LECTURE THREE
total synthesis
©Michael Budde@flickr
1
O
O
OAc
O
O
O
O
O
OO
HO
OH
Cl
AcO
OH
OH
OH
HO
OMe
HO
(+)-spongistatin 1
altohyrtin A
©Saad.Akhtar@flickr
2
?
PPh3I
O
O
OH
HO
OH
Cl OH
OH
OH
O
O
OHO
AcO
HO
O
O
O
O
O
HO
OMe
how
total synthesis
do we
design a
3
©_Max-B@flickr
retrosynthesisnys
backwards
thinking
4
R1 R2
?
how
alkene
do we
make an
5
R1 R2
R1
R2
R1 R2
O
R1
IPh3P
R2
O
R1
O
R2
Wittig
alkene
metathesis
reduction
McMurry
targets
new
6
more
reactions
you
know...
7
©spackletoe@flickr
...the easier
retrosynthesis is
8
RETROSYNTHESIS
123.312
REVISE
©jeffrey_bos@flickr
9
read
this
book
10
guidelines
retrosynthesis
11
representations
0. draw multiple
N
N
H
H
N N
N
N
H
H
H
H
N N
H
H
N N
H
H
12
1. identify
functional groups
N
OO
O
O
cocaine
N
OO
O
O
ester
N
OO
O
O
ester
N
OO
O
O
tertiary amine
N
OO
O
O
N
OO
O
O
pyrrolidine piperidine
13
2. identify patterns
N
OO
O
O
aldol
N
OO
O
O
Mannich
N
OO
O
O
1,3-diX
(conjugate addition)
14
N
OH
HO
CO2H
O
HN
F
OEtEtO
NH2
O
Ot-Bu
OR*O
F
CHO
CHO
O
HN
O
atorvastatin
(lipitor®)
3. simplification
15
O
O N
H
O
OH
H
N
O
O
O
OH
HH
bistramide A
peptide
coupling
O
O
O
HH
OH
H2N
OTBS
OTIPS
O
H2N
O
O
OTBS
4. convergent
16
N
O
O
Cl
OH
H
H
NO
H
H
OH
OH
Cl
HO
(+)-halichlorine
Angew. Chem. Int. Ed. Engl. 1999, 38, 3542
lactone
formation
C–X
C–X
5. disconnections
17
C–X
5. disconnections
EtO2C
O
NH3•H2PO4
NHAc
C–X
EtO2C NH3•H2PO4
NHAc
Tamiflu
Angew. Chem. Int. Ed. Engl. 2009, 38, 1070
aziridine
opening
18
C–C next to functional group
6. disconnections
O
O
OH
O
H
bipinnatin J
Org. Lett. 2006, 8, 345
C–C
O
O
O
O
Br
nucleophilic
addition
Nozaki-Hiyama-Kishi
19
C–C next to functional group
6. disconnections
O
OH
OH
H
H
O
halicholactone
J. Org. Chem. 1997, 62, 6638
C–C
nucleophilic
addition
Nozaki-Hiyama-Kishi
OH
I
O
O
H
H
CHO
20
C–C next to functional group
6. disconnections
N
N
N
H
N
H
OH
manzamine A
J. Am. Chem. Soc. 2012, 134, 17482
C–C
N
N
H
OH
OTf
Bu3Sn
N
N
H
Pd-cross
coupling
21
N
N
H
OH
OTf
N
N
H
OH
OTf
precursor manzamine A
J. Am. Chem. Soc. 2012, 134, 17482
RCM
C=C
C=C
7. disconnections
22
O
TIPSO
O
O
OH
MeO2C
O
TIPSO
O
OH
MeO2C
O
O
P(O)(OMe)2
C=C
precursor to palmerolide A
J. Am. Chem. Soc. 2007, 129, 6386
Horner-Wadsworth-Emmons
C=C
7. disconnections
23
group interconversions
8. functional
TBSO
O
ON
O
O
O
precursor to penarolide sulfate A1
Eur. J. Org. Chem. 2008, 6213
FGI
N
O
O
O
O
O
OTBS
C–C
Sonogashira
TBSO
O
ON
O
O
O
I
simplification
24
N
O
O
HO
O
O
O
C7H15
hapalosin
Tetrahedron Lett. 1996, 37, 6557
C7H15
OTBS
CO2H
C7H15
OH O
ON
O
Bn
O
ON
O
Bn
O
C7H15
FGI
C–C
Evans
aldol
group interconversions
8. functional
control
25
recognition
9. pattern
H
O
H
H H
NH
OH
OH
hirsutellone B
J. Org. Chem. 2013, 78, 9584
≡ H
O
H
H H
NH
OH
OH
O O
Diels-Alder
H
O
H
H H
NH
O
O
OP
H
O
H
NH
O
OP
O
26
9. pattern
R
OH OH
R2 R
O OH
R2
R
O O
R2
FGI C–C
aldol
recognition
OHO
O
O
O
O
HO
OH
OH O
rutamycin B
≡
OHO
O
O
O
O
HO
OH
OH O
6 obvious aldol
disconnections
27
©Christian Puff
Angew. Chem. Int. Ed., 1996, 35, 904
(–)-stenine
N
O
H
H
H H
O
H
28
N
O
H
H
H H
O
H
N
O
H
H
H H
O
H
6-membered ring
6 contiguous stereocentres
29
R1
R2
R3
R4
R1
R2
R3
R4
Diels-Alder reaction
30
normally poor choice
early C–C disconnection
2 x
C–C
N
O
H
H
H H
O
H
N
O
H
H
H H
O
H
enolate
alkylation
alkylation
31
N
O
H
H
H H
O
H 2 x
C–N
NH2
CHO
O
H
H
H H
O
H
I
reductive
amination
alkylation
C–X disconnection
simple
32
NH2
CHO
O
H
H
H H
O
H
I
C–O
NH2
CHO
HO
H
H H
O
H
I
≡
(CH2)4I
NH2
CHO
CO2H
Diels-Alder
4 of the 7
stereocentres of stenine
iodolactonisation
C–X disconnection
simple
33
(CH2)4I
NH2
CHO
CO2H
(CH2)4I
CO2H
CHO
NH2
Diels-Alder
Diels-Alder reaction
34
(CH2)4I
CO2H
CHO
NH2
regiochemistry
of Diels-Alder
reactivity
enantioselectivity
issues?
