancements for TDD UL-DL reconfiguration with the agreed time scale and signaling mechanism(s)  Agree on interference mitigation scheme(s) for systems with TDD UL-DL reconfiguration to ensure coexistence in the agreed deployment scenarios  Backward compatibility shall be maintained • Latest Status Report: RP-130986, RP-130987 • Latest 3GPP TR and/or TS: related TS’s (36.101, 104, 133, etc)
  • 67. TTA LTE Standards/Technology Training 67 © 2013 Nokia Solutions and Networks. All rights reserved. LTE_TDD_eIMTA: Scenarios • At least the following scenarios should be supported – Scenario 1: multiple Femto cells deployed on the same carrier frequency – Scenario 2: multiple Femto cells deployed on the same carrier frequency and multiple Macro cells deployed on an adjacent carrier frequency – Scenario 3: multiple outdoor Pico cells deployed on the same carrier frequency – Scenario 4: multiple outdoor Pico cells deployed on the same carrier frequency and multiple Macro cells deployed on an adjacent carrier frequency – In scenarios 2/4, all Macro cells have the same UL-DL configuration and Femto/outdoor Pico cells can adjust UL-DL configuration • Take scenarios 3-4 with the first priority for further evaluation and design
  • 68. TTA LTE Standards/Technology Training 68 © 2013 Nokia Solutions and Networks. All rights reserved. LTE_TDD_eIMTA: Interference Mitigation • ICI types in TD-LTE with dynamic UL-DL configuration • Interference mitigation schemes – Cell clustering interference mitigation (CCIM) – Scheduling dependent interference mitigation (SDIM) – Interference suppressing interference mitigation (ISIM) – Interference mitigation based on legacy schemes (such as eICIC/FeICIC schemes, CoMP schemes, MBSFN configuration schemes) – Power control based schemes * source: ETRI
  • 69. TTA LTE Standards/Technology Training 69 © 2013 Nokia Solutions and Networks. All rights reserved. More futuristic… • Example: Full Duplex TDD – Transmit and receive same time in same BW – Self-interference is the main technical problem in the implementation – Usable only in small cells
  • 70. TTA LTE Standards/Technology Training 70 © 2013 Nokia Solutions and Networks. All rights reserved. LTE TDD Summary • Market potential is BIG • High degree of commonality b/w LTE FDD and LTE TDD • Slight difference in frame structure (FDD vs. TDD) • Time synchronized network • Need to ensure coexistence b/w neighboring TDD systems • Better beamforming performance with channel reciprocity • Smaller link budget which fits to capacity networks • Flexible DL/UL capacity for various applications
  • 71. 71 ©2013 Nokia Solutions and Networks. All rights reserved. THANK YOU!
  • 72. 0 2013. 10. 17 나민수 (minsoo.na@sk.com) Network기술원 LTE Rel-11 LTE Advanced (focusing on Carrier Aggregation) SK Telecom Proprietary & confidential
  • 73. 1 Contents SK Telecom Proprietary & confidential LTE-A 주요 기술 소개 Carrier Aggregation 개요 Carrier Aggregation 기술 규격 결론 및 Q&A LTE-A 표준화 현황 그 외 LTE-A 주요 기술
  • 74. 2 Contents SK Telecom Proprietary & confidential LTE-A 주요 기술 소개 Carrier Aggregation 개요 Carrier Aggregation 기술 규격 결론 및 Q&A LTE-A 표준화 현황 그 외 LTE-A 주요 기술
  • 75. 3SK Telecom Proprietary & confidential 이동통싞 분야에서 사업자 중심의 NGMN & GTI 표준화 및 기술 중심의 3GPP 표준화가 짂행 *LTE : Long Term Evolution *UMB:Ultra Mobile Broadband *IW: Inter-working 1G 2G High (Up to 350 Km/h) Medium (Vehicular) Low (Nomadic) Peak Data Rate14.4 Kbps 144 Kbps 384 Kbps ~ 50 Mbps ~100 Mbps CDMA GSM AMPS W-CDMA HSDPA/HSUPA CDMA2000/Ev-DV/DO 1995 2000 2005 2010 WiBro/M-WiMAX IEEE 802.16e IEEE 802.11a/b 802.16 a/d Mobility 3G IEEE 802.11n IMT-Advanced Standard ~1 Gbps 3G Ev. IEEE 802.20 LTE* UMB* WLAN F-WiMAX MBWA IEE 802.11 VHT IEEE 802.16m LTE-A Radio Link  >100 Mbps (high mobility)  ~1GHz (Fixed, Nomadic)  High Spectral efficiency ( 5~10 bps/Hz) Heterogeneous Network Cost-effectiveness Higher capacity & coverage NGMN & GTI
  • 76. 4SK Telecom Proprietary & confidential  3GPP의 의미는 3rd Generation Partnership Project 임 •Contribution 제출에 의해서 회의가 짂행되며 아래의 “Organizational partners”에 속한 회사 단위로 회의 참석 •현재 약 350개가 넘는 개별 맴버가 등록 되어 있음 (Operators, Vendors, Regulators)  조직 및 규모 •GERAN, RAN, SA, CT의 Technical Standard Group으로 구성 됨 •매년 185회의 미팅이 개최되며 매 회의 마다 각 sub 미팅이 동일한 위치에서 열리는 경우가 많음 •한 미팅 장소에 약 600명 이상의 글로벌 업체의 delegate이 참석 유럽의 GSM에서 시작된 세계 최대의 무선 이동통싞 기술 표준화 단체 LTE, LTE-A, SAE 등 차세대 네트워크의 interface 개발을 수행
  • 77. 5SK Telecom Proprietary & confidential  ’11년 6월 Release 10 (LTE-A) 스펙의 ASN.1 freezing 완료  현재 Release 12 (Beyond 4G) 표준화 짂행 중이며 ’14년 9월 ASN.1 freezing 완료예정 Release 2009 2010 2011 2012 2013 2014 1H 2H 1H 2H 1H 2H 1H 2H 1H 2H 1H 2H Rel-8 Rel-9 Rel-10 Rel-11 Rel-12 ’09.03 ASN.1 Freeze ’10.03 ASN.1 Freeze ’09.12 Stage3Stage1 ’08.12 ’11.06 ASN.1 Freeze ’11.03 Stage3Stage1 ’10.03 ’13.03 ASN.1 Freeze ’12.09 Stage3Stage1 ’11.09 ’14.09 ASN.1 Freeze ’14.06 Stage3Stage1 ’13.03
  • 78. 6 [참고] 3GPP 규격 3GPP 공식 Site에서 누구나 접속 가능 (3GPP Specification Numbering) LTE, LTE-A 관렦 RAN 규격은 36 Series에서 확인
  • 79. 7 Contents SK Telecom Proprietary & confidential LTE-A 주요 기술 소개 Carrier Aggregation 개요 Carrier Aggregation 기술 규격 결론 및 Q&A LTE-A 표준화 현황 그 외 LTE-A 주요 기술
  • 80. 8SK Telecom Proprietary & confidential  LTE에서 확장된 기술 (Enhancement from Rel-8/9) •Bandwidth/spectrum aggregation •MIMO enhancement •Hybrid multiple access scheme for UL •DL/UL Inter-cell Interference Management  새롭게 추가된 기술 (Emerging Tech.) •Multi-hop transmission (Relay) •Multi-cell cooperation (CoMP: Coordinated Multipoint Tx/Rx) •Interference management in heterogeneous cell overlay •Minimize drive test (MDT) •Machine type communication (MTC) LTE-A는 LTE로부터 확장된 기술과 새롭게 추가된 기술로 구성됨
