SlideShare a Scribd company logo
1
Lecture 2: Camera Calibration
Lecture 2
Camera Calibration
Joaquim Salvi
Universitat de Girona
Visual Perception
2
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
3
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
4
Lecture 2: Camera Calibration
– Dense reconstruction – Visual inspection
– Object localization – Camera localization
2.1 Calibration Introduction
• Some applications of this capability include
5
Lecture 2: Camera Calibration
Image courtesy of C. Taylor
“The Scholar of Athens,” Raphael, 1518
2.1 Calibration Introduction – Perspective Imaging
6
Lecture 2: Camera Calibration
W
Z
W
Y
W
X
W
O
w
P
Image Plane
{ }W
u
P
I
Y
I
X
I
O
{ }I
Focal Point
W
Z
W
Y
W
X
W
O
w
P
Image Plane
{ }W
u
P
I
Y
I
X
I
O
{ }I
Focal Point
1
I
u
I I
u u
X
P Y
 
 
  
 
 
1
W
w
W
W w
w W
w
X
Y
P
Z
 
 
 
 
  
 
In pixels
In metrics?
w
l
w
l
0
W
w
W
W w
w W
w
X
Y
l
Z
 
 
 
 
  
 
2.1 Calibration Introduction
7
Lecture 2: Camera Calibration
Modelling
G(X) X ?
Calibration
X !!!
Modelling:
• Determine the equation that approximates the camera behaviour.
• Define the set of unknowns in the equation (camera parameters).
• The camera model is an approximation of the physics & optics of the camera.
Calibration:
• Get the numeric value of every camera parameter.
G(X)
2.1 Calibration Introduction
8
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
9
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
10
Lecture 2: Camera Calibration
2.2 Pinhole Model
Camera
coordinate
system
World
coordinate
system
 0 0,u v
f
CY
CX CZ
CO
WZ
WY WX
WO
wP
Image plane
{ }W
{ }C
uP
dP
IY
IXIO
{ }I
RY
RX
{ }R
RO
Image
coordinate
system
11
Lecture 2: Camera Calibration
2.2 Pinhole Model (Step 1: World to Camera)
Camera
coordinate
system
World
coordinate
system
CY
CX CZ
CO
WZ
WY WX
WO
wP
Image plane
{ }W
{ }C
C
WK
Step 1
12
Lecture 2: Camera Calibration
2.2 Pinhole Model (Step 2: Projection)
Camera
coordinate
system
World
coordinate
system
CY
CX CZ
CO
WZ
WY WX
WO
wP
Image plane
{ }W
{ }C
uP
f
Step 2
wX
wY
wZ
uX
uY
RY
RX
{ }R
RO
13
Lecture 2: Camera Calibration
2.2 Pinhole Model (Step 3: Lens Distortion)
Camera
coordinate
system
World
coordinate
system
f
CY
CX CZ
CO
WZ
WY WX
WO
wP
Image plane
{ }W
{ }C
uP
RY
RX
{ }R
RO
Step 3
dP
14
Lecture 2: Camera Calibration
2.2 Pinhole Model (Step 3: Lens Distortion)
dP
uP dr
CY
CX
Observed position
Ideal
projection
dr: radial distortion
a
b
Radial distortion effect (a: negative, b: positive)
Radial Distortion
15
Lecture 2: Camera Calibration
2.2 Pinhole Model (Step 3: Lens Distortion)
Axis with
maximum
radial
distortion
Axis with
minimum
tangential
distortion
CY
CX
Ideal
projection
Observed
position
dr: radial distortion
dt: tangential distortion
dPuP
dr
CY
CX
dt
Radial and Tangential Distortion
Image with distortionImage without distortion
16
Lecture 2: Camera Calibration
2.2 Pinhole Model (Step 4: Camera to Image)
Camera
coordinate
system
World
coordinate
system
 0 0,u v
f
CY
CX CZ
CO
WZ
WY WX
WO
wP
Image plane
{ }W
{ }C
uP
IY
IXIO
{ }I
RY
RX
{ }R
RO
Image
coordinate
system
Step 4
dP
17
Lecture 2: Camera Calibration
Camera
coordinate
system
World
coordinate
system
 0 0,u v
f
CY
CX CZ
CO
WZ
WY WX
WO
wP
Image plane
{ }W
{ }C
uP
dP
IY
IXIO
{ }I
RY
RX { }R
RO
C
WK
Image
coordinate
system
Step 1
Step 2Step 3
Step 4
2.2 Pinhole Model
18
Lecture 2: Camera Calibration
2.2 Calibration Methods (I)
• Method of Hall
– Lineal method
– Transformation matrix
• Method of Faugeras-Toscani
– Lineal method
– Obtaining camera parameters
• Method of Faugeras-Toscani with distortion
– Iterative method
– Radial distortion
• Method of Tsai
– Iterative method
– Radial distortion
– Focal distance estimation
• Method of Weng
– Iterative method
– Radial and tangential distortion
• … and many more
19
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
20
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
21
Lecture 2: Camera Calibration
2.3 The Method of Hall
• Method of Hall
– Lineal method
– Transformation matrix
• Method of Faugeras-Toscani
– Lineal method
– Obtaining camera parameters
• Method of Faugeras-Toscani with distortion
– Iterative method
– Radial distortion
• Method of Tsai
– Iterative method
– Radial distortion
– Focal distance estimation
• Method of Weng
– Iterative method
– Radial and tangential distortion
• … and many more
22
Lecture 2: Camera Calibration
World
coordinate
system
WZ
WY WX
WO
wP
Image plane
{ }W
uP
IY
IXIO
{ }IImage
coordinate
system
2.3 The Method of Hall - Modelling
23
Lecture 2: Camera Calibration
11 12 13 14
21 22 23 24
31 32 33 34
1
W
I w
u W
I w
u W
w
X
s X A A A A
Y
s Y A A A A
Z
s A A A A
 
    
        
        
 
Assume light is captured on the image plane by a linear projection
The matrix is defined up to a scale factor  Multiple Solutions
A component is fixed to the unity  Unique Solution
11 12 13 14
21 22 23 24
31 32 33 1
1
W
I w
u W
I w
u W
w
X
s X A A A A
Y
s Y A A A A
Z
s A A A
 
    
        
        
 
2.3 The Method of Hall - Modelling
24
Lecture 2: Camera Calibration
11 12 13 14
31 32 33
21 22 23 24
31 32 33
1
1
W W W
I w w w
u W W W
w w w
W W W
I w w w
u W W W
w w w
A X A Y A Z A
X
A X A Y A Z
A X A Y A Z A
Y
A X A Y A Z
  

  
  

  
11 12 13 14
21 22 23 24
31 32 33 1
1
W
I w
u W
I w
u W
w
X
s X A A A A
Y
s Y A A A A
Z
s A A A
 
    
        
        
 
11 31 12 32 13 33 14
21 31 22 32 23 33 24
W I W W I W W I W I
w u w w u w w u w u
W I W W I W W I W I
w u w w u w w u w u
A X A X X A Y A X Y A Z A X Z A X
A X A Y X A Y A Y Y A Z A Y Z A Y
      
      
2.3 The Method of Hall - Calibration
25
Lecture 2: Camera Calibration
 
 
2 1
2
1 0 0 0 0
0 0 0 0 1
W W W I W I W I W
i w w w u w u w u wi i i i i i i i i
W W W I W I W I W
i w w w u w u w u wi i i i i i i i i
Q X Y Z X X X Y X Z
Q X Y Z Y X Y Y Y Z
    
   
 
 
2 1
2
I
i ui
I
i ui
B X
B Y
 

 
T
11 12 13 14 21 22 23 24 31 32 33A A A A A A A A A A A A
 
1
t t
A Q Q Q B


QA B
Pseudoinverse leads to a unique solution:
1
A Q B

Obtaining 11 unknowns and each 2D point gives two equations
So, at least 6 points are needed. More points leads to a more accurate solution.
11 31 12 32 13 33 14
21 31 22 32 23 33 24
W I W W I W W I W I
w u w w u w w u w u
W I W W I W W I W I
w u w w u w w u w u
A X A X X A Y A X Y A Z A X Z A X
A X A Y X A Y A Y Y A Z A Y Z A Y
      
      
2.3 The Method of Hall - Calibration
26
Lecture 2: Camera Calibration
Camera
coordinate
system
CY
CX CZ
CO
{ }C
IY
IXIO
{ }I
RY
RX
RO
{ }R
World
coordinate
system
WZ
WY
WX
WO
{ }W
Reconstruction
Area
Image of the calibrating pattern
 
 
2 1
2
1 0 0 0 0
0 0 0 0 1
W W W I W I W I W
i w w w u w u w u wi i i i i i i i i
W W W I W I W I W
i w w w u w u w u wi i i i i i i i i
Q X Y Z X X X Y X Z
Q X Y Z Y X Y Y Y Z
    
