Analysis & Design of
Reinforced Concrete Structures (1) Lecture.7 Strength Design Method
56
Dr. Muthanna Adil Najm
Ex.7)
Design a simply supported rectangular beam with a span of 10 m and carrying a
dead load of 20 kN/m (not including beam self weight) and service live load of 30
kN/m . Use 014.0 , b = 500 mm , MPafc 21 and MPafy 420 .
Sol.)
Assume that the beam self weight is 10 kN/m.
mkND /301020 
    mkNLDwu /84306.1302.16.12.1 
  mkN
lw
M u
u .1050
8
1084
8
22









c
y
yu
f
f
bdfM

 59.012





 

21
420014.0
59.01420014.09.0101050 26
bd
32
237676927mmbd 
 b = 500 mm  d = 690 mm
 h = 690 + 90 = 780mm.
Beam self weight = mkNmkNwhbws c /10/36.92478.05.0. 
 Assumed s.w is OK.
2
4830690500014.0 mmbdAs  
 Use 8 Ø 28.
  2
.,
2
., 483049286168 mmAmmA reqsprovs 
Check bar spacing for one raw bars;
mmdS b 286.24
7
288122402500



 Not Good, Use two rows.
h = 690 + 40 + 12 + 28 + 25/2 = 783 mm
 Use h = 800 mm
Strength Design Method
Analysis & Design of Rectangular Section Beams.
10 m
D = 30 kN/m & L =30 kN/m
500 mm
707
mm
800
mm
8Ø28
Analysis & Design of
Reinforced Concrete Structures (1) Lecture.7 Strength Design Method
57
Dr. Muthanna Adil Najm
d = 800 - 40 - 12 - 28 - 25/2 = 707 mm
Check tensile strain:
mm
bf
fA
a
c
ys
9.231
5002185.0
4204928
85.0






mmdt 734
2
28
1240800 
mm
a
c 8.272
85.0
9.231
1


    005.00051.0003.0
8.272
8.272734
003.0 




c
cd
t
 9.0
Check Section:
  mkNMmkN
a
dfAM uysn 











 10501101
2
9.231
70742049289.0
2

 Section is OK.
Check deflection requirements:
From ACI Table 9.5.a, the minimum permissible beam thickness for simply
supported beam is:
mm
l
h 625
16
10000
16

mmhmmh requiredavailable 625800 
 Section is OK.
Ex.8)
Design the cantilever beam shown below.
Use b
2
1
 , b = 300 mm ,
MPafc 28 and MPafy 420 .
Sol.)
    mkNLDwu /2.23106.162.16.12.1 
  kNLPu 80506.16.1 
    mkNP
lw
M u
u
u .6.657380
2
62.23
3
2
22

0283.0
420600
600
420
2885.085.0
600
60085.0 1











 
















 

yy
c
b
ff
f

6.0 m
L= 50 kN
3.0 m 3.0 m
D=6 kN/m
L=10 kN/m
Analysis & Design of
Reinforced Concrete Structures (1) Lecture.7 Strength Design Method
58
Dr. Muthanna Adil Najm
0142.0
2
0283.0
2
1
 b








c
y
yu
f
f
bdfM

 59.012





 

28
4200142.0
59.014200142.09.0106.657 26
bd
32
140121985mmbd 
 b = 300 mm  d = 683 mm say d = 690mm.
 h = 690 + 90 = 780mm.
Check beam thickness for deflection requirements:
From ACI Table 9.5.a, the minimum permissible beam thickness for cantilever
beam is:
mm
l
h 750
8
6000
8
 < mmhavailable 780  Section is OK.
2
29396903000142.0 mmbdAs  
 Use 6 Ø 25.
  2
.,
2
., 293929464916 mmAmmA reqsprovs 
Check bar spacing for one raw bars;
mmmmS 252.9
5
256122402300


 Not Good
 Use two rows.
Check tensile strain:
mm
bf
fA
a
c
ys
3.173
3002885.0
4202946
85.0






mmdt 715
2
25
1240780 
mm
a
c 9.203
85.0
3.173
1


    005.00075.0003.0
9.203
9.203715
003.0 




c
cd
t
 9.0
Check Section:
300 mm
690
mm
780
mm
5Ø26
Analysis & Design of
Reinforced Concrete Structures (1) Lecture.7 Strength Design Method
59
Dr. Muthanna Adil Najm
  mkN
a
dfAM ysn 











 9.671
2
3.173
69042029469.0
2

mkNMmkNM un  6.6579.671
 Section is OK.
Ex.9)
Design the overhanging beam shown below. Use
y
c
f
f 
 18.0 , b = 400 mm
, MPafc 28 and MPafy 420 .
Sol.)
    mkNLDwu /68206.1302.16.12.1 
  kNR 612
2
1868