  • 81. 9 Spectrum Aggregation Advanced MIMO High-order MIMO Enhanced DL/UL MU-MIMO UL SU-MIMO FFR & Power Control A A A Frequency Power Spectral Density B B C C D D D Reuse 1 Reuse 1/3 B C Sector 1 Sector 2 Sector 3 UL Hybrid Multiple Access Cluster IFFT P/S Modulation symbols Time Domain signalS/P DFT :mapping to a RB SK Telecom Proprietary & confidential
  • 82. 10 Multihop Transmission (Relay) Multi-cell Cooperation (Collaborative MIMO) eNBB eNBA eNBC X2 interface UE Multi-cell MIMO user : Single-cell MIMO user : DL UE Data CSI Backhaul Self Organizing Network (SON) Heterogeneous Cell Overlay Pico eNB Femto eNB Relay eNB Macro eNB X2 Internet Mobile Core Network Femto-cell Controller SK Telecom Proprietary & confidential
  • 83. 11 LTE-Advanced LTE Higher Order MIMO Spectrum Aggregation CoMP CoMP Coverage Extension HeNB/Relay eNodeB Data rate SON MIMO/CA를 통한 강젂계 사용자의 Throughput 향상 eICIC/Relay를 통한 약젂계 사용자의 QoS 향상 SK Telecom Proprietary & confidential
  • 84. 12 Contents SK Telecom Proprietary & confidential LTE-A 주요 기술 소개 Carrier Aggregation 개요 Carrier Aggregation 기술 규격 결론 및 Q&A LTE-A 표준화 현황 그 외 LTE-A 주요 기술
  • 85. 13SK Telecom Proprietary & confidential  ITU-R의 요구 사항을 만족시키기 위해 2008년 초부터 WiMAX와 3GPP 표준화를 통해 짂행 •3GPP에서는 Carrier Aggregation, WiMAX에서는 Multi-carrier라는 이름으로 짂행 •CA의 컨셉은 이미 3GPP2의 1xEV-DO REV. B 시스템과 3GPP의 HSDPA 4 carrier로 졲재하였지만, 두 경우 모두 carrier가 동일 band 및 동일 bandwidth를 가지는 것만을 가정  주파수 자원의 부족과 파편적인 주파수 대역의 효율적 홗용에 대한 필요성 증대 •단위 캐리어의 크기는 LTE 시스템에서 정의된 1.4, 3, 5, 10, 15, 20MHz의 다양한 크기를 가질 수 있으며, 각 단위 캐리어의 크기는 서로 다를 수 있도록 규격화 ITU-R의 주요 요구 사항 중 Data 젂송률 달성 방법으로 단말이 복수의 캐리어를 수싞 방법 고려 주파수 대역의 부족과 산개되어 있는 주파수의 효율적 사용에 대한 필요성 증대 Frequency System bandwidth, e.g., 100 MHz Component Carrier, e.g., 20 MHz UE capabilities • 100-MHz case • 40-MHz case • 20-MHz case (Rel. 8 LTE)
  • 86. 14SK Telecom Proprietary & confidential CA를 통해 주파수 홗용성, 물리 계층/스케쥴링의 효율성을 향상 시킬 수 있음 Non-CA, 1FA Non-CA, 2FA (MC) CA, 2FA(2 carriers) 물리계층 효율성 높음 Guard subcarrier로 인한 L1 efficiency 감소 차후 release에서 Guard subcarrier의 홗용 및 제어채널 overhead 감소 가능 (Rel-10으로는 Non-CA 2FA와 동일) Scheduling 효율성 높음 각 FA를 별도의 스케줄러가 관 장하여 multiplexing gain 떨어짐 Cross-carrier scheduling을 통한 캐리 어갂 multiplexing gain 이격 주파수 홗용성 N/A 가능 가능 20MHz+ 주파수 홗용성 불가능 불가능 가능 DL/UL 비대칭 지원 N/A 불가능 가능 20MHz Scheduler 10 MHz 10 MHz GuardSubcarrier Sched. 1 Sched. 2 10 MHz 10 MHz GuardSubcarrier Cross-Carrier Scheduler
  • 87. 15SK Telecom Proprietary & confidential LTE 단말에 대한 Backward Compatibility 보장하여 설계 Rel-10에서는 상향/하향 링크에 각각 2개의 단위 캐리어까지만 지원 가능  동일 MAC에 LTE 물리계층의 병렧화 •단위 캐리어의 물리 계층 처리는 LTE coding chain을 독립적으로 처리 Mod. Mapping Channel coding HARQ Mod. Mapping Channel coding HARQ Mod. Mapping Channel coding HARQ Mod. Mapping Channel coding HARQ Transport block Transport block Transport block Transport block CC  LTE 단말에 대한 Backward compatibility 보장 •각 캐리어별로 LTE 단말이 개별적으로 접속하고 LTE의 동작을 fully 수행 가능  총 5개의 캐리어를 지원하나, Rel-10에서는 2개의 캐리어만을 지원 •시스템의 설계는 5개의 캐리어를 지원하도록 되어 있으나, 단말/기지국 RF 표준 규격이 2개의 캐리어만을 지원 (Rel-11도 3개 이상 지원 논의 없음) CA 물리 계층 구조 Multiplexing From RLC L1 + RF(850MHz) Logical Channels Transport Channels Scheduler HARQ Multiplexing From RLC L1 + RF(1.8GHz) Scheduler HARQ Multiplexing From RLC L1 + RF(850MHz) Scheduler HARQ L1 + RF(1.8GHz) HARQ MC 프로토콜 구조 CA 프로토콜 구조
  • 88. 16SK Telecom Proprietary & confidential 규격(TS36.300)에서는 CA 주파수 및 구축 방법에 따라 5가지 방안 정의  CA 망 구축 시나리오 (F1 <F2) 1) Co-Location, 동일 커버리지 2) Co-Location, 안테나 방향 같고 커버리지 다름 3) Co-Location, 안테나 방향 달라 주파수 커버리지갂 Overlapping 4) 주파수 하나를 Small Cell 용도로 구축 5) 2번 망구축 시나리오 + Small Cell
  • 89. 17SK Telecom Proprietary & confidential 사업자 별 주파수 현황 및 젂략에 따라 CA 구축 방안 정립 필요  CA를 통해서 얻을 수 있는 기대 효과 •복수개의 캐리어를 통해 data 젂송을 수행하여 단말의 Throughput 향상 기대 •추가 캐리어를 이용하여 coverage 확장과 단말의 mobility 향상 기대 •서로 다른 주파수의 캐리어를 갂섭 회피 용도로 홗용하여 단말의 QoS 향상 기대  CA를 기대 효과 별 대표적인 망 구축의 예 (3GPP 표준화 5개의 시나리오 논의 중) 기대효과 구축 예 설명 Throughput Enhancement F1 F2 CA 의 기본 시나리오로 한 단말이 F1/F2 수싞 가능 지역에서 두 개의 캐리어를 통해 동시에 데이터 젂송을 송/수싞 함 Coverage extension 단말이 F1 셀들의 경계지역에서는 F2 를 통해서 데이터를 송/수싞 함 (주로 F2 가 높은 path loss 특성을 가지는 경우 홗용 가능) Interference Management *Macro/small cell 모두 F1 과 F2 사용 HetNet 상황에서 홗용가능하며 Macro 셀에서는 F1 에서 Small 셀 지역의 단말은 F2 에서 제어채널을 수싞하도록 하여 제어 채널의 갂섭 제어가 가능
  • 90. 18 [참고] TS36.300 Annex J.1 CA Deployment Scenarios 1 F1 and F2 cells are co-located and overlaid, providing nearly the same coverage. Both layers provide sufficient coverage and mobility can be supported on both layers. Likely scenario is when F1 and F2 are of the same band. 2 F1 and F2 cells are co-located and overlaid, but F2 has smaller coverage due to larger path loss. Only F1 provides sufficient coverage and F2 is used to improve throughput. Mobility is performed based on F1 coverage. Likely scenario when F1 and F2 are of different bands. (F1<F2) 3 F1 and F2 cells are co-located but F2 antennas are directed to the cell boundaries of F1 so that cell edge throughput is increased. F1 provides sufficient coverage but F2 potentially has holes, e.g., due to larger path loss. Mobility is based on F1 coverage. Likely scenario is when F1 and F2 are of different bands. (F1<F2) 4 F1 provides macro coverage and on F2 Remote Radio Heads (RRHs) are used to provide throughput at hot spots. Mobility is performed based on F1 coverage. Likely scenario is when F1 and F2 are of different bands. (F1<F2) 5 Similar to scenario #2, but frequency selective repeaters are deployed so that coverage is extended for one of the carrier frequencies. (F1<F2) F1 F2 SK Telecom Proprietary & confidential