   
 
 
2 1
2
I
i ui
I
i ui
B X
B Y
 
  
1
t t
A Q Q Q B


2.3 The Method of Hall - Calibration
27
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
28
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
29
Lecture 2: Camera Calibration
2.4 The Method of Faugeras-Toscani
• Method of Hall
– Lineal method
– Transformation matrix
• Method of Faugeras-Toscani
– Lineal method
– Obtaining camera parameters
• Method of Faugeras-Toscani with distortion
– Iterative method
– Radial distortion
• Method of Tsai
– Iterative method
– Radial distortion
– Focal distance estimation
• Method of Weng
– Iterative method
– Radial and tangential distortion
• … and many more
30
Lecture 2: Camera Calibration
Camera
coordinate
system
World
coordinate
system
 0 0,u v
f
CY
CX CZ
CO
WZ
WY WX
WO
wP
Image plane
{ }W
{ }C
uP
IY
IXIO
{ }I RY
RX { }R
RO
C
WK
Image
coordinate
system
Step 1
Step 2Step 3
Step 4
2.4 The Method of Faugeras-Toscani
31
Lecture 2: Camera Calibration
• Extrinsic parameters: Model the situation and orientation of the camera with
respect to a world co-ordinate system.
• Intrinsic parameters: Model the behaviour of the internal geometry and the optical
characteristics of the camera.
u
w
v
Yc
Xc
Zc
Oc
Oi
(u0, v0)
Pu
P
image
co-ordinate
system
(píxels)
retinal
co-ordinate
system
(mm.)
Image plane
Retinal plane
Yr
Xr
Zr
w
World
co-ordinate
system
W
Z
W
Y
W
X
W
O { }W
Camera
co-ordinate system
2.4 The Method of Faugeras-Toscani
32
Lecture 2: Camera Calibration
Yc
Xc
Zc
Zw
Yw
Oc
Ow
Pw
Camera
co-ordinate
system World
co-ordinate system
Retinal Plane
K
Xw
X
C
W Y
Z
t
T t
t
 
 
  
 
 
     
11 12 13
21 22 23
31 32 33
, , ,C
W
C
W
R Rot X Rot Y Rot Z
r r r
R r r r
r r r
    
 
 
  
 
 
C W
w w
C C W C
w W w W
C W
w w
X X
Y R Y T
Z Z
   
   
    
   
   
1 1
C W
Cw w
W
P P
K
   
   
   
3 3 3 1
1 30 1
C C
C W Wx x
W
x
R T
K
 
  
 
2.4 Extrinsic Parameters
33
Lecture 2: Camera Calibration
CPw
CPu
Yc
Xc
Zc
Oc C
f
PZc
Yu
PYc Xu
PXc
C
C w
u C
w
C
C w
u C
w
X
X f
Z
Y
Y f
Z


2.4 The Intrinsic Parameters: Ideal Projection
34
Lecture 2: Camera Calibration
pixel
Retinal
plane
(0, 0)
Yr
Xr (0, 0)
(Xd, Yd)
Image
Plane
(Xp, Yp)
R C
d u u
R C
d v u
X k X
Y k Y


2.4 The Intrinsic Parameters: Pixel Conversion
35
Lecture 2: Camera Calibration
Yr
Xr
V
U
(0, 0)
Principal point
(u0,v0)
Computer image
co-ordinate
system
Camera
co-ordinate
system
0
0
I R
d d
I R
d d
X X u
Y Y v
  
  
2.4 The Intrinsic Parameters: Principal Point
36
Lecture 2: Camera Calibration
Camera
coordinate
system
World
coordinate
system
 0 0,u v
f
CY
CX CZ
CO
WZ
WY WX
WO
wP
Image plane
{ }W
{ }C
uP
IY
IXIO
{ }I RY
RX { }R
RO
C
WK
Image
coordinate
system
Step 1
Step 2Step 3
Step 4
2.4 The Method of Faugeras-Toscani
37
Lecture 2: Camera Calibration
Real projection on the image plane(Xi, Yi)
(Xw, Yw, Zw) 3D object point with respect to world co-ordinate system
Affine transformation.
Modelled parameters: R, T
(Xc, Yc, Zc) 3D object point with respect to camera co-ordinate system
Perspective transformation.
Modelled parameter: f
(Xu, Yu) Ideal projection on the retinal plane
Pixel adjustment
Modelled parameters: ku, kv
(Xp,Yp) Real projection on the image plane
Adaptation to the computer image buffer
Modelled parameters: u0, v0
2.4 The Method of Faugeras-Toscani
38
Lecture 2: Camera Calibration
C
C w
u C
w
C
C w
u C
w
X
X f
Z
Y
Y f
Z


R C
d u u
R C
d v u
X k X
Y k Y


0
0
I R
d d
I R
d d
X X u
Y Y v
  
  
0
0
C
I w
u u C
w
C
I w
u v C
w
X
X k f u
Z
Y
Y k f v
Z
  
  
0
0
0 0
0 0
0 0 1 0
1
C
I w
u u C
I w
u v C
w
X
s X u
Y
s Y v
Z
s


 
    
        
        
 
vv
uu
fk
fk




2.4 The Method of Faugeras-Toscani - Modelling
39
Lecture 2: Camera Calibration
11 12 13
0
21 22 23
0
31 32 33
0 0
0 0
0 0 1 0
0 0 0 1 1
W
xI w
u u W
yI w
u v W
z w
r r r t X
s X u
r r r t Y
s Y v
r r r t Z
s


  
      
            
          
  
1 0 3 0
2 0 3 0
3
u u x z
v v y z
z
r u r t u t
A r v r t v t
r t
 
 
  
 
   
 
 
Intrínsecs Extrínsecs
2.4 The Method of Faugeras-Toscani - Modelling
40
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
41
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
42
Lecture 2: Camera Calibration
11 12 13
0
21 22 23
0
31 32 33
0 0
0 0
0 0 1 0
0 0 0 1 1
W
xI w
u u W
yI w
u v W
z w
r r r t X
s X u
r r r t Y
s Y v
r r r t Z
s


  
      
            
          
  
1 0 3 0
2 0 3 0
3
u u x z
v v y z
z
r u r t u t
A r v r t v t
r t
 
 
  
 
   
 
 
Intrínsecs Extrínsecs
2.5 The Method of Faugeras-Toscani – Modelling
43
Lecture 2: Camera Calibration
 
 
1 14 3 34
2 24 3 34
0
0
W I W
w u w
W I W
w u w
A P A X A P A
A P A Y A P A
   
   
31 14
34 34 34
32 24
34 34 34
I W W I
u w w u
I W W I
u w w u
AA A
X P P X
A A A
AA A
Y P P Y
A A A
  
  
1 1 2
3 2 2
I W W I
u w w u
I W W I
u w w u
X T P C T P X
Y T P C T P Y
  
  
v
z
y
v
zz
z
u
z
x
u
zz
t
t
vC
t
r
v
t
r
T
t
r
T
t
t
uC
t
r
u
t
r
T





02
2
0
3
3
3
2
01
1
0
3
1
2.5 The Method of Faugeras-Toscani – Calibration
1 0 3 0
2 0 3 0
3
u u x z
v v y z
z
r u r t u t
A r v r t v t
r t
 
 
  
 
   
 
 











343
242
141
AA
AA
AA





























1
343
242
141
w
W
u
I
u
I
P
AA
AA
AA
s
Ys
Xs
44
Lecture 2: Camera Calibration
1
2
3
1
2
T
T
X T
C
C
 
 
 
 
 
 
 
 
B QX
1 3
1 3
0 1 0
0 0 1
t tW I W
w u w xi i i
t tI W W
x u w wi i i
P X P
Q
Y P P
 
 
 
  
 
 
 
I
ui
I
ui
X
B
Y
 
 
 
 
  
 
 
1
t t
X Q Q Q B


2.5 The Method of Faugeras-Toscani – Calibration
1 1 2
3 2 2
I W W I
u w w u
I W W I
u w w u
X T P C T P X
Y T P C T P Y
  
  
11 unknowns
minimum 6 points
45
Lecture 2: Camera Calibration
v
z
y
v
zz
z
u
z
x
u
zz
t
t
vC
t
r
v
t
r
T
t
r
T
t
t
uC
t
r
u
t
r
T





02
2
0
3
3
3
2
01
1
0
3
1
3 1r 
2
1
zt
T

2.5 The Method of Faugeras-Toscani – tz
𝑅 =
𝑟1
𝑟2
𝑟3
46
Lecture 2: Camera Calibration
1 2 1 2
1 2 1 2
cos
sin
v v v v
v v v v



