Informatie visualisatie:
Les 7
Joris Klerkx - Erik Duval
http://hci.cs.kuleuven.be
joris.klerkx@cs.kuleuven.be
Human-Computer Interaction
Dept. Computerwetenschappen
KU Leuven
1
2
Spreadsheet!
Vandaag
• Interactie (ik)
• Show-and-Tell (jullie)
• Opdracht tegen volgende keer (ik)
4
When“static”visualizations are
not enough
Too many datapoints or variables
True understanding and insight generation require
interaction
Data is exploratory in nature
5
Interaction
Should contribute to successful analytic dialogues!
Support exploration at the rate of human thought!
6
Interactive Dynamics enables analysts
to explore large data sets (Task types)
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	
-	Microprocessors	,	10	(2),	p.	30.	hHp://queue.acm.org/detail.cfm?id=2146416	
• Data & View Specification controls
• View Manipulation
• Process & Provenance
7
Data & View
Specification
8
Custom programming of a specific visualization component
9
http://unfoldingmaps.org
google spreadsheets
Tools that use a chart typology (eg excel)
10
Excel for mac 2015
Tools that use a chart typology (eg excel)
11
http://www-969.ibm.com/software/analytics/manyeyes/
12
Cfr. http://gravyanecdote.com/visual-analytics/which-chart-should-you-use-to-show-this-data/
Data-flow graphs deconstruct the visualization process into fine-grained set of
operators (data import, transformation, layout, coloring, etc
13
View Manipulation
14
• Categorical/ordinal data
• radio buttons, checkboxes, scrollable lists,
hierachies, search boxes (with autocomplete)
• Ordinal, quantitative, and temporal data
• a standard slider (for a single threshold value) or a
range slider (for specifying multiple endpoints).
Filtering allows rapid and reversible
exploration of data subsets
15
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	
30.	hHp://queue.acm.org/detail.cfm?id=2146416	
16
http://doug.cs.kuleuven.be/wittgenstein2/
17
http://localhost:63342/DataAnalysis/report/dre-userpaths_filters.html
18
http://www.trulia.com/vis/tru247/
Query controls can be further augmented with
visualizations of their own
19
Query controls can be further augmented with
visualizations of their own
20
Sorting enables popping up of
trends, clusters,…
• Choices in a toolbar
• Clicks on the header in a table
• Can be complicated in the case of multiple view
displays
21
http://terror.periscopic.com
22
https://augmenthuman.wordpress.com/portfolio/emotions-in-the-classroom/
23
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	
30.	hHp://queue.acm.org/detail.cfm?id=2146416	
24
Select items to hightlight, filter or
manipulate them
• Mouse clicks, free-form lassos, area cursors
(‘brushes’), mouse hovering, etc
• depends on the device
• Various expressive power
• selections of a collection of items
• selections as queries over the data (eg drawing
rectangle -> range query)
25
26
http://localhost:63342/DataAnalysis/report/dre-userpaths_filters.html
Select by slope and tolerance
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	
30.	hHp://queue.acm.org/detail.cfm?id=2146416	 27
Mapping mouse gestures to query patterns
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	
30.	hHp://queue.acm.org/detail.cfm?id=2146416	
28
Navigate to examine high-
mede patterns & low-level detail
• Overview first, zoom & filter, then details-on-demand
• Start with what you know, then grow
• Search, show context, expand on demand.
• Focus + Context
• Semantic Zooming
• Magical lenses
29
$
f con-
cation
n this
of the
zoom
what
isible,
e user
on the
more
rectly
3, for
ber of
dmark
Figure 4: Setting of the evaluation.
B. Vandeputte, E. Duval, and J. Klerkx. Interactive sensemaking in authorship networks. Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces, ITS11, pp. 246–247, 2011.
Overview first, zoom and filter, details on demand
30
B. Vandeputte, E. Duval, and J. Klerkx. Applying design principles in authorship networks-a case study. In CHI EA’12:
Proceedings of the 2012 ACM annual conference extended abstracts on Human Factors in Computing Systems, pages 741–
744, 2012. (https://www.youtube.com/watch?v=R5CeTEejdBA)
Start with what you know, then grow
Search, show context, expand on demand
31
http://sanfrancisco.crimespotting.org
Overview first, zoom and filter, details on demand
Viewport on the data: zooming & panning controls
32
Focus+context
Large hierarchies
https://philogb.github.io/jit/static/v20/Jit/Examples/Hypertree/example1.html
Limited screen space
33
http://resources.arcfmsolution.com/2.4/SilverlightUsing/Toolbar.html
Focus + Context
Semantic Zooming
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	
30.	hHp://queue.acm.org/detail.cfm?id=2146416	 35
Magical Lenses
C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann. A Survey on Interactive Lenses in Visualization. EuroVis State-of-the-Art Reports, Swansea, UK, Eurographics
Association, 2014.