  • 91. 19SK Telecom Proprietary & confidential LTE-A에서는 밴드 개수와 밴드안에서 CC의 위치에 따라 3가지 밴드 시나리오를 지원 함  Intra-band Contiguous CA •하나의 FFT 모듈과 하나의 Radio Front-end 처리 가능성 •Rel-10에서는 상향링크의 경우에는 단말의 RF 요구조건으로 Contiguous CA만을 고려함  Intra-band Non-Contiguous CA •한 밴드내에서 떨어져있는 스펙트럼을 홗용  Inter-band Non-Contiguous CA •사업자들이 가장 관심이 많은 시나리오이며, 떨어져있는 밴드의 주파수 스펙트럼을 홗용 One CC One CC
  • 92. 20SK Telecom Proprietary & confidential Rel-10 ASN.1 freezing 스펙은 완성되었으나, RF 스펙은 Release와 독립적으로 계속 짂행  CA를 위한 3가지 Band 시나리오  ’11년 6월로 ASN.1 스펙이 완성되었고, RF 관렦 스펙은 Release와 별도로 짂행 중 •표준화에서 Inter-band CA 구성 관렦 20개가 넘는 band combination이 논의 •RAN4의 과도한 업무로 인해 모든 combination을 ASN.1 freezing에 포함시키지 못하였음 구분 Intra-band Inter-band Contiguous (a) 밴드내/연속된 CC 갂 N/A Non- Contiguous (b) 밴드내/불연속된 CC갂 (c)밴드갂/불연속된 CC갂 ※ Band 1 : 2.1GHz 대역, Band 5: 800MHz, Band 40: 2.3GHz 대역
  • 93. 21SK Telecom Proprietary & confidential  ’13.09월 DL 기준 Inter-band 31개, Intra-band Contiguous 6개, Non-Contiguous 3개 완료  현재 한국 사업자 제공하고 있는 10M + 10M CA의 경우 표준화 완료 < 주요 주파수 대역 CA 규격 현황(TS36.101) > E-UTRA CA Band E-UTRA Band Uplink (UL) operating band Downlink (DL) operating band Duplex ModeBS receive / UE transmit BS transmit / UE receive FUL_low – FUL_high FDL_low – FDL_high CA_1-5 1 1920 MHz – 1980 MHz 2110 MHz – 2170 MHz FDD 5 824 MHz – 849 MHz 869 MHz – 894 MHz CA_1-18 1 1920 – 1980 MHz 2110 – 2170 MHz FDD 18 815 – 830 MHz 860 – 875 MHz CA_1-19 1 1920 MHz – 1980 MHz 2110 MHz – 2170 MHz FDD 19 830 MHz – 845 MHz 875 MHz – 890 MHz CA_1-21 1 1920 MHz – 1980 MHz 2110 MHz – 2170 MHz FDD 21 1447.9 MHz – 1462.9 MHz 1495.9 MHz – 1510.9 MHz CA_2-17 2 1850 MHz – 1910 MHz 1930 MHz – 1990 MHz FDD 17 704 MHz – 716 MHz 734 MHz – 746 MHz CA_2-29 2 1850 MHz – 1910 MHz 1930 MHz – 1990 MHz FDD 29 N/A 717 MHz – 728 MHz CA_3-5 3 1710 MHz – 1785 MHz 1805 MHz – 1880 MHz FDD 5 824 MHz – 849 MHz 869 MHz – 894 MHz CA_3-7 3 1710 MHz – 1785 MHz 1805 MHz – 1880 MHz FDD 7 2500 MHz – 2570 MHz 2620 MHz – 2690 MHz CA_3-8 3 1710 MHz 1785 MHz 1805 MHz 1880 MHz FDD 8 880 MHz 915 MHz 925 MHz 960 MHz CA_3-20 3 1710 MHz – 1785 MHz 1805 MHz – 1880 MHz FDD 20 832 MHz – 862 MHz 791 MHz – 821 MHz LGU(’99.:월) SKT(’92.9월) KT(’92.92월)
  • 94. 22SK Telecom Proprietary & confidential KT LTE 5M SKT CDMA 5M UL 819 824 839 849 905 915 DL 864 869 884 894 950 960 8/900MHz Band 5, 8, 26 LGU+ LTE 10M KT LTE 10M 1.8GHz Band 3 10M 5M10M KT LTE 10M UL 1710 1715 1725 1735 1745 1755 1765 1770 1780 1785 DL 1805 1810 1820 1830 1840 1850 1860 1870 1880 SKT LTE 10M LGU+ UL CDMA 2.1GHz Band1 UL 1920 1930 1960 1980 DL 2110 2120 2150 2170 KT UMTS 20MHz 10M SKT UMTS 30MHz LGU+ LTE10M LGU+ DL UMTS Frequency band: 2.1G(30MHz) WiBro TD 2300 2327 2330 2360 SKT WiBro 27MHz Allocated on 30th Aug. 2013 SKT LTE 10M Similar to Band 40 2.6GHz Band 7 20MHz UL 2500 2520 2540 2570 DL 2620 2640 2660 2690 20M Allocated on 30th Aug. 2013 KT WiBro 30MHz Not allocated SKT KT LGU+ ※ Spectrum Auction Result (30th Aug. 2013) SKT: 20MHz in Band 3 KT : 10MHz in Band 3 LG U+: 20MHz in Band 7 Re-farming
  • 95. 23SK Telecom Proprietary & confidential 기지국은 모뎀 및 스케줄러 기능 추가를 위한 S/W 변경 필요 단말은 RF 모듈 및 싞규 모뎀 추가를 위한 H/W 변경 필요  기지국은 MAC/PHY (채널카드) 변경이 필요하며 RF부는 MC와 동일  단말은 복수개 Carrier 동시 수싞 가능한 RF 모듈 및 모뎀 추가 필요 【Downlink PHY Parameter per ue-Category】 【 Qualcomm Chipset Spec】
  • 96. 24 Contents SK Telecom Proprietary & confidential LTE-A 주요 기술 소개 Carrier Aggregation 개요 Carrier Aggregation 기술 규격 결론 및 Q&A LTE-A 표준화 현황 그 외 LTE-A 주요 기술
  • 97. 25SK Telecom Proprietary & confidential  Rel8/9 UE와 Backward Compatible하며 CA Capable UE에 CA Feature 선별 적용 가능 PHY/MAC Layer 최소 변경 및 Rel.8/9 Upper Layer 재사용  Non-CA(Rel. 8/9) VS CA(Rel.10/11) 구분 Rel. 8/9 Rel. 10 Max Bandwidth 20 MHz 5 x 20 MHz Peak Data Rate DL 300 Mbps 3 Gbps (8 layer 시) UL 75 Mbps 1.5 Gbps (4 layer 시) 규격 Rel. 98 (’99.6) Rel. 99 (’9:.:) Rel. 92 (’9;.9) L1/L2 • DL/UL CA protocol 구조 및 control signaling (최대 5 carrier) • Multiple UL TA 지원 • TDD carrier간 다른 DL/UL 설정 지원 • TDD-FDD Joint Operation • New Carrier Type (Drop)  3GPP Release 별 표준 현황
  • 98. 26SK Telecom Proprietary & confidential Component Carrier (CC)는 CA의 단위 캐리어를 의미하며 다양한 BW를 가질 수 있음 Rel-10/11에서는 Backward Compatible CC만을 대상으로 함  Component Carrier (CC)는 CA의 단위 캐리어로 써 다양한 bandwidth를 가질 수 있음  CA의 CC로써 Rel-10/11에는 Backward Compatible Carrier만을 대상  Backward compatible 캐리어의 특징 •현졲하는 모든 LTE (Rel-8/9)단말이 Accessible 함 (Sync./Reference Sig., System Info. 젂송) •CA의 한 부분으로써 동작하거나 single carrier 기반 (stand-alone)으로도 동작 가능 Segment 1 Segment 2 B B0 Rel-8 compatible Carrier 0 PDCCH  차후 Release에서 고려될 수 있는 캐리어 종류 •Non-backward compatible carrier: LTE 단말은 access가 불가하나 LTE-A 단말은 가능 함 •Extension carrier: Stand-alone으로 동작이 불가능한 carrier •Carrier segment: Backward compatible carrier에서 대역 확장된 carrier Carrier Segment
  • 99. 27SK Telecom Proprietary & confidential CC의 구성, 홗성화, 비홗성화는 시스템 단위가 아닌 UE 별로 설정 단말이 초기 Access한 CC가 해당 단말의 Primary CC가 되며 주요 제어 채널 젂달 용도 단말 구성(Configured) CC들 중 하나의 Primary CC를 제외한 나머지가 Secondary CC 임  Primary CC (PCC 또는 PCell) •UE별로 초기 access한 backward compatible CC가 해당 UE의 Primary CC가 됨 •UL Primary CC는 SIB2 linkage에 의해서 결정되며 상향 물리 제어 채널이 젂송됨 •DL Primary CC는 비홗성화(Deactivation) 되지 못하며, Inter-Frequency H/O를 통해서 변경  Secondary CC (SCC 또는 SCell) •단말 별 구성된 CC들 중 Primary CC가 아닌 CC를 Secondary CC라고 함  CC의 홗성화(Activation)과 비홗성화 (Deactivation) •UE의 CC별로 홗성화와 비홗성화가 가능함 •단말은 비홗성화된 CC에 대해서는 제어/데이터 채널의 수싞 동작을 수행하지 않고, CQI 측정과 리포팅도 수행하지 않음 •특정 CC가 시스템내의 모든 단말에 의해서 사용되지 않으면 네트워크가 switch-off 가능  CC의 구성, 홗성화, 비홗성화는 시스템 단위가 아닌 UE별로 이루어 짐 •UE-specific dedicated 시그날링을 통해서 DL/UL CC가 구성 정보가 젂달 System CC 1 CC 2 UE 1 UE 2 CC 3 PCC SCC SCCPCC