35
N
O
H
H
H H
O
H
O
I(CH2)4
O
N
O
Ph
O
intramolecular DA
solution
+ auxiliary
36
S S
THPO
Cl
(CH2)4OPMB
i. BuLi,
then R–Cl
ii. H+
68%
OH
(CH2)4OPMB
SS
synthesis
umpolung
37
OH
(CH2)4OPMB
SS
ON
OO
(EtO)2(O)P
i. Parikh-Doering
oxidation
ii. LiCl, Et3N,
imide
77%
PMBO(CH2)4
SS
N
O
O
O
Ph
synthesis
activated DMSO (Swern)
38
synthesis
intramolecular Diels-Alder (IMDA)
PMBO(CH2)4
SS
N
O
O
O
Ph
S S
PMBO(CH2)4
H
H
O
O
N
O
Ph
Me2AlCl
85%
39
H
H
R
N
O
Al
O
O
H
H
S
S
Ph
H
H
PMBO(CH2)4
H
H S
S
aux
O
diastereoselectivity
40
S S
PMBO(CH2)4
H
H
O
O
N
O
Ph
H
H
R
N
O
Al
O
O
H
H
S
S
Ph
H H
determining stereochemistry
41
S S
PMBO(CH2)4
H
H
O
O
N
O
Ph
i. AgNO3, NCS
ii. LiSEt
iii. Et3SiH, Pd/C
iv. NaClO2,
NaH2PO4
53%
PMBO(CH2)4
H
H
O
OH
O
synthesis
removal
auxiliary
42
PMBO(CH2)4
H
H
C
O
OH
O
O
P
N3
PhO
PhO
DPPA, Et3N,
60°C
then MeOH
82%
PMBO(CH2)4
H
H
N
H
C
O
OMe
O
synthesis
rearrangement
Curtius
43
synthesis
PMBO(CH2)4
H
H
N
H
C
O
OMe
O
i. TMSCl, Et3N,
50°C
ii. mCPBA
iii. H5IO6
then I2, NaHCO3
50%
N
CO2Me
O
H
I
H
H
O
H
(CH2)4OPMB
OH
44
PMBO(CH2)4
H
H
NHCO2Me
O
TMSCl,
Et3N 50°C
PMBO(CH2)4
H
H
NHCO2Me
OTMS
mCPBA
PMBO(CH2)4
H
H
NHCO2Me
OTMS
O
PMBO(CH2)4
H
H
NHCO2Me
O
OH
oxidation
45
cleavage
PMBO(CH2)4
H
H
NHCO2Me
O
OH
H5IO4
PMBO(CH2)4
H
H
NHCO2Me
O
IO
HO
OH
OHO
OH
PMBO(CH2)4
H
H
NHCO2Me
O
HO
O
N
CO2Me
HO
H
H
O
H
(CH2)4OPMB
OH
oxidative
46
N
CO2Me
HO
H
H
O
H
(CH2)4OPMB
OH
I2
N
CO2Me
HO
H
H
O
H
(CH2)4OPMB
OHI
N
CO2Me
O
H
H
O
H
(CH2)4OPMB
OH
I
H
O
O
I H
(CH2)4OPMB
H
synthesis
iodolactonisation
47
N
CO2Me
O
H
H
O
H
(CH2)4OPMB
OH
I
i. H+, CH(OMe)3, MeOH
ii. CH2=CHCH2SnBu3, AIBN
iii. LDA, MeI
53%
N
CO2Me
O
H
H
O
H
(CH2)4OPMB
OMe
synthesis
alkylation (twice)
48
stereoselectivity
H
R
N
O
O
H
H
H
H
H
I
HMeO2C
H
O
H
I
O R
H
N
H
CO2Me
OMe
MeO
or
49
N
CO2Me
O
H
H
O
H
(CH2)4OPMB
OMe
i. Et3SiH, BF3•OEt2
ii. OsO4, NaIO4
iii. HSCH2CH2SH
50% N
O
H
H
O
H
S
S
OH
CO2Me
synthesis
50
synthesis
N
O
H
H
O
H
S
S
OH
CO2Me
i. Raney Ni
ii. MsCl, Et3N
iii. NaI
73% N
O
H
H
O
H
I
CO2Me
51
synthesis
N
O
H
H
O
H
I
CO2Me
i. TMSI
ii. heat
70%
N
O
H
H
H H
O
H
52

Lecture3 123713B