 
0
1
1
0
t
i j
t
i j
i j
i j
r r i j
r r i j
r r i j
r r i j
 
 
  
  
v
z
y
v
zz
z
u
z
x
u
zz
t
t
vC
t
r
v
t
r
T
t
r
T
t
t
uC
t
r
u
t
r
T





02
2
0
3
3
3
2
01
1
0
3
1
2.5 The Method of Faugeras-Toscani – Intrinsics
02
3313
0
3331
0
3
2121
·
· u
t
rr
t
r
t
r
u
t
r
t
r
t
r
t
r
u
t
r
TTTT
z
u
zzzzz
u
zz
t






 
2
1
zt
T

2
2
21
0
T
TT
u
t

47
Lecture 2: Camera Calibration
1 2 1 2
1 2 1 2
cos
sin
v v v v
v v v v



 
0
1
1
0
t
i j
t
i j
i j
i j
r r i j
r r i j
r r i j
r r i j
 
 
  
  
v
z
y
v
zz
z
u
z
x
u
zz
t
t
vC
t
r
v
t
r
T
t
r
T
t
t
uC
t
r
u
t
r
T





02
2
0
3
3
3
2
01
1
0
3
1
2 31 2
0 02 2
2 2
1 2 2 3
2 2
2 2
tt
t t t t
u v
T TT T
u v
T T
T T T T
T T
 
 
 
 
2.5 The Method of Faugeras-Toscani – Intrinsics
48
Lecture 2: Camera Calibration
1 2 1 2
1 2 1 2
cos
sin
v v v v
v v v v



 
0
1
1
0
t
i j
t
i j
i j
i j
r r i j
r r i j
r r i j
r r i j
 
 
  
  
v
z
y
v
zz
z
u
z
x
u
zz
t
t
vC
t
r
v
t
r
T
t
r
T
t
t
uC
t
r
u
t
r
T





02
2
0
3
3
3
2
01
1
0
3
1
2.5 The Method of Faugeras-Toscani – Extrinsics
tt
t
tt
t
u
z
z
u
zz
TT
T
T
TT
TTr
TTT
T
T
TT
TTr
t
u
t
r
Tr
t
r
u
t
r
T
21
2
2
2
21
211
221
2
2
2
2
21
2110
3
11
1
0
3
1
1


























49
Lecture 2: Camera Calibration
1 2 1 2
1 2 1 2
cos
sin
v v v v
v v v v



 
0
1
1
0
t
i j
t
i j
i j
i j
r r i j
r r i j
r r i j
r r i j
 
 
  
  
v
z
y
v
zz
z
u
z
x
u
zz
t
t
vC
t
r
v
t
r
T
t
r
T
t
t
uC
t
r
u
t
r
T





02
2
0
3
3
3
2
01
1
0
3
1
2 1 2
1 1 22
1 2 2
2 2 3
2 3 22
2 3 2
2
3
2
t
t t
t
t t
T T T
r T T
T T T
T T T
r T T
T T T
T
r
T
 
  
   
 
  
   

2 1 2
1 2
1 2 2
2 2 3
2 2
2 3 2
2
1
t
x t t
t
y t t
z
T T T
t C
T T T
T T T
t C
T T T
t
T
 
  
   
 
  
   

2.5 The Method of Faugeras-Toscani – Extrinsics
50
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
51
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
52
Lecture 2: Camera Calibration
2.6 The Method of Faugeras-Toscani with distortion
• Method of Hall
– Lineal method
– Transformation matrix
• Method of Faugeras-Toscani
– Lineal method
– Obtaining camera parameters
• Method of Faugeras-Toscani with distortion
– Iterative method
– Radial distortion
• Method of Tsai
– Iterative method
– Radial distortion
– Focal distance estimation
• Method of Weng
– Iterative method
– Radial and tangential distortion
• … and many more
53
Lecture 2: Camera Calibration
Camera
coordinate
system
World
coordinate
system
 0 0,u v
f
CY
CX CZ
CO
WZ
WY WX
WO
wP
Image plane
{ }W
{ }C
uP
dP
IY
IXIO
{ }I
RY
RX { }R
RO
C
WK
Image
coordinate
system
Step 1
Step 2Step 3
Step 5
Step 4
2.6 The Method of Faugeras-Toscani with distortion
54
Lecture 2: Camera Calibration
Ideal
projection
Observed
position
dr dt
Xr
Yr
dr: radial distortion
dt: tangential distortion
Pu
Pd
2.6 Lens Distortion
55
Lecture 2: Camera Calibration
a
b
Radial distorsion effect Tangential distorsion effect
Xr
Axe of a
maximum
tangential
distortion
Axe of a
minimum
tangential
distortion
Radial distorsion is the most important and usually the only considered in
calibration.
2.6 Lens Distortion
56
Lecture 2: Camera Calibration
X X Du d x  Y Y Du d y 
D X k rx d 1
2
D Y k ry d 1
2
r X Yd d 2 2
 
 
2 4
1 2
2 4
1 2
2 2
C
x d
C
y d
C C
d d
D X k r k r
D Y k r k r
r X Y
  
  
 
k1 is the most important component
and usuallly sufficient in most
applications.
2.6 Lens Distortion
Model of Faugeras-Toscani with distortion:
57
Lecture 2: Camera Calibration
u
w
v
Yc
Xc
Zc
Oc
Oi
(u0, v0)
Pu
P
Camera
co-ordinate system
image
co-ordinate
system
f Pd
retinal
co-ordinate
system
Image plane
Retinal plane
Yr
Xr
Zr
X
f
P
P
u Xc
Zc

Y
f
P
P
u Yc
Zc

X X Du d x  Y Y Du d y 
D X k rx d 1
2
D Y k ry d 1
2
r X Yd d 2 2
X k Xp u d Y k Yp v d
X X ui p   0 Y Y vi p   0
2.6 The Method of Faugeras-Toscani with distortion
58
Lecture 2: Camera Calibration
Camera
coordinate
system
World
coordinate
system
 0 0,u v
f
CY
CX CZ
CO
WZ
WY WX
WO
wP
Image plane
{ }W
{ }C
uP
dP
IY
IXIO
{ }I
RY
RX { }R
RO
C
WK
Image
coordinate
system
Step 1
Step 2Step 3
Step 5
Step 4
2.6 The Method of Faugeras-Toscani with distortion
59
Lecture 2: Camera Calibration
(Xw, Yw, Zw) 3D object point with respect to world co-ordinate system
Affine transformation.
Modelled parameters: R, T
(Xc, Yc, Zc) 3D object point with respect to camera co-ordinate system
Perspective transformation.
Modelled parameter: f
(Xu, Yu) Ideal projection on the retinal plane
Radial lens distortion.
Modelled parameter: k1
(Xd, Yd) Real projection on the retinal plane
Pixel adjustment
Modelled parameters: ku, kv
(Xp,Yp ) Real projection on the image plane
Adaptation to the computer image buffer
Modelled parameters: u0, v0
(Xi, Yi) Real projection on the image plane
2.6 The Method of Faugeras-Toscani with distortion
60
Lecture 2: Camera Calibration
2
1
2
1
C
C Cw
d dC
w
C
C Cw
d dC
w
X
f X k r X
Z
Y
f Y k r Y
Z
 
 
 
 
0
0
I
dC
d
u
I
dC
d
v
X u
X
k
Y v
Y
k





 1 1
C W
w w
C W
Cw w
WC W
w w
X X
Y Y
K
Z Z
   
   
   
   
      
   
r X Yd d 2 2
The model is NON-LINEAR
Iterative minimisation:
• Newton-Raphson
• Levenberg-Marquardt
2.6 The Method of Faugeras-Toscani with distortion
61
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
62
Lecture 2: Camera Calibration
Contents
2. Camera Calibration
2.1 Calibration introduction
2.2 The pinhole model
2.3 The method of Hall
2.4 The method of Faugeras-Toscani – Modelling
2.5 The method of Faugeras-Toscani – Calibration
2.6 The method of Faugeras-Toscani with distortion
2.7 Experimental comparison of methods
63
Lecture 2: Camera Calibration
Hall Faugeras Faugeras
distorted
Tsai Weng
Transformation
matrix
Step 3
Lens
Distortion
Step 2
Projection
Step 1
World2camera
Transformation
with , , , tx, ty and tz
Projection with f
Radial distortion with k1
Undistorted
Multiple
distortion
k1, g1, g2, g3, g4
Transformation with
u0, v0 , ku and kv
Transformation
with u0, v0 and sx Transformation
with u0, v0,
ku and kv
Step 4
Camera2image
C C W C
w W w WP P T R
,
C C
C Cw w
u uC C
w w
X Y
X f Y f
Z Z
 
C C
w uP P
C C
u dP P
C I
d dP P
C C
u dP P
0
0
I C
d u d
I C
d v d
X k X u
Y k Y v
  