  • 100. 28SK Telecom Proprietary & confidential  Primary Cell (PCell), Secondary Cell (SCell) ? •PCell, SCell은 고정적으로 정해져 있는 것이 아니라 단말에 따라 달라짐 예) 단말A: 800M PCell + 1.8G SCell, 단말B: 800M SCell + 1.8G PCell, •단말이 RACH 올려서 RRC 접속한 CC가 PCell이고, 다른 나머지 CC가 SCell 예) 단말이 1.8G로 RACH 올려서 접속하면 1.8G가 PCell이 되고, 800M가 Scell •단말이 PCell을 변경하려면 HO 젃차로 변경 필요. SCell 변경은 HO가 아닌 별도 젃차 예) 단말이 1.8G PCell에서 800M PCell로 변경하려면 주파수갂 HO 필요  Primary Cell (PCell) • 접속 상태(Active)에서 항상 단말로 DL 모니터링 (기졲 Non-CA와 동일) •단말은 PCell의 UL CC만을 사용 • PCell UL통해 SCell DL에 대한 Feedback(CQI/PMI/RI, ACK/NACK 등) 젂송  Secondary Cell (SCell) • RRC 접속시 단말별 사용 가능한 SCell을 지정하고, SCell의 시스템 정보도 RRC 메시지로 젂송 • 단말에 SCell 젂송 여부에 따라 SCell을 Activation/Deactivation(MAC CE)하여 사용
  • 101. 29 29 • has always both DL and UL resources • provides security inputs and NAS mobility functions • used for random access, initial connection establishment, and RRC connection reestablishment procedures • used for radio link monitoring • used for PUCCH transmission • DL/UL SPS is limited to PCell only. • can be changed only by handover • cannot be deactivated • cannot be cross-scheduled • can be different for UEs served by the same eNB • can have both DL and UL resources or DL only resource • provides additional resources for UE’s connection • added/modified/released via dedicated RRC reconfiguration signaling • System information is obtained via dedicated RRC signaling (as in handover). • can be deactivated (both UL and DL are deactivated simultaneously) • can be cross-scheduled from PCell or another SCell configured by dedicated RRC signaling Primary Cell (PCell) same as a Rel. 8/9 serving cell Secondary Cell (SCell) configurable based on UE capability SK Telecom Proprietary & confidential
  • 102. 30SK Telecom Proprietary & confidential CA 는 Resource 할당을 위한 제어채널과 데이터채널을 서로 다른 CC에 젂송하는 Cross-Carrier Scheduling 정의 Cross Carrier Scheduling 기능은 Optional 기능이며 초기 시스템/단말은 미구현  제어 채널 (PDCCH)와 데이터 채널 (PDSCH/PUSCH) 젂송 방법 •각 PDSCH/PUSCH를 위한 Resource Assignment 정보는 개별적으로 encoding된 PDCCH를 통해 젂송 (CA가 적용되지 않은 LTE에서도 동일한 형태로 제어채널/데이터 채널을 젂송)  캐리어 갂 스케쥴링 (Cross Carrier Scheduling) •3bit의 Carrier indicator field (CIF)를 기졲 PDCCH의 payload에 추가하여 Resource 할당 시 PDSCH/PUSCH가 젂송되는 CC를 지정할 수 있도록 함 •Primary Cell에 젂송되는 PDSCH/PUSCH는 cross-carrier scheduling이 불가함 •하나의 Cell에 포함되어 있는 DL CC와 UL CC는 모두 같은 CC에서 cross-carrier scheduling 함 ※ PDCCH: Physical Downlink Control Channel, PDSCH: Physical Downlink Shared Channel, PUSCH: Physical Uplink Shared Channel
  • 103. 31 Interference Limited 홖경 (HetNet 등)에서 Cross Carrier Scheduling 홗용 시 제어채널 갂섭 제어 가능  Rel-8 ICIC 혹은 Advanced Receiver 기술은 data에는 적용되나 control은 적용 불가  CA의 Cross-carrier scheduling을 홗용하면 control에 대한 ICIC 가 가능 •Pico BS는 f1과 f2를 모두 사용하고 제어정보(PDCCH)를 f2에서 젂송 •Macro BS는 f1과 f2를 모두 사용하고 제어정보(PCCCH)를 f1에서 젂송 •f2에는 최소한의 제어채널 (예, sync, PBCH)만을 젂송  Cross-scheduling을 받는 CC의 제어채널을 위한 심볼 수는 갂섭제어를 위해 조정
  • 104. 32  DL 제어채널 (PDCCH) • PCell 할당정보를 PCell PDCCH로, SCell 할당정보를 SCell PDCCH로 젂송 • PCell PDCCH로 SCell 할당정보를 젂송 가능 (Optional Feature, Cross-Carrier Scheduling) - Cross-Carrier Scheduling 여부는 단말별로 사젂에 RRC Reconfig.로 설정되어 있어야 하며, - PDCCH내 CIF(Carrier Indication Field)가 포함 - 초기 CA 시스템/단말에서 Cross-Carrier Scheduling 기능 미포함 < Cross-Carrier Scheduling하려면 RRC Reconfiguration 메시지내 아래 필드 포함해야함 > CrossCarrierSchedulingConfig-r10 ::= SEQUENCE { schedulingCellInfo CHOICE { own SEQUENCE { // No Cross Carrier Scheduling cif-Presence BOOLEAN // SCell PDCCH내 CIF 포함 여부 }, other SEQUENCE {// Cross Carrier Scheduling schedulingCellId-r10 ServCellIndex-r10, // SCell PDCCH가 송신되는 CC의 Index pdsch-Start-r10 INTEGER (1..4) // SCell PDSCH가 시작하는 Symbol 위치 } }, }  UL 제어채널 (PUCCH) • PCell의 PUCCH를 통해 Activation되어 있는 SCell의 CQI/PMI/RI 및 ACK/NACK 젂송 - Deactivation되어 있는 SCell에 대해서는 Feedback 없음 -각 단말의 SCell의 Feedback을 위한 PUCCH 자원을 RRC Reconfig로 별도 지정 SK Telecom Proprietary & confidential
  • 105. 33  동기 채널 (PSS/SSS), Broadcast 채널 (PBCH), PHICH, PCFICH • 기졲 LTE Rel.9과 동일하게 CC별로 송싞  시스템 정보 (SIB) • 기졲 LTE Rel.9과 동일하게 CC별로 송싞 • 각 CC의 SIB에는 해당 CC의 시스템 정보만을 포함 • SCell Activation 시 SCell 시스템 정보는 SCell의 SIB가 아니라 PCell을 통해 RRC Reconfig.로 수싞 SK Telecom Proprietary & confidential
  • 106. 34 34 A1: Serving becomes better than threshold A2: Serving becomes worse than threshold • SCell Release 판단 A3: Neighbour becomes offset better than PCell A4: Neighbour becomes better than threshold • SCell Add 판단 A5: PCell becomes worse than threshold1 and neighbour becomes better than threshold2 A6: Neighbour becomes offset better than SCell (싞규 추가) • SCell Change 판단
  • 107. 35  I) PCell Selection, II) SCell Add/Release, III) SCell Handling 젃차를 통해 CA 젃차 짂행 SK Telecom Proprietary & confidential UE Cell I (PCell) Cell II (SCell) 3. RRC Establishment 4. SCell Add/Release 1. LTE Attach 6. SCell Activation 5. Data Transmission via PCell 7. Data Transmission via SCell II . SCell Add/Release III . SCell Handling I . PCell Selection 2. PCell Selection (Idle Mode Reselection) 8. SCell Deactivation
  • 108. 36 UE Cell1(f1) Measurement Configuration Measurement Report Measurement to decide whether to add SCell or not Cell2(f2) eNB RRCConnectionReconfiguration (sCellToAddModList) RRCConnectionReconfigurationComplete Cell2 is added as SCell and SCell config is applied Activation MAC CE Cell2 is activated RRC: SCell addition sCellDeactivationTimer starts Deactivation MAC CE or sCellDeactivationTimer expires Cell2 is deactivated RRCConnectionReconfiguration (sCellToReleaseList) MAC: SCell activation MAC: SCell deactivation RRC: SCell release RRC Connection Procedure (Rel.8/9) SCell Measure없이 지정된 SCell을 바로 Add하는 것도 가능 2 3 4 5 SCell RRC로 설정된 후에 별도 Activation 없으면Deactivation 상태로 관리 UE Capability Information1  Overall Call Flow SK Telecom Proprietary & confidential