1- Mid span section:
mkNM .918
012.0
420
28
18.018.0 


y
c
f
f









c
y
yu
f
f
bdfM

 59.012





 

28
420012.0
59.01420012.09.010918 26
bd
32
226427559mmbd 
 b = 400 mm  d = 752 mm say d = 760mm.
 h = 760 + 90 = 850mm.
D = 30 kN/m & L =20 kN/m
12 m3 m 3 m
= 68 kN/muW
612 kN
612 kN
-204 kN
204 kN
408 kN
-408 kN
306 kN.m 306 kN.m
918 kN.m
+
_ _
Analysis & Design of
Reinforced Concrete Structures (1) Lecture.7 Strength Design Method
60
Dr. Muthanna Adil Najm
Check beam thickness for deflection requirements:
From ACI Table 9.5.a, the minimum permissible beam thickness for both end
continuous beam is:
mm
l
h 571
21
12000
21
 < mmhavailable 850
And for cantilever portion is:
mm
l
h 375
8
3000
8
 < mmhavailable 850  Section is OK.
2
3648760400012.0 mmbdAs  
 Use 6 Ø 28 mm
  2
.,
2
., 364836966166 mmAmmA reqsprovs 
Check bar spacing for one raw bars;
mmdmmS b 286.25
5
286122402400


 Not Good
 Use two rows.
Check tensile strain:
mm
bf
fA
a
c
ys
163
4002885.0
4203696
85.0






mmdt 784
2
28
1240850 
mm
a
c 8.191
85.0
163
1


    005.00093.0003.0
8.191
8.191784
003.0 




c
cd
t
 9.0
Check Section:
  mkNMmkN
a
dfAM uysn 











 918948
2
163
76042036969.0
2
 
Section is OK.
2- Section at support:
mkNM .306
Assume using 25 bars  d = 850 – 40 – 12 -25/2 = 785 mm
Analysis & Design of
Reinforced Concrete Structures (1) Lecture.7 Strength Design Method
61
Dr. Muthanna Adil Najm
65.17
2885.0
420
85.0





c
y
f
f

 
38.1
7854009.0
10306
2
6
2




bd
M
R u
n

0034.0
420
65.1738.12
11
65.17
12
11
1





 










y
n
f
R 


Check steel percentage for ACI requirements.
0033.0
420
4.14.1
min 
yf

2
10687854000034.0 mmbdAs  
 Use 2 Ø 25 + 1 Ø 16
  2
.,
2
., 106811832014912 mmAmmA reqsprovs 
Check Section:
mm
bf
fA
a
c
ys
2.52
4002885.0
4201183
85.0






  mkNMmkN
a
dfAM uysn 











 3063.339
2
2.52
78542011839.0
2

 Section is OK.
400 mm
785
mm
850
mm
2Ø25
+
1Ø16
400 mm
760
mm850
mm
6Ø28
Support SectionMid span Section
Analysis & Design of
Reinforced Concrete Structures (1) Lecture.7 Strength Design Method
62
Dr. Muthanna Adil Najm
Compressive strength of concrete and yield strength of steel bars:
cf  yf
British units SI units British units SI units
2500 psi = 2.5 ksi 17 MPa Grade 40 ksi 300 MPa
3000 psi = 3 ksi 21 MPa Grade 50 ksi 350 MPa
4000 psi = 4 ksi 28 MPa Grade 60 ksi 420 MPa
5000 psi = 5 ksi 35 MPa Grade 75 ksi 520 MPa
ksiEs 29000 MPaEs 200000
ACI equations:
85.01  for Psifc 4000
65.005.0
1000
4000
85.01 




 
 cf
 for Psifc 4000
y
c
f
f 

3
min 
yf
200
min 











yy
c
b
ff
f
000,87
000,87
85.0 1 yf in ( psi)
Example:
Determine the moment capacity of the beam section shown below,
psifc 4000 and psify 000,60 .
Sol.)
  2
2
8
9
3
4
3 inAs 










0033.0
000,60
200200
min 
yf

10''
15''
18''
3 # 9
Strength Design Method in British Units
Analysis & Design of
Reinforced Concrete Structures (1) Lecture.7 Strength Design Method
63
Dr. Muthanna Adil Najm
0181.0
8
3
60
485.085.0
005.0003.0
003.085.0 1
max 


















 

y
c
f
f

02.0
375250
1848



bd
As
 0033.0
000,60
200
min  
But also > 0181.0max  for 005.0t
Check maximum steel percentage for 004.0t .
0206.0
7
3
60
485.085.0
004.0003.0
003.085.0 1
max 


















 

y
c
f
f

0206.002.0 max  
 
 
.29.5
10400085.0
600003
85.0
in
bf
fA
a
c
ys



85.01  for psifc 4000
.22.6
85.0
29.5
1
in
a
c 

Check tensile strain:
   