  
 
 
2 2
1
2 2
1
C C C C C
u d u u u
C C C C C
u d u u u
X X k X X Y
Y Y k Y X Y
  
  
1'
0
1
0
I C
d x x d
I C
d y d
X s d X u
Y d Y v


  
  
=
W C
w wP P
I W
d wP P A
2.7 Experimental Comparison - Methods
64
Lecture 2: Camera Calibration
wP
Optical Ray
3Dd
2.7 Experimental Comparison - Accuracy Evaluation
• 3D Measurement
– Distance with respect to the optical ray
– Normalized Stereo Calibration Error
• 2D Measurement
– Accuracy of distorted image coordinates
– Accuracy of undistorted image
coordinates    
 
1 22 2
2 2 2
1
ˆ ˆ
1
NSCE
ˆ 12
C C C C
n
w w w wi i i i
C
i w u vi
X X Y Y
n Z  
 

   
 
 
  

Camera
coordinate
system
World
coordinate
system
f
CY
CX
WZ
WX
WO
wP
Image plane
{ }W
uP
dP
IX{ }I
RX
{ }R
RO
Image
coordinate
system
ˆ
uP
ˆ
dP
 0 0,u v
WY
CZ
CO { }C
IY
IO
RY
uP
ˆ
uP
 0 0,u v
dd
Observed Point
Linear Projection
- distortion
+ distortion
ud
ˆ
dP
dP
65
Lecture 2: Camera Calibration
2.7 Experimental Comparison: Synthetic Images (I)
2D distorted image (pix.) 2D undistorted image (pix.)
Mean Standard
desviation
Max Min Mean Standard
desviation
Max Min
1 Hall 0.2676 0.1979 1.2701 0.0213 0.2676 0.1979 1.2701 0.0213
2 Faugeras 0.2689 0.1997 1.2377 0.0075 0.2689 0.1997 1.2377 0.0075
3 Faugeras with distortion 0.0840 0.0458 0.2603 0.0081 0.0834 0.0454 0.2561 0.0080
4 Tsai 0.0838 0.0457 0.2426 0.0035 0.0832 0.0453 0.2386 0.0035
5 Weng 0.0845 0.0455 0.2608 0.0019 0.0843 0.0443 0.2584 0.0129
2D distorted
0
0,05
0,1
0,15
0,2
0,25
0,3
1 2 3 4 5
pix.
Mean Standard deviation
2D undistorted
0
0,05
0,1
0,15
0,2
0,25
0,3
1 2 3 4 5
pix.
Mean Standard deviation
66
Lecture 2: Camera Calibration
2.7 Experimental Comparison: Synthetic Images (II)
3D position (mm) NSCE
Mean Standard
desviation
Max Min
1 Hall 0.1615 0.1028 0.5634 0.0113 n/a
2 Faugeras 0.1811 0.1357 0.8707 0.0147 0.6555
3 Faugeras NR with distortion 0.0566 0.0307 0.1694 0.0055 0.2042
4 Tsai optimized 0.0565 0.0306 0.1578 0.0087 0.2037
5 Weng 0.0570 0.0305 0.1696 0.0088 0.2064
Normalized Stereo Calibration Error
Normalized Stereo Calibration Error
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
1 2 3 4 5
NSCE
3D position
0
0,05
0,1
0,15
0,2
1 2 3 4 5
mm.
Mean Standard deviation
67
Lecture 2: Camera Calibration
Computing Time
160 punts 1800 punts
• Hall 1 ms 70 ms
• Faugeras 1 ms 70 ms
• Faugeras with distortion 10 ms 380 ms
• Tsai 10 ms 530 ms
• Weng 51 ms 4216 ms
Pentium III at 1 GHz.
2.7 Experimental Comparison: Synthetic Images (III)
68
Lecture 2: Camera Calibration
2.7 Experimental Comparison: Real Images (I)
Camera
coordinate
system
CY
CX CZ
CO
{ }C
IY
IXIO
{ }I
RY
RX
RO
{ }R
World
coordinate
system
WZ
WY
WX
WO
{ }W
Reconstruction
Area
Image of the calibrating pattern
3D position (mm) NSCE
Mean Standard
desviation
Max Min
Hall 0.5219 0.2595 1.1370 0.0143 n/a
Faugeras 0.7782 0.4253 2.0210 0.0187 4.0649
Faugeras with distortion 0.4967 0.3367 1.5642 0.0094 2.5489
Tsai 0.4815 0.3023 1.4014 0.0093 2.4836
Weng 0.4740 0.2904 1.2669 0.0087 2.4556
69
Lecture 2: Camera Calibration
2.7 Experimental Comparison: Real Images (II)
3D position (mm) NSCE
Mean Standard
desviation
Max Min
Hall 1.5698 0.9842 8.9249 0.0247 n/a
Faugeras 1.6187 0.9856 8.8812 0.0302 2.0175
Faugeras with distortion 0.9930 0.5660 3.2386 0.0154 0.9909
Tsai 0.9927 0.5655 3.2311 0.0153 0.9908
Weng 0.9896 0.5724 3.3526 0.0149 0.9869
Image of the calibration patternStereo camera over a mobile robot
70
Lecture 2: Camera Calibration
2.7 Experimental Comparison - Conclusions
• Implementation of 5 of the most used camera calibration
methods
– Notation was unified
– The methods were compared in terms of model and
calibration
• The accuracy of non-linear methods is better than linear
methods
• Modelling of radial distortion is quite sufficient when high
accuracy is required
• Accuracy measuring methods obtain similar results if they are
relatively compared
Additional bibliography:
J. Salvi, X. Armangué and J. Batlle. A Comparative Review of Camera
Calibrating Methods with Accuracy Evaluation. Pattern Recognition,
PR, pp. 1617-1635, Vol. 35, Issue 7, July 2002.

More Related Content

What's hot

Unit 3 machine vision
Unit 3 machine vision Unit 3 machine vision
Unit 3 machine vision
Dr.G.Saravanan
 
Image denoising
Image denoisingImage denoising
Image denoising
Haitham Ahmed
 
Point processing
Point processingPoint processing
Point processing
panupriyaa7
 
Robot Machine Vision
Robot Machine VisionRobot Machine Vision
Robot Machine Vision
anand hd
 
ppt on image processing
ppt on image processingppt on image processing
ppt on image processing
sangeethachinnasamy
 
Unit 3 machine vision
Unit 3 machine vision Unit 3 machine vision
Unit 3 machine vision
rknatarajan
 
camera calibration
 camera calibration camera calibration
camera calibration
Sandeep Sasidharan
 
EDGE DETECTION
EDGE DETECTIONEDGE DETECTION
EDGE DETECTION
VIKAS SINGH BHADOURIA
 
The inverse kinematics problem - Aiman Al-Allaq
The inverse kinematics problem - Aiman Al-AllaqThe inverse kinematics problem - Aiman Al-Allaq
The inverse kinematics problem - Aiman Al-Allaq
AimanAlAllaq
 
Machine vision
Machine visionMachine vision
Machine vision
djehlke
 
Object Recognition
Object RecognitionObject Recognition
Object Recognition
Eman Abed AlWahhab
 
IMAGE SEGMENTATION.
IMAGE SEGMENTATION.IMAGE SEGMENTATION.
IMAGE SEGMENTATION.
Tawose Olamide Timothy
 
Digital Image Processing: Digital Image Fundamentals
Digital Image Processing: Digital Image FundamentalsDigital Image Processing: Digital Image Fundamentals
Digital Image Processing: Digital Image Fundamentals
Mostafa G. M. Mostafa
 
Introduction to Object recognition
Introduction to Object recognitionIntroduction to Object recognition
Introduction to Object recognition
Ashiq Ullah
 
Edge detection
Edge detectionEdge detection
Edge detection
Ishraq Al Fataftah
 
Digital Image Processing 3rd edition Rafael C. Gonzalez, Richard E. Woods.pdf
Digital Image Processing 3rd edition Rafael C. Gonzalez, Richard E. Woods.pdfDigital Image Processing 3rd edition Rafael C. Gonzalez, Richard E. Woods.pdf
Digital Image Processing 3rd edition Rafael C. Gonzalez, Richard E. Woods.pdf
ssuserbe3944
 
Watershed Segmentation Image Processing
Watershed Segmentation Image ProcessingWatershed Segmentation Image Processing
Watershed Segmentation Image Processing
Arshad Hussain
 
Chapter 1 and 2 gonzalez and woods
Chapter 1 and 2 gonzalez and woodsChapter 1 and 2 gonzalez and woods
Chapter 1 and 2 gonzalez and woods
asodariyabhavesh
 
Computer vision and robotics
Computer vision and roboticsComputer vision and robotics
Computer vision and robotics
Biniam Asnake
 