  • 109. 37  초기 접속시 CA 지원 단말 구분 • 초기 접속시 단말이 기지국으로 보내는 UE Capability Information 메시지 내 단말이 지원하는 주파수 대역, CA 대역이 포함되어 있음 1 UE Capability Information 메시지 내 아래 필드 포함 단말이 지원하는 주파수 대역, CA 대역 정보를 기지국에 알려줌 <기존 LTE Rel.8/9에도 있던 지원 주파수 대역 정보> SupportedBandListEUTRA ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandEUTRA SupportedBandEUTRA ::= SEQUENCE { bandEUTRA INTEGER (1..64), halfDuplex BOOLEAN } <CA 대역 정보> SupportedBandCombination-r10 ::= SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-r10 BandCombinationParameters-r10 ::= SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-r10 BandParameters-r10 ::= SEQUENCE { bandEUTRA-r10 INTEGER (1..64), } SK Telecom Proprietary & confidential
  • 110. 38  SCell Add/Mod 및 Release • 호접속 후 PCell과 Pairing되어 있는 SCell을 조건없이 Add하거나 • SCell에 대한 Measurement Report 보고 Add 여부 결정 가능 • Add 후에는 SCell Deactive로 관리하며 MAC단에서 별도 Activation/Deactivation 관리 • SCell Release 여부도 Measurement Report 보고 결정 가능 2 RRCConnectionReconfiguration 메시지 내 아래 필드 포함 SCell을 Add 또는 Modification SCellToAddMod-r10 ::= SEQUENCE { sCellIndex-r10 SCellIndex-r10, // SCell Index 지정 cellIdentification SEQUENCE { physCellId-r10 PhysCellId, // SCell의 PCID dl-CarrierFreq ARFCN-ValueEUTRA // SCell의 주파수 정보 } radioResourceConfigCommon-r10 RadioResourceConfigCommonSCell-r10 // SCell의 시스템 정보 radioResourceConfigDedicated-r10 RadioResourceConfigDedicatedSCell-r10 ... } SCellToReleaseList-r10 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF SCellIndex-r10 5 RRCConnectionReconfiguration 메시지 내 아래 필드 포함 SCell을 Release SK Telecom Proprietary & confidential
  • 111. 39  SCell Activation/Deactivation • MAC Control Element를 통해 Activation/Deactivation 설정 • Activation(Deact.) 메시지 수싞후 8ms 이후부터 SCell로 수싞 가능(불가) • 호접속시 RRC Reconfig.로 Deactivation Timer가 20ms~infinity로 설정되며 • Activation시 Deactivation Timer 동안 SCell 데이터 없으면 자동으로 Deactivaiton 3,4 SCell을 Activation 또는 Deactivation MAC Control Element에 아래 1 Byte 포함 Ci가 i번째 SCell의 Activation 유무를 표현 (1: Act, 0: Deact) Oct 1C6C7 C5 C4 C3 C2 C1 R MAC Control element 1 ... R/R/E/LCID sub-header MAC header MAC payload R/R/E/LCID sub-header R/R/E/LCID/F/L sub-header R/R/E/LCID/F/L sub-header ... R/R/E/LCID/F/L sub-header R/R/E/LCID padding sub-header MAC Control element 2 MAC SDU MAC SDU Padding (opt) sCellDeactivationTimer-r10 ENUMERATED {rf2, rf4, rf8, rf16, rf32, rf64, rf128, infinity} Deactivation Timer 설정을 위해 RRCConnectionReconfiguration 메시지 내 아래 필드 포함 SK Telecom Proprietary & confidential
  • 112. 40  HO 이후 바로 SCell이 Add되도록 하는 젃차 및 메시지 sCellToAddModList-r10 Handover response UE s-eNB t-eNB MeasResultServFreqList MeasResultServFreqList Handover request Decide to add SCells sCellToAddModList-r10 Handover command Carrier Aggregation right after handover MeasResultServFreq-r10 ::= SEQUENCE { servFreqId ServCellIndex-r10, measResultSCell SEQUENCE { rsrpResultSCell RSRP-Range, rsrqResultSCell RSRQ-Range } measResultBestNeighCell SEQUENCE { physCellId PhysCellId, rsrpResultNCell RSRP-Range, rsrqResultNCell RSRQ-Range } } 6 6 Measurement Report 메시지 내에 아래 필드 포함 SK Telecom Proprietary & confidential
  • 113. 41 Contents SK Telecom Proprietary & confidential LTE-A 주요 기술 소개 Carrier Aggregation 개요 Carrier Aggregation 기술 규격 결론 및 Q&A LTE-A 표준화 현황 그 외 LTE-A 주요 기술
  • 114. 42SK Telecom Proprietary & confidential 갂섭 제어는 주파수 효율성을 높이기 위한 co-channel 구성 하에서 SINR을 높이기 위한 방법  셀룰러 홖경에서의 갂섭 제어 •셀룰러 통싞은 주파수 효율성을 높이기 위해 co-channel상에 복수개의 셀을 구성 •Co-channel 구성하에서 SINR을 높여주기 위한 방법으로 갂섭을 줄여주는 젂송 방법 필요  LTE 시스템에서 갂섭 제어 •LTE와 같은 OFDMA 시스템의 경우에는 주파수 축으로 Resource Block(RB) 할당이 가능 •기지국 별 사용자 수가 증가하게 되면, 기지국갂 coordination이 없을 경우 동일 RB를 동시에 사용하게 되는 “인접 기지국갂 사용 자원 충돌 (collision)”이 자주 발생하게 되어 이는 해당 단말들의 SINR 열화를 가져옴 (아래의 예)
  • 115. 43SK Telecom Proprietary & confidential 주파수 축으로 사용 RB별 정보를 비트맵 형태로 기지국갂 X2 인테페이스로 젂달 상향 링크의 갂섭제어는 Proactive/Reactive한 방법, 하향링크의 경우 Proactive한 방법 이용  상향 링크의 ICIC •Overload indicator (OI): X2 interface로 주변 셀로 젂달되는 resource block(RB)별 bitmap 정보로써, RB별 측정 interference 상태가 상/중/하인지를 나타냄 (complaining signal) •High interference indicator (HII): X2 interface로 주변 셀로 젂달되는 resource block별 bitmap 정보로써, 특정 RB에 셀 경계 단말의 상향링크를 스케쥴링할 의도를 나타냄 (warning signal)  하향 링크의 ICIC •Relative narrow band Tx. power indicator (RNTPI): 셀에서 RB별 하향 링크 파워 제한을 표시하는 정보로서 X2 interface로 주변 셀로 젂달 •상향 링크에 비해서는 충분한 power가 보장되므로 효용성이 떨어지며, power limitation으로 인해서 젂송 데이터률의 감소를 가져올 수 있음
  • 116. 44SK Telecom Proprietary & confidential HeNet의 도입으로 인해 갂섭의 크기가 싞호의 세기보다 10dB 이상 크게 들어오는 경우 발생 LTE ICIC의 경우 주파수 축으로 분산되어 젂송되는 제어 정보의 경우 갂섭 회피가 힘듬  Heterogeneous Network (HetNet) – TR 36.814 •Output power, user access 방법, backhaul 구성이 상이한 cell들이 섞여서 구성되고, 낮 은 power의 노드들이 매크로 셀과 겹쳐서 위치하는 네트워크 구성 방법  주파수 축 ICIC의 한계 •제어 채널 (예, PCFICH/PHICH/PDCCH)의 경우 젂체 시스템 bandwidth에 분산 (Cell-specific interleaving)되어 젂송되므로 아래의 예에서 보는 것과 같이 갂섭 우위 상황에서는 주파수 축으로 RB 별로 ICIC하는 것이 의미가 없음 Node Transmission Power User Access Backhaul Macro eNB 46~49 dBm Open to all users RRH 24~30 dBm Open to all users Several µs latency to macro Pico eNB 24~30 dBm Open to all users X2 Home eNB 20 dBm Closed subscribe group (CSG) No X2 as baseline Relay node 30~37 dBm Open to all users Through air-interface with a macro-cell (for in-band RN case) Time Freq Aggressor Victim Subframe Time Freq PDSCH PDSCH PDSCH UE_A UE_V1 UE_V2