004.0
005.0
00423.0003.0
22.6
22.615
003.0







c
cd
t Beam is in transition
zone and
  836.0
3
250
002.000423.065.0 






ftkink
a
dfAM ysn 











 3.1859.2223
2
29.5
15603
2
  ftkMn  9.1543.185836.0

Lec.7 strength design method rectangular sections 3

  • 1.
    Analysis & Designof Reinforced Concrete Structures (1) Lecture.7 Strength Design Method 56 Dr. Muthanna Adil Najm Ex.7) Design a simply supported rectangular beam with a span of 10 m and carrying a dead load of 20 kN/m (not including beam self weight) and service live load of 30 kN/m . Use 014.0 , b = 500 mm , MPafc 21 and MPafy 420 . Sol.) Assume that the beam self weight is 10 kN/m. mkND /301020      mkNLDwu /84306.1302.16.12.1    mkN lw M u u .1050 8 1084 8 22          c y yu f f bdfM   59.012         21 420014.0 59.01420014.09.0101050 26 bd 32 237676927mmbd   b = 500 mm  d = 690 mm  h = 690 + 90 = 780mm. Beam self weight = mkNmkNwhbws c /10/36.92478.05.0.   Assumed s.w is OK. 2 4830690500014.0 mmbdAs    Use 8 Ø 28.   2 ., 2 ., 483049286168 mmAmmA reqsprovs  Check bar spacing for one raw bars; mmdS b 286.24 7 288122402500     Not Good, Use two rows. h = 690 + 40 + 12 + 28 + 25/2 = 783 mm  Use h = 800 mm Strength Design Method Analysis & Design of Rectangular Section Beams. 10 m D = 30 kN/m & L =30 kN/m 500 mm 707 mm 800 mm 8Ø28
  • 2.
    Analysis & Designof Reinforced Concrete Structures (1) Lecture.7 Strength Design Method 57 Dr. Muthanna Adil Najm d = 800 - 40 - 12 - 28 - 25/2 = 707 mm Check tensile strain: mm bf fA a c ys 9.231 5002185.0 4204928 85.0       mmdt 734 2 28 1240800  mm a c 8.272 85.0 9.231 1       005.00051.0003.0 8.272 8.272734 003.0      c cd t  9.0 Check Section:   mkNMmkN a dfAM uysn              10501101 2 9.231 70742049289.0 2   Section is OK. Check deflection requirements: From ACI Table 9.5.a, the minimum permissible beam thickness for simply supported beam is: mm l h 625 16 10000 16  mmhmmh requiredavailable 625800   Section is OK. Ex.8) Design the cantilever beam shown below. Use b 2 1  , b = 300 mm , MPafc 28 and MPafy 420 . Sol.)     mkNLDwu /2.23106.162.16.12.1    kNLPu 80506.16.1      mkNP lw M u u u .6.657380 2 62.23 3 2 22  0283.0 420600 600 420 2885.085.0 600 60085.0 1                                 yy c b ff f  6.0 m L= 50 kN 3.0 m 3.0 m D=6 kN/m L=10 kN/m
  • 3.
    Analysis & Designof Reinforced Concrete Structures (1) Lecture.7 Strength Design Method 58 Dr. Muthanna Adil Najm 0142.0 2 0283.0 2 1  b         c y yu f f bdfM   59.012         28 4200142.0 59.014200142.09.0106.657 26 bd 32 140121985mmbd   b = 300 mm  d = 683 mm say d = 690mm.  h = 690 + 90 = 780mm. Check beam thickness for deflection requirements: From ACI Table 9.5.a, the minimum permissible beam thickness for cantilever beam is: mm l h 750 8 6000 8  < mmhavailable 780  Section is OK. 2 29396903000142.0 mmbdAs    Use 6 Ø 25.   2 ., 2 ., 293929464916 mmAmmA reqsprovs  Check bar spacing for one raw bars; mmmmS 252.9 5 256122402300    Not Good  Use two rows. Check tensile strain: mm bf fA a c ys 3.173 3002885.0 4202946 85.0       mmdt 715 2 25 1240780  mm a c 9.203 85.0 3.173 1       005.00075.0003.0 9.203 9.203715 003.0      c cd t  9.0 Check Section: 300 mm 690 mm 780 mm 5Ø26
  • 4.
    Analysis & Designof Reinforced Concrete Structures (1) Lecture.7 Strength Design Method 59 Dr. Muthanna Adil Najm   mkN a dfAM ysn              9.671 2 3.173 69042029469.0 2  mkNMmkNM un  6.6579.671  Section is OK. Ex.9) Design the overhanging beam shown below. Use y c f f   18.0 , b = 400 mm , MPafc 28 and MPafy 420 . Sol.)     mkNLDwu /68206.1302.16.12.1    kNR 612 2 1868  1- Mid span section: mkNM .918 012.0 420 28 18.018.0    y c f f          c y yu f f bdfM   59.012         28 420012.0 59.01420012.09.010918 26 bd 32 226427559mmbd   b = 400 mm  d = 752 mm say d = 760mm.  h = 760 + 90 = 850mm. D = 30 kN/m & L =20 kN/m 12 m3 m 3 m = 68 kN/muW 612 kN 612 kN -204 kN 204 kN 408 kN -408 kN 306 kN.m 306 kN.m 918 kN.m + _ _