Object tracking presentation
Object tracking  presentationObject tracking  presentation
Object tracking presentation
MrsShwetaBanait1
 

What's hot (20)

Unit 3 machine vision
Unit 3 machine vision Unit 3 machine vision
Unit 3 machine vision
 
Image denoising
Image denoisingImage denoising
Image denoising
 
Point processing
Point processingPoint processing
Point processing
 
Robot Machine Vision
Robot Machine VisionRobot Machine Vision
Robot Machine Vision
 
ppt on image processing
ppt on image processingppt on image processing
ppt on image processing
 
Unit 3 machine vision
Unit 3 machine vision Unit 3 machine vision
Unit 3 machine vision
 
camera calibration
 camera calibration camera calibration
camera calibration
 
EDGE DETECTION
EDGE DETECTIONEDGE DETECTION
EDGE DETECTION
 
The inverse kinematics problem - Aiman Al-Allaq
The inverse kinematics problem - Aiman Al-AllaqThe inverse kinematics problem - Aiman Al-Allaq
The inverse kinematics problem - Aiman Al-Allaq
 
Machine vision
Machine visionMachine vision
Machine vision
 
Object Recognition
Object RecognitionObject Recognition
Object Recognition
 
IMAGE SEGMENTATION.
IMAGE SEGMENTATION.IMAGE SEGMENTATION.
IMAGE SEGMENTATION.
 
Digital Image Processing: Digital Image Fundamentals
Digital Image Processing: Digital Image FundamentalsDigital Image Processing: Digital Image Fundamentals
Digital Image Processing: Digital Image Fundamentals
 
Introduction to Object recognition
Introduction to Object recognitionIntroduction to Object recognition
Introduction to Object recognition
 
Edge detection
Edge detectionEdge detection
Edge detection
 
Digital Image Processing 3rd edition Rafael C. Gonzalez, Richard E. Woods.pdf
Digital Image Processing 3rd edition Rafael C. Gonzalez, Richard E. Woods.pdfDigital Image Processing 3rd edition Rafael C. Gonzalez, Richard E. Woods.pdf
Digital Image Processing 3rd edition Rafael C. Gonzalez, Richard E. Woods.pdf
 
Watershed Segmentation Image Processing
Watershed Segmentation Image ProcessingWatershed Segmentation Image Processing
Watershed Segmentation Image Processing
 
Chapter 1 and 2 gonzalez and woods
Chapter 1 and 2 gonzalez and woodsChapter 1 and 2 gonzalez and woods
Chapter 1 and 2 gonzalez and woods
 
Computer vision and robotics
Computer vision and roboticsComputer vision and robotics
Computer vision and robotics
 
Object tracking presentation
Object tracking  presentationObject tracking  presentation
Object tracking presentation
 

More from Joaquim Salvi

Presentació Politècnica UdG
Presentació Politècnica UdGPresentació Politècnica UdG
Presentació Politècnica UdG
Joaquim Salvi
 
Lecture 5 Pattern Projection Techniques
Lecture 5   Pattern Projection TechniquesLecture 5   Pattern Projection Techniques
Lecture 5 Pattern Projection Techniques
Joaquim Salvi
 
Lecture 4 Reconstruction from Two Views
Lecture 4   Reconstruction from Two ViewsLecture 4   Reconstruction from Two Views
Lecture 4 Reconstruction from Two Views
Joaquim Salvi
 
Lecture 1 Rigid Body Transformations
Lecture 1   Rigid Body TransformationsLecture 1   Rigid Body Transformations
Lecture 1 Rigid Body Transformations
Joaquim Salvi
 
Tema 6 Lògica Programable
Tema 6   Lògica ProgramableTema 6   Lògica Programable
Tema 6 Lògica Programable
Joaquim Salvi
 
Tema 5 Sistemes Seqüencials
Tema 5   Sistemes SeqüencialsTema 5   Sistemes Seqüencials
Tema 5 Sistemes Seqüencials
Joaquim Salvi
 
Tema 4 Sistemes Combinacionals
Tema 4   Sistemes CombinacionalsTema 4   Sistemes Combinacionals
Tema 4 Sistemes Combinacionals
Joaquim Salvi
 
Tema 3 Àlgebra de Boole
Tema 3   Àlgebra de BooleTema 3   Àlgebra de Boole
Tema 3 Àlgebra de Boole
Joaquim Salvi
 
Tema 2 Representació de la informació
Tema 2   Representació de la informacióTema 2   Representació de la informació
Tema 2 Representació de la informació
Joaquim Salvi
 
Tema 1 Introducció a l'Estructura i a la Tecnologia de Computadors
Tema 1 Introducció a l'Estructura i a la Tecnologia de ComputadorsTema 1 Introducció a l'Estructura i a la Tecnologia de Computadors
Tema 1 Introducció a l'Estructura i a la Tecnologia de Computadors
Joaquim Salvi
 

More from Joaquim Salvi (10)

Presentació Politècnica UdG
Presentació Politècnica UdGPresentació Politècnica UdG
Presentació Politècnica UdG
 
Lecture 5 Pattern Projection Techniques
Lecture 5   Pattern Projection TechniquesLecture 5   Pattern Projection Techniques
Lecture 5 Pattern Projection Techniques
 
Lecture 4 Reconstruction from Two Views
Lecture 4   Reconstruction from Two ViewsLecture 4   Reconstruction from Two Views
Lecture 4 Reconstruction from Two Views
 
Lecture 1 Rigid Body Transformations
Lecture 1   Rigid Body TransformationsLecture 1   Rigid Body Transformations
Lecture 1 Rigid Body Transformations
 
Tema 6 Lògica Programable
Tema 6   Lògica ProgramableTema 6   Lògica Programable
Tema 6 Lògica Programable
 
Tema 5 Sistemes Seqüencials
Tema 5   Sistemes SeqüencialsTema 5   Sistemes Seqüencials
Tema 5 Sistemes Seqüencials
 
Tema 4 Sistemes Combinacionals
Tema 4   Sistemes CombinacionalsTema 4   Sistemes Combinacionals
Tema 4 Sistemes Combinacionals
 
Tema 3 Àlgebra de Boole
Tema 3   Àlgebra de BooleTema 3   Àlgebra de Boole
Tema 3 Àlgebra de Boole
 
Tema 2 Representació de la informació
Tema 2   Representació de la informacióTema 2   Representació de la informació
Tema 2 Representació de la informació
 
Tema 1 Introducció a l'Estructura i a la Tecnologia de Computadors
Tema 1 Introducció a l'Estructura i a la Tecnologia de ComputadorsTema 1 Introducció a l'Estructura i a la Tecnologia de Computadors
Tema 1 Introducció a l'Estructura i a la Tecnologia de Computadors
 

Recently uploaded

ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
PECB
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
สมใจ จันสุกสี
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
siemaillard
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
TechSoup
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Denish Jangid
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
heathfieldcps1
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
iammrhaywood
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Diana Rendina
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
Himanshu Rai
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 

Recently uploaded (20)

ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
ISO/IEC 27001, ISO/IEC 42001, and GDPR: Best Practices for Implementation and...
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 