36
Fisheye
37
C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann. A Survey on Interactive Lenses in
Visualization. EuroVis State-of-the-Art Reports, Swansea, UK, Eurographics Association, 2014.
38
Coordinate views for linked, multi-
dimensional exploration
Enables seeing data from different perspectives
Multiple views can facilitate comparison
39
http://square.github.io/crossfilter/40
https://perswww.kuleuven.be/~u0074988/mapc/
https://augmenthuman.wordpress.com/portfolio/mapc_interactive_dashboard/
41
Small multiples provide multiple perspectives
https://queue.acm.org/detail.cfm?id=2146416
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	
30.	hHp://queue.acm.org/detail.cfm?id=2146416	
42
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	
30.	hHp://queue.acm.org/detail.cfm?id=2146416	 43
https://augmenthuman.wordpress.com/portfolio/an-interactive-visualization-of-butterfly-observations/
https://www.youtube.com/watch?v=NvqJi8NwLCI 44
Organize multiple windows & workspaces
• Tiled approaches (different widgets) allows to see
all information and selectors at once, minimizing
distracting scrolling or window operations, while
enabling analysts to concentrate on extracting and
reporting insights.
• Layout organization tools will become decisive
factors in creating effective user experience
45
Orchestrate attention and mentally integrate patterns among views
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	
30.	hHp://queue.acm.org/detail.cfm?id=2146416	
46
Orchestrating visualizations over various devices
47
In-class display
48
Process & Provenance
50
Record analysis histories for
revisitation, review and sharing
51
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	30.	hHp://queue.acm.org/detail.cfm?id=2146416	
52
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	
30.	hHp://queue.acm.org/detail.cfm?id=2146416	 53
Annotate patterns to document
findings
Record, organize, and communicate insights gained
during visual exploration
54
Freeform graphical annotations without explicit tie to the
underlying data
Data-aware annotations
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	
30.	hHp://queue.acm.org/detail.cfm?id=2146416	
55
56
Share views and annotations to
enable collaboration
Real-world analysis is very much a social process
that may involve multiple interpretations,
discussion, and dissemination of results.
57
https://www.youtube.com/watch?v=g91_EBxVh3E
58
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	
30.	hHp://queue.acm.org/detail.cfm?id=2146416	 59
Guide users through analysis tasks or
stories
• Incorporate guided analytics to lead analysts
through workflows for common tasks.
• Narrative visualization
60
Heer,	J.,	&	Shneiderman,	B.	(2012,	February).	Interac=ve	Dynamics	for	Visual	Analysis.	Magazine	Queue	-	Microprocessors	,	10	(2),	p.	
30.	hHp://queue.acm.org/detail.cfm?id=2146416	
61
Artikel - tekst
Visualisatie
Narrative
visualization
62
Interval 1 Interval 2 Interval 3 Interval 4
63
Interactive Dynamics: Summary
Heer,	 J.,	 &	 Shneiderman,	 B.	 (2012,	 February).	 Interac=ve	 Dynamics	 for	 Visual	 Analysis.	 Magazine	
Queue	-	Microprocessors	,	10	(2),	p.	30.	hHp://queue.acm.org/detail.cfm?id=2146416	
64
Humans have advanced perceptual abilities
Humans have little short term memory
Externalize data by using interactive, visual encodings
Our brains makes us extremely good at recognizing visual patterns
Our brains remember relatively little of what we perceive
65
?
66
Uit eerste les…
67
Beoordeling:
• Visualisatie & paper (“50-50”)
• Feedback aan andere groepjes in studio-sessies
• Belangrijk is blijk te geven van inzicht & concrete vaardigheden
https://onderwijsaanbod.kuleuven.be/2015/syllabi/n/H04I2AN.htm
68
Paper
69
Paper
• doel en doelpubliek
• dataset: oorsprong, eigenschappen, …
• verwant werk, web & literatuur
• visualisatie en interactie
• eventueel: opeenvolgende versies
• belangrijkste ontwerp-beslissingen (!)
• Discussie/outro: wat zou je anders doen, wat zou je extra doen

als je tijd had, wat heb je geleerd, …
• besluit
70
http://www.sigchi.org/publications/chipubform
71
Paper
• max 8 pages
• max is niet min!
• incl. referenties, figuren, enz.
• (ook
• youtube (2-4 min) met voice-over
• max 10 screenshots)
• tussentijdse versies voor feedback
72
Tegen volgende les
(11 april)
• Individueel:
• Spreadsheet
• infovis van de “week”
• Team:
• Vervolg implementatie
• Blog post -> wat geleerd vandaag en hoe kan je dat
terugkoppelen naar project?
• Show-and-Tell - obv online visualisatie
• Wat kan je eruit afleiden?
• vooruitgang - problemen - planning - etc.
• Draft paper
73

Les 7 - informatie visualisatie - interactie