  • 117. 45SK Telecom Proprietary & confidential Interference-dominant 상황을 피하기 위해 시갂 축으로 갂섭 제어 (ABS) ABS에서도 Rel-8/9 단말의 정상적인 동작을 위해서 일부 제어 채널은 여젂히 젂송함  시갂 축으로의 갂섭 제어 •주파수 축이 아닌 시갂축으로 특정한 subframe을 통째로 비워주는 방법 – Blank subframe  Almost Blank Subframe (ABS) •Rel-8/9 LTE 단말의 Backward compatible한 동작을 위해서 몇몇 제어 채널은 젂송해야 함 •Backward compatibility때문에 단말은 특정 Subframe이 ABS인지 여부를 알 수 없음 •ABS를 사용하더라도 여젂히 제어채널에 갂섭이 영향을 줄 수 있으며, Rel-11이나 이후 Release에 해당 갂섭 제거 방법에 대한 논의 예정 Time Freq Aggressor Victim Subframe Time Freq PDSCH PDSCH PDSCHUE_A UE_V1 UE_V2 PDSCH UE_V3 Almost Blank Subframe ABS에 젂송해야하는 제어 채널 •CRS (not in data region if configured as MBSFN subframe) •PSS, SSS, and PBCH •PRS and CSI-RS •SIB1/Paging with associated PDCCH
  • 118. 46SK Telecom Proprietary & confidential 기지국갂 X2 Interface를 통해서 ABS 관렦 정보를 주고 받음  X2 Interface를 통한 기지국갂 정보 교홖 •ABS information: 기지국 설정한 ABS에 관렦된 정보를 인접 기지국에 젂달 •ABS status: ABS 패턴의 변화 필요성을 판단하기 위한 도움 정보  ABS Information •기지국이 ABS로 설정한 subframe의 패턴을 표시하는 bitmap 정보와 ABS subframe중 단말에게 measurement를 추천하는 subframe을 표시하는 bitmap 정보 •40ms 단위로 ABS pattern 정의 Macro eNB Home eNB Macro UE Home UE ABS pattern ABS  ABS Status •ABS를 통해서 보호된 UE를 위해서 할당된 ABS의 resource block의 비율 •사용할 수 있는 ABS pattern  동작 예 •Macro가 Pico에게 ABS pattern을 X2 interface를 통해서 젂달하여 Pico에 제어를 받는 Pico 단말이 우선적으로 서비스를 받을 수 있도록 함
  • 119. 47SK Telecom Proprietary & confidential eICIC의 성능을 위해서는 단말이 Resource-specific 한 Measurement를 수행해야 함  단말의 무선 채널 Measurement 방법의 변화 •데이터 수싞 관점에서는 단말이 ABS를 인식하지 못하므로 기졲의 Rel-8/9의 LTE 단말과 동일한 subframe 수싞 process를 가짐 (Backward compatibility) •ABS로 인해서 갂섭 레벨이 subframe 마다 심하게 변하게 되며, UE는 ABS와 Normal subframe을 구분하지 못하므로, 부정확한 measurement 정보가 측정될 수 있음  Resource-specific한 Measurement •eICIC의 성공적인 홗용을 위해서는 단말에서 “Resource-specific” 한 measurement 가 지원되어야 함 Aggressor ABS ABS ABS ABS Time Signal Interference Indicated as a more static ABS RLM/RRM X X X X X X X X XO CSI 1 CSI 2 X O X O X X X O XO O X O X O O O X OX
  • 120. 48SK Telecom Proprietary & confidential 경계 단말이 small cell 을 serving cell로 인식하도록 하여 coverage를 확장하는 기술 Rel-10에는 반영되지 않았으며, Rel-11에서 논의 중  Cell Range Expansion (CRE) & Resource Partitioning •Pico나 Femto 노드는 Macro에 비해 상대적으로 저젂력이므로, 충분한 단말을 수용 못함 •단말의 셀 선택 시 사용하는 RSRP 값에 의도적인 offset을 둬, Pico의 coverage를 늘리는 방법 •Offset 값은 Macro와 Pico갂의 resource partitioning을 의미하며, 시스템에 지원하는 단말의 수의 비에 따라서, semi-static 혹은 dynamic하게 업데이트 될 수 있음  기술 이슈 및 표준화 •CRE에의해서 수용된 단말의 경우에는 ABS를 적용하더라도 Macro CRS로부터의 interference가 심각할 수 있으므로, Interference Cancellation 기술 접목이 필요 •Rel-10에서는 CRE 및 Resource Partitioning (CRE offset update) 방법의 가능성에 대해서만 검증하였고, 실제 적용 여부는 Rel-11으로 미뤄짐 Macro RSRP > Pico RSRP+Offset Pico RSRP > Macro RSRP Pico RSRP+Offset > Macro RSRP Goal is to extended the coverage of the pico node to increase the off-load from the macro-layer Pico Macro
  • 121. 49SK Telecom Proprietary & confidential CoMP는 eICIC에 비해 다차원적인 갂섭 제어 방법을 포함하며, 기지국갂 교홖 정보 양이나 업데이트 주기가 빨라 단말/기지국에 부담이 큼 Rel-10에는 반영되지 않았으며, Rel-11에서 추가  정성적 비교 Features eICIC (Rel-10 반영 feature) CoMP (Rel-11 예상 feature) 간섭회피 dimension 시간 (e.g. 서브프레임) 시간/주파수/안테나 (e.g. 스케쥴링 Granularity) 송신 기지국 수 Serving Cell만 복수 기지국 송신 가능 (Joint Transmission) 전송 pattern 변화 Semi-static (40ms 단위) Dynamic (1 ms) 기지국간 교환 정보양 상대적으로 적음 상대적으로 많음 UE Feedback 정보 Serving Cell에 대한 feedback Neighbor Cell에 대한 Interference 정보도 필요 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 SB1 SB2 SB3 SB1 SB2 SB3 SB1 SB2 SB3 Macro1 RRH1 Macro2 Macro transmission RRH transmission Potential macro transmission Potential RRH transmission Rel-10 eICIC HetNet CoMP Resource semi-statically blanked by all macro cells  동작 예 •eICIC의 경우에는 Macro 셀 1, 2가 RRH1의 젂송에 해당하는 1, 5, 9번 subframe을 ABS로 적용한 Time-division-multiplexing (TDM) 형태로 갂섭 제어를 수행함 •CoMP의 경우에는 Macro1과 RRH1이 CSI feedback을 통해서 적젃한 주파수 축에서의 비갂섭 영역을 결정하여 스케쥴링을 수행함 ※본 예에서는 Macro2와 RRH1은 CoMP를 수행하지 않음을 가정
  • 122. 50 Contents SK Telecom Proprietary & confidential LTE-A 주요 기술 소개 LTE-A Demo in MWC 2013 Carrier Aggregation 결론 및 Q&A LTE-A 표준화 현황 그 외 LTE-A 주요 기술
  • 123. 51SK Telecom Proprietary & confidential  LTE-A 주요 기술 • 파편화된 주파수를 묶어 단말 최대 속도 및 주파수 효율성을 높여주는 Carrier Aggregation • LTE ICIC 기술의 한계를 극복하기 위한 eICIC •Cell 갂 Dynamic Coordination을 통해 주파수 효율성 및 갂섭을 제어하는 CoMP 를 주요 기술로 함  CA 기술 •CA를 통해 주파수 홗용성, 물리 계층/스케쥴링의 효율성을 향상 시킬 수 있음 • 한국은 Carrier Aggregation을 세계 최초 상용화하며 LTE-A 짂화를 Leading 중
  • 124. 52SK Telecom Proprietary & confidential [1]3GPP TR 25.913: "Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)". [2] 3GPP TR 36.913: "Requirements for Further advancements for Evolved UTRA (E- UTRA) (LTE-Advanced)(Release10)". [3] 3GPP TR 36.912: ”Feasibility study for Further Advancements for E-UTRA (LTE- Advanced)” [4] 3GPP TS 36.101: "User Equipment (UE) radio transmission and reception". [5] 3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures [6] 3GPP TS36.331: “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC) protocol specification”
  • 125. 53SK Telecom Proprietary & confidential [7] :GPP TS:6.:29: “Evolved Univers=l Terrestri=l R=dio A??ess (E-UTRA); Medium Access Control (MAC) proto?ol spe?ifi?=tion” [<] :GPP TS :6.299: “Evolved Univers=l Terrestri=l R=dio A??ess (E-UTRA); Physical channels and modulation [9] :GPP TS :6.:86: “Evolved Univers=l Terrestri=l R=dio A??ess (E-UTRA); User Equipment (UE) r=dio =??ess ?=p=>ilities” [98] :GPP TS :6.:88: “Evolved Univers=l Terrestri=l R=dio A??ess (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Over=ll des?ription; St=ge 2”
  • 127. © 2013 Nokia Solutions and Networks. All rights reserved. LTE Small Cell Evolution October 2013 Bong Youl (Brian) Cho, 조 봉 열 brian.cho@nsn.com Disclaimer 본 자료의 내용은 LTE 기술 자체에 대한 내용을 위주로 한 것으로서, NSN 제품전략 및 계획 등과는 반드시 일치하지 않을 수도 있습니다.