Lecture 2 Camera Calibration

  • 1. 1 Lecture 2: Camera Calibration Lecture 2 Camera Calibration Joaquim Salvi Universitat de Girona Visual Perception
  • 2. 2 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 3. 3 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 4. 4 Lecture 2: Camera Calibration – Dense reconstruction – Visual inspection – Object localization – Camera localization 2.1 Calibration Introduction • Some applications of this capability include
  • 5. 5 Lecture 2: Camera Calibration Image courtesy of C. Taylor “The Scholar of Athens,” Raphael, 1518 2.1 Calibration Introduction – Perspective Imaging
  • 6. 6 Lecture 2: Camera Calibration W Z W Y W X W O w P Image Plane { }W u P I Y I X I O { }I Focal Point W Z W Y W X W O w P Image Plane { }W u P I Y I X I O { }I Focal Point 1 I u I I u u X P Y            1 W w W W w w W w X Y P Z              In pixels In metrics? w l w l 0 W w W W w w W w X Y l Z              2.1 Calibration Introduction
  • 7. 7 Lecture 2: Camera Calibration Modelling G(X) X ? Calibration X !!! Modelling: • Determine the equation that approximates the camera behaviour. • Define the set of unknowns in the equation (camera parameters). • The camera model is an approximation of the physics & optics of the camera. Calibration: • Get the numeric value of every camera parameter. G(X) 2.1 Calibration Introduction
  • 8. 8 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 9. 9 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 10. 10 Lecture 2: Camera Calibration 2.2 Pinhole Model Camera coordinate system World coordinate system  0 0,u v f CY CX CZ CO WZ WY WX WO wP Image plane { }W { }C uP dP IY IXIO { }I RY RX { }R RO Image coordinate system
  • 11. 11 Lecture 2: Camera Calibration 2.2 Pinhole Model (Step 1: World to Camera) Camera coordinate system World coordinate system CY CX CZ CO WZ WY WX WO wP Image plane { }W { }C C WK Step 1
  • 12. 12 Lecture 2: Camera Calibration 2.2 Pinhole Model (Step 2: Projection) Camera coordinate system World coordinate system CY CX CZ CO WZ WY WX WO wP Image plane { }W { }C uP f Step 2 wX wY wZ uX uY RY RX { }R RO
  • 13. 13 Lecture 2: Camera Calibration 2.2 Pinhole Model (Step 3: Lens Distortion) Camera coordinate system World coordinate system f CY CX CZ CO WZ WY WX WO wP Image plane { }W { }C uP RY RX { }R RO Step 3 dP
  • 14. 14 Lecture 2: Camera Calibration 2.2 Pinhole Model (Step 3: Lens Distortion) dP uP dr CY CX Observed position Ideal projection dr: radial distortion a b Radial distortion effect (a: negative, b: positive) Radial Distortion
  • 15. 15 Lecture 2: Camera Calibration 2.2 Pinhole Model (Step 3: Lens Distortion) Axis with maximum radial distortion Axis with minimum tangential distortion CY CX Ideal projection Observed position dr: radial distortion dt: tangential distortion dPuP dr CY CX dt Radial and Tangential Distortion Image with distortionImage without distortion
  • 16. 16 Lecture 2: Camera Calibration 2.2 Pinhole Model (Step 4: Camera to Image) Camera coordinate system World coordinate system  0 0,u v f CY CX CZ CO WZ WY WX WO wP Image plane { }W { }C uP IY IXIO { }I RY RX { }R RO Image coordinate system Step 4 dP
  • 17. 17 Lecture 2: Camera Calibration Camera coordinate system World coordinate system  0 0,u v f CY CX CZ CO WZ WY WX WO wP Image plane { }W { }C uP dP IY IXIO { }I RY RX { }R RO C WK Image coordinate system Step 1 Step 2Step 3 Step 4 2.2 Pinhole Model
  • 18. 18 Lecture 2: Camera Calibration 2.2 Calibration Methods (I) • Method of Hall – Lineal method – Transformation matrix • Method of Faugeras-Toscani – Lineal method – Obtaining camera parameters • Method of Faugeras-Toscani with distortion – Iterative method – Radial distortion • Method of Tsai – Iterative method – Radial distortion – Focal distance estimation • Method of Weng – Iterative method – Radial and tangential distortion • … and many more
  • 19. 19 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 20. 20 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 21. 21 Lecture 2: Camera Calibration 2.3 The Method of Hall • Method of Hall – Lineal method – Transformation matrix • Method of Faugeras-Toscani – Lineal method – Obtaining camera parameters • Method of Faugeras-Toscani with distortion – Iterative method – Radial distortion • Method of Tsai – Iterative method – Radial distortion – Focal distance estimation • Method of Weng – Iterative method – Radial and tangential distortion • … and many more
  • 22. 22 Lecture 2: Camera Calibration World coordinate system WZ WY WX WO wP Image plane { }W uP IY IXIO { }IImage coordinate system 2.3 The Method of Hall - Modelling
  • 23. 23 Lecture 2: Camera Calibration 11 12 13 14 21 22 23 24 31 32 33 34 1 W I w u W I w u W w X s X A A A A Y s Y A A A A Z s A A A A                            Assume light is captured on the image plane by a linear projection The matrix is defined up to a scale factor  Multiple Solutions A component is fixed to the unity  Unique Solution 11 12 13 14 21 22 23 24 31 32 33 1 1 W I w u W I w u W w X s X A A A A Y s Y A A A A Z s A A A                            2.3 The Method of Hall - Modelling
  • 24. 24 Lecture 2: Camera Calibration 11 12 13 14 31 32 33 21 22 23 24 31 32 33 1 1 W W W I w w w u W W W w w w W W W I w w w u W W W w w w A X A Y A Z A X A X A Y A Z A X A Y A Z A Y A X A Y A Z               11 12 13 14 21 22 23 24 31 32 33 1 1 W I w u W I w u W w X s X A A A A Y s Y A A A A Z s A A A                            11 31 12 32 13 33 14 21 31 22 32 23 33 24 W I W W I W W I W I w u w w u w w u w u W I W W I W W I W I w u w w u w w u w u A X A X X A Y A X Y A Z A X Z A X A X A Y X A Y A Y Y A Z A Y Z A Y               2.3 The Method of Hall - Calibration
  • 25. 25 Lecture 2: Camera Calibration     2 1 2 1 0 0 0 0 0 0 0 0 1 W W W I W I W I W i w w w u w u w u wi i i i i i i i i W W W I W I W I W i w w w u w u w u wi i i i i i i i i Q X Y Z X X X Y X Z Q X Y Z Y X Y Y Y Z              2 1 2 I i ui I i ui B X B Y      T 11 12 13 14 21 22 23 24 31 32 33A A A A A A A A A A A A   1 t t A Q Q Q B   QA B Pseudoinverse leads to a unique solution: 1 A Q B  Obtaining 11 unknowns and each 2D point gives two equations So, at least 6 points are needed. More points leads to a more accurate solution. 11 31 12 32 13 33 14 21 31 22 32 23 33 24 W I W W I W W I W I w u w w u w w u w u W I W W I W W I W I w u w w u w w u w u A X A X X A Y A X Y A Z A X Z A X A X A Y X A Y A Y Y A Z A Y Z A Y               2.3 The Method of Hall - Calibration
  • 26. 26 Lecture 2: Camera Calibration Camera coordinate system CY CX CZ CO { }C IY IXIO { }I RY RX RO { }R World coordinate system WZ WY WX WO { }W Reconstruction Area Image of the calibrating pattern     2 1 2 1 0 0 0 0 0 0 0 0 1 W W W I W I W I W i w w w u w u w u wi i i i i i i i i W W W I W I W I W i w w w u w u w u wi i i i i i i i i Q X Y Z X X X Y X Z Q X Y Z Y X Y Y Y Z              2 1 2 I i ui I i ui B X B Y      1 t t A Q Q Q B   2.3 The Method of Hall - Calibration
  • 27. 27 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 28. 28 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 29. 29 Lecture 2: Camera Calibration 2.4 The Method of Faugeras-Toscani • Method of Hall – Lineal method – Transformation matrix • Method of Faugeras-Toscani – Lineal method – Obtaining camera parameters • Method of Faugeras-Toscani with distortion – Iterative method – Radial distortion • Method of Tsai – Iterative method – Radial distortion – Focal distance estimation • Method of Weng – Iterative method – Radial and tangential distortion • … and many more