  • 5.
    Analysis & Designof Reinforced Concrete Structures (1) Lecture.7 Strength Design Method 60 Dr. Muthanna Adil Najm Check beam thickness for deflection requirements: From ACI Table 9.5.a, the minimum permissible beam thickness for both end continuous beam is: mm l h 571 21 12000 21  < mmhavailable 850 And for cantilever portion is: mm l h 375 8 3000 8  < mmhavailable 850  Section is OK. 2 3648760400012.0 mmbdAs    Use 6 Ø 28 mm   2 ., 2 ., 364836966166 mmAmmA reqsprovs  Check bar spacing for one raw bars; mmdmmS b 286.25 5 286122402400    Not Good  Use two rows. Check tensile strain: mm bf fA a c ys 163 4002885.0 4203696 85.0       mmdt 784 2 28 1240850  mm a c 8.191 85.0 163 1       005.00093.0003.0 8.191 8.191784 003.0      c cd t  9.0 Check Section:   mkNMmkN a dfAM uysn              918948 2 163 76042036969.0 2   Section is OK. 2- Section at support: mkNM .306 Assume using 25 bars  d = 850 – 40 – 12 -25/2 = 785 mm
  • 6.
    Analysis & Designof Reinforced Concrete Structures (1) Lecture.7 Strength Design Method 61 Dr. Muthanna Adil Najm 65.17 2885.0 420 85.0      c y f f    38.1 7854009.0 10306 2 6 2     bd M R u n  0034.0 420 65.1738.12 11 65.17 12 11 1                  y n f R    Check steel percentage for ACI requirements. 0033.0 420 4.14.1 min  yf  2 10687854000034.0 mmbdAs    Use 2 Ø 25 + 1 Ø 16   2 ., 2 ., 106811832014912 mmAmmA reqsprovs  Check Section: mm bf fA a c ys 2.52 4002885.0 4201183 85.0         mkNMmkN a dfAM uysn              3063.339 2 2.52 78542011839.0 2   Section is OK. 400 mm 785 mm 850 mm 2Ø25 + 1Ø16 400 mm 760 mm850 mm 6Ø28 Support SectionMid span Section
  • 7.
    Analysis & Designof Reinforced Concrete Structures (1) Lecture.7 Strength Design Method 62 Dr. Muthanna Adil Najm Compressive strength of concrete and yield strength of steel bars: cf  yf British units SI units British units SI units 2500 psi = 2.5 ksi 17 MPa Grade 40 ksi 300 MPa 3000 psi = 3 ksi 21 MPa Grade 50 ksi 350 MPa 4000 psi = 4 ksi 28 MPa Grade 60 ksi 420 MPa 5000 psi = 5 ksi 35 MPa Grade 75 ksi 520 MPa ksiEs 29000 MPaEs 200000 ACI equations: 85.01  for Psifc 4000 65.005.0 1000 4000 85.01         cf  for Psifc 4000 y c f f   3 min  yf 200 min             yy c b ff f 000,87 000,87 85.0 1 yf in ( psi) Example: Determine the moment capacity of the beam section shown below, psifc 4000 and psify 000,60 . Sol.)   2 2 8 9 3 4 3 inAs            0033.0 000,60 200200 min  yf  10'' 15'' 18'' 3 # 9 Strength Design Method in British Units
  • 8.
    Analysis & Designof Reinforced Concrete Structures (1) Lecture.7 Strength Design Method 63 Dr. Muthanna Adil Najm 0181.0 8 3 60 485.085.0 005.0003.0 003.085.0 1 max                       y c f f  02.0 375250 1848    bd As  0033.0 000,60 200 min   But also > 0181.0max  for 005.0t Check maximum steel percentage for 004.0t . 0206.0 7 3 60 485.085.0 004.0003.0 003.085.0 1 max                       y c f f  0206.002.0 max       .29.5 10400085.0 600003 85.0 in bf fA a c ys    85.01  for psifc 4000 .22.6 85.0 29.5 1 in a c   Check tensile strain:     004.0 005.0 00423.0003.0 22.6 22.615 003.0        c cd t Beam is in transition zone and   836.0 3 250 002.000423.065.0        ftkink a dfAM ysn              3.1859.2223 2 29.5 15603 2   ftkMn  9.1543.185836.0