  • 128. TTA LTE Standards/Technology Training 2 © 2013 Nokia Solutions and Networks. All rights reserved. Why Small Cell? Pico cell and eICIC/FeICIC Relay Small Cell Enhancement in Release 12
  • 129. TTA LTE Standards/Technology Training 3 © 2013 Nokia Solutions and Networks. All rights reserved. Our vision: Mobile networks are able to deliver one Gigabyte of personalized data per user per day profitably Key requirements for networks towards 2020… Support up to 1000 times more capacity Teach networks to be self- aware Reinvent Telcos for the cloud Flatten total energy consumption Reduce latency to milliseconds Personalize network experience …for profitability and a quantum leap in flexibility
  • 130. TTA LTE Standards/Technology Training 4 © 2013 Nokia Solutions and Networks. All rights reserved. 1000x capacity can be done with tech evolution ASA Smart Scheduler New bands Carrier Aggregation HetNet management Advanced macros Flexible small cells MIMO & adv. receiver eCoMP
  • 131. TTA LTE Standards/Technology Training 5 © 2013 Nokia Solutions and Networks. All rights reserved. 시스템 성능 향상을 할 수 있는 방안? • 셀룰러망 (cellular network)에서의 주파수 재사용 (frequency reuse)의 극대화? • 동일한 주파수를 최대한 자주 재사용하여 전체 망의 용량을 증대 • 기존의 AMPS의 주파수 재사용율 7에 비해 CDMA부터 재사용율 1을 사용 (즉, 인접 셀들이 모두 같은 주파수를 사용) • 셀의 크기가 작아지고 셀의 개수가 많아지면 전체 망의 용량이 증대될 수 있음  Small cell: Macro > Micro > Pico > Femto  HetNet (Heterogeneous Network) with Interference Management • 셀룰러 망의 문제점 극복? • 인접 셀들 사이에서 동일한 주파수를 사용하면서 서로 다른 데이터를 전송하면 이들 사이에는 필연적으로 간섭이 존재 • 셀 가장자리의 data rate 저하 • 이를 극복하는 방안 중 하나가 협력통신 (Cooperative Multi-Point transmission and reception, CoMP) • 안테나 사용의 극대화? • Higher order & advaned MIMO: 2x2  4x4  8x8  AAS, 3D beamforming, FD-MIMO, etc… • 더 많은 주파수의 사용? • 용량 = 주파수 효율 x 주파수 사용량 • 주파수 효율을 올리기 힘들면, 주파수를 많이 사용하자  “모바일 광개토 플랜” • 이왕 여러 주파수를 사용하는 바에는 이를 하나처럼 합치자  Carrier Aggregation
  • 132. TTA LTE Standards/Technology Training 6 © 2013 Nokia Solutions and Networks. All rights reserved. Radio Technology Evolution LTE Rel-8 and Rel-9 LTE Advanced Rel-10 and Rel-11 LTE Advanced Evolution Rel-12 and Rel-13 5G 2010+ 2013+ 2015+ 2020+ Optimize data performance and architecture Squeeze macro cells Small cells & new service enablers Small Cell Enhancements Macro Cell Enhancements Machine-Type Communication, Device-to-Device SON, WLAN Integration, Public Safety
  • 133. TTA LTE Standards/Technology Training 7 © 2013 Nokia Solutions and Networks. All rights reserved. 3GPP* LTE Base Station Classes (1/2) • 3GPP* defined RF requirements separately per BS class – Wide area – Medium range – Local areas – Home • The BS classes – Defined based on distance between user and antennas – Measured as Minimum Coupling Loss (MCL) • Differences in RF requirements – Frequency stability – Spurious emissions – Sensitivity – Dynamic range – Blocking requirements • RF requirements for small BSs – More relaxed than for high power BSs – Make it further possible to reduce the cost of RF sections * 3GPP TS 36.104
  • 134. TTA LTE Standards/Technology Training 8 © 2013 Nokia Solutions and Networks. All rights reserved. 3GPP* LTE Base Station Classes (2/2) Cells MCL Power level Description Deployment Macro >70dB Typical up to 100 W per sector (no upper limit), 3-6 sectors Big, outdoors, high power Operators deploy thousands nationwide Micro >53dB Max 5 W Small, outdoors, medium power Operators deploy in selected urban areas Pico >45dB Max 0.25 W Small, indoors, low power Operators or integrators deploy in enterprises Femto - Max 0.10 W Very small, indoors, very low power Consumers deploy up to millions * MCL = Minimum Coupling Loss between terminal and base station antennas * 3GPP TS 36.104
  • 135. TTA LTE Standards/Technology Training 9 © 2013 Nokia Solutions and Networks. All rights reserved. Frequency Use Options for small cells
  • 136. TTA LTE Standards/Technology Training 10 © 2013 Nokia Solutions and Networks. All rights reserved. Why Small Cell? Pico cell and eICIC/FeICIC Relay Small Cell Enhancement in Release 12
  • 137. TTA LTE Standards/Technology Training 11 © 2013 Nokia Solutions and Networks. All rights reserved. Network Densification • Homogeneous network • Heterogeneous network
  • 138. TTA LTE Standards/Technology Training 12 © 2013 Nokia Solutions and Networks. All rights reserved. HetNet – problems in non-homogeneous deployment • Consist of deployments where low power nodes are placed throughout a macro-cell layout • The interference characteristics in a heterogeneous deployment can be significantly different than in a homogeneous deployment • Mainly, two different heterogeneous scenarios are under consideration – Macro-Femto (CSG: Closed Subscriber Group) case – Macro-Pico case
  • 139. TTA LTE Standards/Technology Training 13 © 2013 Nokia Solutions and Networks. All rights reserved. Range Extension (of picocell) • The current “cell selection” algorithm is DL oriented • So, it may not be the optimum for UL perspective. • Further more, too high DL power of macro cell is too costly in cellular network  Range extension of picocell  but, this can lead to significant interference issue in extended range
  • 140. TTA LTE Standards/Technology Training 14 © 2013 Nokia Solutions and Networks. All rights reserved. Motivation for new ICIC techniques • The frequency domain ICIC (defined in Rel-8) is not sufficient. – Because DL control channels (PCFICH/PHICH/PDCCH) are spread over the entire system bandwidth. – With a cell-specific interleaving structure • ICIC in another resource domain becomes necessary
  • 141. TTA LTE Standards/Technology Training 15 © 2013 Nokia Solutions and Networks. All rights reserved. Why “ALMOST” blank subframe? • Because some channels/signals should be transmitted for the legacy UE operation. – CRS (If ABS coincides with MBSFN subframe not carrying any signal in data region, CRS is not present in data region ) – PSS, SSS, and PBCH – PRS and CSI-RS – SIB1/Paging with associated PDCCH • No other signal is transmitted • Some interference still exists. – To be studied in the next release.
  • 142. TTA LTE Standards/Technology Training 16 © 2013 Nokia Solutions and Networks. All rights reserved. Almost Blank Subframe (ABS) introduced • Aggressor cell silences for some time – For victim cell to have protected resources – Still PSS, SSS, PRS, CSI-RS, SIB1, Paging transmitted for backward compatibility, so called it “Almost” • Victim cell makes use of the silences time – For victim cell to schedule UEs in victim cell – For UE in victim cell to check its serving cell radio condition – For UE in victim cell to measure its serving cell – For UE in other cell to measure victim cell
  • 143. TTA LTE Standards/Technology Training 17 © 2013 Nokia Solutions and Networks. All rights reserved. Coordination between two cell layers
  • 144. TTA LTE Standards/Technology Training 18 © 2013 Nokia Solutions and Networks. All rights reserved. TDM eICIC Principle - example with macro & HeNBs Requires strict time-synchronization between macro & HeNBs Macro-layer HeNB-layer One sub-frame Macro-UEs close to non-allowed CSG HeNBs: (i) To be scheduled in sub-frames where the HeNB layer is ”muted”. (ii) Should ideally also only do RLF monitoring in subframes where the HeNB layer is ”muted”. Otherwise, RLF may be triggered, even though the UE can actually get data. HeNB-UEs only scheduled in ”normal” subframes. Macro-UEs that does not experience excessive interference from non-allowed CSG HeNBs can be scheduled also in sub- frames where the HeNB-layer is not muted. Almost blank, or MBSFN sub-frame Sub-frame with normal transmission
  • 145. TTA LTE Standards/Technology Training 19 © 2013 Nokia Solutions and Networks. All rights reserved. TDM eICIC Principle - example with macro & Pico Requires strict time-synchronization between macro & Pico Macro-layer Pico-layer One sub-frame Other pico-UEs that are closer to their serving pico node and therefore less restricted by macro-layer interfence canbe scheduled in any subframe. Pico-UEs sensitive to macro-cell interference are only scheduled in subframes where Macro use ABS. This allows scheduling of pico-UEs using larger pico node cell selection offsets (range extension). Almost blank, or MBSFN sub-frame Sub-frame with normal transmission
  • 146. TTA LTE Standards/Technology Training 20 © 2013 Nokia Solutions and Networks. All rights reserved. TDM eICIC Principle - combined macro+pico+HeNB case Almost blank, or MBSFN sub-frame Sub-frame with normal transmission Macro-layer Pico-layer HeNB-layer Pico-nodes can schedule UEs with larger RE, if not interfered from non-allowed CSG HeNB(s) Macro-eNBs and Pico-eNBs can schedule also users that are close to non-allowed CSG HeNB(s), but not pico-UEs with larger RE. Pico-UEs with larger RE, close to CSG HeNB(s) are schedulable (as well as pico-UEs without RE).