  • 30. 30 Lecture 2: Camera Calibration Camera coordinate system World coordinate system  0 0,u v f CY CX CZ CO WZ WY WX WO wP Image plane { }W { }C uP IY IXIO { }I RY RX { }R RO C WK Image coordinate system Step 1 Step 2Step 3 Step 4 2.4 The Method of Faugeras-Toscani
  • 31. 31 Lecture 2: Camera Calibration • Extrinsic parameters: Model the situation and orientation of the camera with respect to a world co-ordinate system. • Intrinsic parameters: Model the behaviour of the internal geometry and the optical characteristics of the camera. u w v Yc Xc Zc Oc Oi (u0, v0) Pu P image co-ordinate system (píxels) retinal co-ordinate system (mm.) Image plane Retinal plane Yr Xr Zr w World co-ordinate system W Z W Y W X W O { }W Camera co-ordinate system 2.4 The Method of Faugeras-Toscani
  • 32. 32 Lecture 2: Camera Calibration Yc Xc Zc Zw Yw Oc Ow Pw Camera co-ordinate system World co-ordinate system Retinal Plane K Xw X C W Y Z t T t t                  11 12 13 21 22 23 31 32 33 , , ,C W C W R Rot X Rot Y Rot Z r r r R r r r r r r                 C W w w C C W C w W w W C W w w X X Y R Y T Z Z                      1 1 C W Cw w W P P K             3 3 3 1 1 30 1 C C C W Wx x W x R T K        2.4 Extrinsic Parameters
  • 33. 33 Lecture 2: Camera Calibration CPw CPu Yc Xc Zc Oc C f PZc Yu PYc Xu PXc C C w u C w C C w u C w X X f Z Y Y f Z   2.4 The Intrinsic Parameters: Ideal Projection
  • 34. 34 Lecture 2: Camera Calibration pixel Retinal plane (0, 0) Yr Xr (0, 0) (Xd, Yd) Image Plane (Xp, Yp) R C d u u R C d v u X k X Y k Y   2.4 The Intrinsic Parameters: Pixel Conversion
  • 35. 35 Lecture 2: Camera Calibration Yr Xr V U (0, 0) Principal point (u0,v0) Computer image co-ordinate system Camera co-ordinate system 0 0 I R d d I R d d X X u Y Y v       2.4 The Intrinsic Parameters: Principal Point
  • 36. 36 Lecture 2: Camera Calibration Camera coordinate system World coordinate system  0 0,u v f CY CX CZ CO WZ WY WX WO wP Image plane { }W { }C uP IY IXIO { }I RY RX { }R RO C WK Image coordinate system Step 1 Step 2Step 3 Step 4 2.4 The Method of Faugeras-Toscani
  • 37. 37 Lecture 2: Camera Calibration Real projection on the image plane(Xi, Yi) (Xw, Yw, Zw) 3D object point with respect to world co-ordinate system Affine transformation. Modelled parameters: R, T (Xc, Yc, Zc) 3D object point with respect to camera co-ordinate system Perspective transformation. Modelled parameter: f (Xu, Yu) Ideal projection on the retinal plane Pixel adjustment Modelled parameters: ku, kv (Xp,Yp) Real projection on the image plane Adaptation to the computer image buffer Modelled parameters: u0, v0 2.4 The Method of Faugeras-Toscani
  • 38. 38 Lecture 2: Camera Calibration C C w u C w C C w u C w X X f Z Y Y f Z   R C d u u R C d v u X k X Y k Y   0 0 I R d d I R d d X X u Y Y v       0 0 C I w u u C w C I w u v C w X X k f u Z Y Y k f v Z       0 0 0 0 0 0 0 0 1 0 1 C I w u u C I w u v C w X s X u Y s Y v Z s                              vv uu fk fk     2.4 The Method of Faugeras-Toscani - Modelling
  • 39. 39 Lecture 2: Camera Calibration 11 12 13 0 21 22 23 0 31 32 33 0 0 0 0 0 0 1 0 0 0 0 1 1 W xI w u u W yI w u v W z w r r r t X s X u r r r t Y s Y v r r r t Z s                                        1 0 3 0 2 0 3 0 3 u u x z v v y z z r u r t u t A r v r t v t r t                  Intrínsecs Extrínsecs 2.4 The Method of Faugeras-Toscani - Modelling
  • 40. 40 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 41. 41 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 42. 42 Lecture 2: Camera Calibration 11 12 13 0 21 22 23 0 31 32 33 0 0 0 0 0 0 1 0 0 0 0 1 1 W xI w u u W yI w u v W z w r r r t X s X u r r r t Y s Y v r r r t Z s                                        1 0 3 0 2 0 3 0 3 u u x z v v y z z r u r t u t A r v r t v t r t                  Intrínsecs Extrínsecs 2.5 The Method of Faugeras-Toscani – Modelling
  • 43. 43 Lecture 2: Camera Calibration     1 14 3 34 2 24 3 34 0 0 W I W w u w W I W w u w A P A X A P A A P A Y A P A         31 14 34 34 34 32 24 34 34 34 I W W I u w w u I W W I u w w u AA A X P P X A A A AA A Y P P Y A A A       1 1 2 3 2 2 I W W I u w w u I W W I u w w u X T P C T P X Y T P C T P Y       v z y v zz z u z x u zz t t vC t r v t r T t r T t t uC t r u t r T      02 2 0 3 3 3 2 01 1 0 3 1 2.5 The Method of Faugeras-Toscani – Calibration 1 0 3 0 2 0 3 0 3 u u x z v v y z z r u r t u t A r v r t v t r t                             343 242 141 AA AA AA                              1 343 242 141 w W u I u I P AA AA AA s Ys Xs
  • 44. 44 Lecture 2: Camera Calibration 1 2 3 1 2 T T X T C C                 B QX 1 3 1 3 0 1 0 0 0 1 t tW I W w u w xi i i t tI W W x u w wi i i P X P Q Y P P                I ui I ui X B Y                1 t t X Q Q Q B   2.5 The Method of Faugeras-Toscani – Calibration 1 1 2 3 2 2 I W W I u w w u I W W I u w w u X T P C T P X Y T P C T P Y       11 unknowns minimum 6 points
  • 45. 45 Lecture 2: Camera Calibration v z y v zz z u z x u zz t t vC t r v t r T t r T t t uC t r u t r T      02 2 0 3 3 3 2 01 1 0 3 1 3 1r  2 1 zt T  2.5 The Method of Faugeras-Toscani – tz 𝑅 = 𝑟1 𝑟2 𝑟3
  • 46. 46 Lecture 2: Camera Calibration 1 2 1 2 1 2 1 2 cos sin v v v v v v v v      0 1 1 0 t i j t i j i j i j r r i j r r i j r r i j r r i j           v z y v zz z u z x u zz t t vC t r v t r T t r T t t uC t r u t r T      02 2 0 3 3 3 2 01 1 0 3 1 2.5 The Method of Faugeras-Toscani – Intrinsics 02 3313 0 3331 0 3 2121 · · u t rr t r t r u t r t r t r t r u t r TTTT z u zzzzz u zz t         2 1 zt T  2 2 21 0 T TT u t 
  • 47. 47 Lecture 2: Camera Calibration 1 2 1 2 1 2 1 2 cos sin v v v v v v v v      0 1 1 0 t i j t i j i j i j r r i j r r i j r r i j r r i j           v z y v zz z u z x u zz t t vC t r v t r T t r T t t uC t r u t r T      02 2 0 3 3 3 2 01 1 0 3 1 2 31 2 0 02 2 2 2 1 2 2 3 2 2 2 2 tt t t t t u v T TT T u v T T T T T T T T         2.5 The Method of Faugeras-Toscani – Intrinsics
  • 48. 48 Lecture 2: Camera Calibration 1 2 1 2 1 2 1 2 cos sin v v v v v v v v      0 1 1 0 t i j t i j i j i j r r i j r r i j r r i j r r i j           v z y v zz z u z x u zz t t vC t r v t r T t r T t t uC t r u t r T      02 2 0 3 3 3 2 01 1 0 3 1 2.5 The Method of Faugeras-Toscani – Extrinsics tt t tt t u z z u zz TT T T TT TTr TTT T T TT TTr t u t r Tr t r u t r T 21 2 2 2 21 211 221 2 2 2 2 21 2110 3 11 1 0 3 1 1                          
  • 49. 49 Lecture 2: Camera Calibration 1 2 1 2 1 2 1 2 cos sin v v v v v v v v      0 1 1 0 t i j t i j i j i j r r i j r r i j r r i j r r i j           v z y v zz z u z x u zz t t vC t r v t r T t r T t t uC t r u t r T      02 2 0 3 3 3 2 01 1 0 3 1 2 1 2 1 1 22 1 2 2 2 2 3 2 3 22 2 3 2 2 3 2 t t t t t t T T T r T T T T T T T T r T T T T T T r T                    2 1 2 1 2 1 2 2 2 2 3 2 2 2 3 2 2 1 t x t t t y t t z T T T t C T T T T T T t C T T T t T                    2.5 The Method of Faugeras-Toscani – Extrinsics
  • 50. 50 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 51. 51 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 52. 52 Lecture 2: Camera Calibration 2.6 The Method of Faugeras-Toscani with distortion • Method of Hall – Lineal method – Transformation matrix • Method of Faugeras-Toscani – Lineal method – Obtaining camera parameters • Method of Faugeras-Toscani with distortion – Iterative method – Radial distortion • Method of Tsai – Iterative method – Radial distortion – Focal distance estimation • Method of Weng – Iterative method – Radial and tangential distortion • … and many more
  • 53. 53 Lecture 2: Camera Calibration Camera coordinate system World coordinate system  0 0,u v f CY CX CZ CO WZ WY WX WO wP Image plane { }W { }C uP dP IY IXIO { }I RY RX { }R RO C WK Image coordinate system Step 1 Step 2Step 3 Step 5 Step 4 2.6 The Method of Faugeras-Toscani with distortion
  • 54. 54 Lecture 2: Camera Calibration Ideal projection Observed position dr dt Xr Yr dr: radial distortion dt: tangential distortion Pu Pd 2.6 Lens Distortion
  • 55. 55 Lecture 2: Camera Calibration a b Radial distorsion effect Tangential distorsion effect Xr Axe of a maximum tangential distortion Axe of a minimum tangential distortion Radial distorsion is the most important and usually the only considered in calibration. 2.6 Lens Distortion
  • 56. 56 Lecture 2: Camera Calibration X X Du d x  Y Y Du d y  D X k rx d 1 2 D Y k ry d 1 2 r X Yd d 2 2     2 4 1 2 2 4 1 2 2 2 C x d C y d C C d d D X k r k r D Y k r k r r X Y         k1 is the most important component and usuallly sufficient in most applications. 2.6 Lens Distortion Model of Faugeras-Toscani with distortion:
  • 57. 57 Lecture 2: Camera Calibration u w v Yc Xc Zc Oc Oi (u0, v0) Pu P Camera co-ordinate system image co-ordinate system f Pd retinal co-ordinate system Image plane Retinal plane Yr Xr Zr X f P P u Xc Zc  Y f P P u Yc Zc  X X Du d x  Y Y Du d y  D X k rx d 1 2 D Y k ry d 1 2 r X Yd d 2 2 X k Xp u d Y k Yp v d X X ui p   0 Y Y vi p   0 2.6 The Method of Faugeras-Toscani with distortion
  • 58. 58 Lecture 2: Camera Calibration Camera coordinate system World coordinate system  0 0,u v f CY CX CZ CO WZ WY WX WO wP Image plane { }W { }C uP dP IY IXIO { }I RY RX { }R RO C WK Image coordinate system Step 1 Step 2Step 3 Step 5 Step 4 2.6 The Method of Faugeras-Toscani with distortion
  • 59. 59 Lecture 2: Camera Calibration (Xw, Yw, Zw) 3D object point with respect to world co-ordinate system Affine transformation. Modelled parameters: R, T (Xc, Yc, Zc) 3D object point with respect to camera co-ordinate system Perspective transformation. Modelled parameter: f (Xu, Yu) Ideal projection on the retinal plane Radial lens distortion. Modelled parameter: k1 (Xd, Yd) Real projection on the retinal plane Pixel adjustment Modelled parameters: ku, kv (Xp,Yp ) Real projection on the image plane Adaptation to the computer image buffer Modelled parameters: u0, v0 (Xi, Yi) Real projection on the image plane 2.6 The Method of Faugeras-Toscani with distortion
  • 60. 60 Lecture 2: Camera Calibration 2 1 2 1 C C Cw d dC w C C Cw d dC w X f X k r X Z Y f Y k r Y Z         0 0 I dC d u I dC d v X u X k Y v Y k       1 1 C W w w C W Cw w WC W w w X X Y Y K Z Z                            r X Yd d 2 2 The model is NON-LINEAR Iterative minimisation: • Newton-Raphson • Levenberg-Marquardt 2.6 The Method of Faugeras-Toscani with distortion
  • 61. 61 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 62. 62 Lecture 2: Camera Calibration Contents 2. Camera Calibration 2.1 Calibration introduction 2.2 The pinhole model 2.3 The method of Hall 2.4 The method of Faugeras-Toscani – Modelling 2.5 The method of Faugeras-Toscani – Calibration 2.6 The method of Faugeras-Toscani with distortion 2.7 Experimental comparison of methods
  • 63. 63 Lecture 2: Camera Calibration Hall Faugeras Faugeras distorted Tsai Weng Transformation matrix Step 3 Lens Distortion Step 2 Projection Step 1 World2camera Transformation with , , , tx, ty and tz Projection with f Radial distortion with k1 Undistorted Multiple distortion k1, g1, g2, g3, g4 Transformation with u0, v0 , ku and kv Transformation with u0, v0 and sx Transformation with u0, v0, ku and kv Step 4 Camera2image C C W C w W w WP P T R , C C C Cw w u uC C w w X Y X f Y f Z Z   C C w uP P C C u dP P C I d dP P C C u dP P 0 0 I C d u d I C d v d X k X u Y k Y v           2 2 1 2 2 1 C C C C C u d u u u C C C C C u d u u u X X k X X Y Y Y k Y X Y       1' 0 1 0 I C d x x d I C d y d X s d X u Y d Y v         = W C w wP P I W d wP P A 2.7 Experimental Comparison - Methods
  • 64. 64 Lecture 2: Camera Calibration wP Optical Ray 3Dd 2.7 Experimental Comparison - Accuracy Evaluation • 3D Measurement – Distance with respect to the optical ray – Normalized Stereo Calibration Error • 2D Measurement – Accuracy of distorted image coordinates – Accuracy of undistorted image coordinates       1 22 2 2 2 2 1 ˆ ˆ 1 NSCE ˆ 12 C C C C n w w w wi i i i C i w u vi X X Y Y n Z                  Camera coordinate system World coordinate system f CY CX WZ WX WO wP Image plane { }W uP dP IX{ }I RX { }R RO Image coordinate system ˆ uP ˆ dP  0 0,u v WY CZ CO { }C IY IO RY uP ˆ uP  0 0,u v dd Observed Point Linear Projection - distortion + distortion ud ˆ dP dP
  • 65. 65 Lecture 2: Camera Calibration 2.7 Experimental Comparison: Synthetic Images (I) 2D distorted image (pix.) 2D undistorted image (pix.) Mean Standard desviation Max Min Mean Standard desviation Max Min 1 Hall 0.2676 0.1979 1.2701 0.0213 0.2676 0.1979 1.2701 0.0213 2 Faugeras 0.2689 0.1997 1.2377 0.0075 0.2689 0.1997 1.2377 0.0075 3 Faugeras with distortion 0.0840 0.0458 0.2603 0.0081 0.0834 0.0454 0.2561 0.0080 4 Tsai 0.0838 0.0457 0.2426 0.0035 0.0832 0.0453 0.2386 0.0035 5 Weng 0.0845 0.0455 0.2608 0.0019 0.0843 0.0443 0.2584 0.0129 2D distorted 0 0,05 0,1 0,15 0,2 0,25 0,3 1 2 3 4 5 pix. Mean Standard deviation 2D undistorted 0 0,05 0,1 0,15 0,2 0,25 0,3 1 2 3 4 5 pix. Mean Standard deviation
  • 66. 66 Lecture 2: Camera Calibration 2.7 Experimental Comparison: Synthetic Images (II) 3D position (mm) NSCE Mean Standard desviation Max Min 1 Hall 0.1615 0.1028 0.5634 0.0113 n/a 2 Faugeras 0.1811 0.1357 0.8707 0.0147 0.6555 3 Faugeras NR with distortion 0.0566 0.0307 0.1694 0.0055 0.2042 4 Tsai optimized 0.0565 0.0306 0.1578 0.0087 0.2037 5 Weng 0.0570 0.0305 0.1696 0.0088 0.2064 Normalized Stereo Calibration Error Normalized Stereo Calibration Error 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 1 2 3 4 5 NSCE 3D position 0 0,05 0,1 0,15 0,2 1 2 3 4 5 mm. Mean Standard deviation
  • 67. 67 Lecture 2: Camera Calibration Computing Time 160 punts 1800 punts • Hall 1 ms 70 ms • Faugeras 1 ms 70 ms • Faugeras with distortion 10 ms 380 ms • Tsai 10 ms 530 ms • Weng 51 ms 4216 ms Pentium III at 1 GHz. 2.7 Experimental Comparison: Synthetic Images (III)
  • 68. 68 Lecture 2: Camera Calibration 2.7 Experimental Comparison: Real Images (I) Camera coordinate system CY CX CZ CO { }C IY IXIO { }I RY RX RO { }R World coordinate system WZ WY WX WO { }W Reconstruction Area Image of the calibrating pattern 3D position (mm) NSCE Mean Standard desviation Max Min Hall 0.5219 0.2595 1.1370 0.0143 n/a Faugeras 0.7782 0.4253 2.0210 0.0187 4.0649 Faugeras with distortion 0.4967 0.3367 1.5642 0.0094 2.5489 Tsai 0.4815 0.3023 1.4014 0.0093 2.4836 Weng 0.4740 0.2904 1.2669 0.0087 2.4556
  • 69. 69 Lecture 2: Camera Calibration 2.7 Experimental Comparison: Real Images (II) 3D position (mm) NSCE Mean Standard desviation Max Min Hall 1.5698 0.9842 8.9249 0.0247 n/a Faugeras 1.6187 0.9856 8.8812 0.0302 2.0175 Faugeras with distortion 0.9930 0.5660 3.2386 0.0154 0.9909 Tsai 0.9927 0.5655 3.2311 0.0153 0.9908 Weng 0.9896 0.5724 3.3526 0.0149 0.9869 Image of the calibration patternStereo camera over a mobile robot
  • 70. 70 Lecture 2: Camera Calibration 2.7 Experimental Comparison - Conclusions • Implementation of 5 of the most used camera calibration methods – Notation was unified – The methods were compared in terms of model and calibration • The accuracy of non-linear methods is better than linear methods • Modelling of radial distortion is quite sufficient when high accuracy is required • Accuracy measuring methods obtain similar results if they are relatively compared Additional bibliography: J. Salvi, X. Armangué and J. Batlle. A Comparative Review of Camera Calibrating Methods with Accuracy Evaluation. Pattern Recognition, PR, pp. 1617-1635, Vol. 35, Issue 7, July 2002.