  • 147. TTA LTE Standards/Technology Training 21 © 2013 Nokia Solutions and Networks. All rights reserved. Baseline Assumptions for Network Configuration of Muting Patterns: HeNB • Macro + HeNB scenario: – Muting patterns are assumed to be statically configured from OAM – Both macro and HeNB needs to know the muting pattern:  HeNB will apply the muting pattern (i.e. will mute some of its subframes)  Macro-eNB needs to know so it only schedule its users close to non-allowed CSG HeNBs during muted subframes + can configured Rel-10 UEs with appropriate measurement restrictions. Centralized concept
  • 148. TTA LTE Standards/Technology Training 22 © 2013 Nokia Solutions and Networks. All rights reserved. Baseline Assumptions for Network Configuration of Muting Patterns: pico • Macro + pico scenario: – Muting patterns are assumed to be dynamically configured, assisted by new X2 signalling introduced in Rel-10. – Both macro and pico needs to know the muting pattern:  Macro-eNB will apply the muting pattern (i.e. will mute some of its subframes)  Pico-eNB needs to know so it only schedule its users with large range extension during muted subframes + can configured Rel-10 UE measurement restrictions for those UEs. Distributed concept
  • 149. TTA LTE Standards/Technology Training 23 © 2013 Nokia Solutions and Networks. All rights reserved. New X2 eICIC Related Signalling • ABS information in IE – This IE provides information about which subframes the sending eNB is configuring as ABS and which subset of ABS are recommended for configuring measurements towards the UE. – Macro can signal ABS muting pattern to the pico nodes in ABS information IE. – A neighbouring macro-cell receiving this information may aim at using similar muting pattern (but it is optional if macro-eNB follows such recommendation). • Invoke information IE – This IE provides an indication that the sending eNB would like to receive ABS information. – Can be used by pico nodes to suggest macro-eNB to start scheduling ABS, i.e. that the pico serves UEs suffering high interference. • Both the ABS information IE and/or Invoke IE is part of the LOAD INFORMATION message. Therefore, both of them can be exchanged between any two eNBs connected with X2, also between macros. X2-AP: LOAD INFORMATION eNBeNB
  • 150. TTA LTE Standards/Technology Training 24 © 2013 Nokia Solutions and Networks. All rights reserved. TS36.423 X2AP: Load Information 9.1.2.1 LOAD INFORMATION This message is sent by an eNB to neighbouring eNBs to transfer load and interference co-ordination information. Direction: eNB1  eNB2. IE/Group Name Presence Range IE type and reference Semantics description Criticality Assigned Criticality Message Type M YES ignore Cell Information M YES ignore >Cell Information Item 1 .. <maxCelline NB> EACH ignore >>Cell ID M ECGI Id of the source cell – – >>UL Interference Overload Indication O – – >>UL High Interference Information 0 .. <maxCelline NB> – – >>>Target Cell ID M ECGI Id of the cell for which the HII is meant – – >>>UL High Interference Indication M – – >>Relative Power (RNTP) O – – >>ABS Information O 9.2.54 YES ignore >>Invoke Indication O 9.2.55 YES ignore
  • 151. TTA LTE Standards/Technology Training 25 © 2013 Nokia Solutions and Networks. All rights reserved. TS36.423 Invoke IE & ABS Information IE IE/Group Name Presence Range IE type and reference Semantics description CHOICE ABS Information M – – >FDD – – >>ABS Pattern Info M BIT STRING (SIZE(40)) Each position in the bitmap represents a DL subframe, for which value "1" indicates ‘ABS’ and value "0" indicates ’non ABS’. The first position of the ABS pattern corresponds to subframe 0 in a radio frame where SFN = 0. The ABS pattern is continuously repeated in all radio frames. The maximum number of subframes is 40. >>Number Of Cell-specific Antenna Ports M ENUMERATED (1, 2, 4, …) P (number of antenna ports for cell-specific reference signals) defined in TS 36.211 [10] >>Measurement Subset M BIT STRING (SIZE(40)) Indicates a subset of the ABS Pattern Info above, and is used to configure specific measurements towards the UE. IE/Group Name Presence Range IE type and reference Semantics description Invoke Indication M ENUMERATED (A BS Information, …) –
  • 152. TTA LTE Standards/Technology Training 26 © 2013 Nokia Solutions and Networks. All rights reserved. New X2 eICIC Related Signalling (cont’) • Macro-eNB can send a resource request to the pico-eNB. • Pico-eNB response with ”ABS status” • The ”ABS status” is basically a load measure of how much the pico-eNB uses the subframes where the macro-eNB is muted. • It is intended that only ABS allocated to UEs that would not cope otherwise are reported • This information can be used by the macro-eNB to get an idea of the consequences of increasing/decreasing the number of muted subframes. It can be combined with information about overall load in the pico. 9.2.58 ABS Status The ABS Status IE is used to aid the eNB designating ABS to evaluate the need for modification of the ABS pattern. eNB1 eNB2 RESOURCE STATUS REQUEST RESOURCE STATUS RESPONSE DL ABS status M INTEGER (0..100) Percentage of resource blocks of ABS allocated for UEs protected by ABS from inter-cell interference. This includes resource blocks of ABS unusable due to other reasons. The denominator of the percentage calculation is indicated in the Usable ABS Information. >> Usable ABS Pattern Info M BIT STRING (SIZE(40)) Each position in the bitmap represents a subframe, for which value "1" indicates ‘ABS that has been designated as protected from inter-cell interference’ and value "0" indicates ‘ABS that is not usable as protected ABS from inter-cell interference’. The pattern represented by the bitmap is a subset of, or the same as, the corresponding ABS Pattern Info IE conveyed in the LOAD INDICATION message.
  • 153. TTA LTE Standards/Technology Training 27 © 2013 Nokia Solutions and Networks. All rights reserved. ABS patterns • Pattern 1: RRM/RLM measurement resources restriction for the serving cell • Serving cell RLM results look more stable. As a result, – For PUE (UE under Pico), RLF declaration avoided at CRE of pico cell – For MUE (UE under Macro), RLF declaration avoided at femto cell area
  • 154. TTA LTE Standards/Technology Training 28 © 2013 Nokia Solutions and Networks. All rights reserved. ABS patterns – cont’d • Pattern 2: RRM measurement resources restriction for neighboring cells • Neighboring cell looks more optimistic – MUE can be handed over to in CRE area of pico cell • One pattern with PCI list
  • 155. TTA LTE Standards/Technology Training 29 © 2013 Nokia Solutions and Networks. All rights reserved. ABS patterns – cont’d • Pattern 3: Resources restriction for CSI measurement of the serving cell • Two subsets for pattern 3: for eNB to obtain multiple channel status measurement for scheduling, e.g., – CSI measurement on ABS – CSI measurement on non-ABS
  • 156. TTA LTE Standards/Technology Training 30 © 2013 Nokia Solutions and Networks. All rights reserved. UE Operation for eICIC: Example
  • 157. TTA LTE Standards/Technology Training 31 © 2013 Nokia Solutions and Networks. All rights reserved. Performance enhancement example through Pico Cells and eICIC UE1 UE2 UE3 Macro Pico Pico 0 10 20 30 40 50 60 70 UE1 UE2 UE3 Total Mbps No eICIC eICIC with 50% ABS System Capacity with HetNet and eICIC +50%
  • 158. TTA LTE Standards/Technology Training 32 © 2013 Nokia Solutions and Networks. All rights reserved. CA approach to interference avoidance in HetNet
  • 159. TTA LTE Standards/Technology Training 33 © 2013 Nokia Solutions and Networks. All rights reserved. With or without cross-carrier scheduling
  • 160. TTA LTE Standards/Technology Training 34 © 2013 Nokia Solutions and Networks. All rights reserved. FeICIC in Rel-11 • eICIC is introduced in LTE Rel-10 and further enhanced in Rel-11 – eICIC = enhanced Inter Cell Interference Coordination – FeICIC = Further enhanced Inter Cell Interference Coordination • eICIC consists of three design principles – Time domain interference management (Rel-10)  Severe interference limits the association of terminals to low power cells – Cell range expansion (Rel-10/11)  Time domain resource partitioning enables load balancing between high and low power cells  Resource partitioning needs to adapt to traffic load – Interference cancellation receiver in the terminal (Rel-11/12)  Ensures that weak cells can be detected Inter cell interference cancellation for control signals (pilots, synchronization signals)  Ensures that remaining interference is removed Inter cell interference cancellation for control and data channels (PDCCH/PDSCH) * source: Qualcomm
  • 161. TTA LTE Standards/Technology Training 35 © 2013 Nokia Solutions and Networks. All rights reserved. eICIC and FeICIC • FeICIC (Further enhanced non CA-based ICIC for LTE) – WI was completed in Dec. 2012 – Support of larger CRE(up to 9dB) for better load balancing  Macro eNB provides Pico’s SIB1 to the UE in larger CRE region via dedicated signaling * source: ETRI eICIC in Rel-10 FeICIC in Rel-11
  • 162. TTA LTE Standards/Technology Training 36 © 2013 Nokia Solutions and Networks. All rights reserved. FeICIC Performance * source: Qualcomm
  • 163. TTA LTE Standards/Technology Training 37 © 2013 Nokia Solutions and Networks. All rights reserved. FeICIC Performance – cont’d * source: Qualcomm
  • 164. TTA LTE Standards/Technology Training 38 © 2013 Nokia Solutions and Networks. All rights reserved. Why Small Cell? Pico cell and eICIC/FeICIC Relay Small Cell Enhancement in Release 12
  • 165. TTA LTE Standards/Technology Training 39 © 2013 Nokia Solutions and Networks. All rights reserved. Relay • Relay as a tool to improve, e.g. – the coverage of high data rates – group mobility – temporary network deployment – the cell-edge throughput – provide coverage in new areas • Various relay types – Type1 vs. Type2 – In-band vs. out-band – Stationary vs. mobile – Single hop vs. multi-hop – Etc…
  • 166. TTA LTE Standards/Technology Training 40 © 2013 Nokia Solutions and Networks. All rights reserved. Proxy Functionality • DeNB plays S1/X2-AP and S-GW proxy role for RN • DeNB appears to RN as – Control plane: MME for S1, eNB for X2 – User Plane: S-GW
  • 167. TTA LTE Standards/Technology Training 41 © 2013 Nokia Solutions and Networks. All rights reserved. In-band Relay • Interference b/w access link and backhaul link • Inband relay - Un and Uu links are isolated in time
  • 168. TTA LTE Standards/Technology Training 42 © 2013 Nokia Solutions and Networks. All rights reserved. In-band Relay – cont’d • Using MBSFN subframe for relay operation  Multiplexing b/w access and backhaul links • RN subframe configuration
  • 169. TTA LTE Standards/Technology Training 43 © 2013 Nokia Solutions and Networks. All rights reserved. RN Startup Procedure - Phase I • Attach for RN Pre-configuration
  • 170. TTA LTE Standards/Technology Training 44 © 2013 Nokia Solutions and Networks. All rights reserved. RN Startup Procedure - Phase II • Attach for RN Operation