SlideShare a Scribd company logo
Variation of Electrical Transport Parameters
with Large Grain Fraction in Highly Crystalline
      Undoped Microcrystalline Silicon

                       Sanjay K. Ram

               Dept. of Physics, I.I.T. Kanpur, India
                            &
     LPICM (UMR 7647 du CNRS ), Ecole Polytechnique, France
Motivation:
        study of μc-Si:H thin films
• Promising material for large area electronics
  – Good carrier mobility
  – Greater stability
  – Low temperature deposition
• Electrical transport properties : important for
  device applications
Optimization of μc-Si:H device applications:
                  Issues
               columnar boundaries
                                     grains   grain boundaries
conglomerate crystallites
 surface
roughness
                                                voids
      Film
     growth
                                               substrate



                            Complex microstructure of μc-Si:H


         How is film microstructure related to transport
                    properties in µc-Si:H???
Objectives

• To study the optoelectronic properties of
  well characterized μc-Si:H films

• Identify the role of microstructure in
  determining the electrical transport behavior
Sample preparation
                                                      PECVD
                                                                       RF


Parallel-plate glow discharge                     HH
                                                  H Si H    H
                                                             N     H       H


plasma deposition system
                                                             H         H
                                                              H
                                                  Si N Si N Si N




                                      μc-Si:H
    Substrate: Corning 1773
                                       film

                                                 Flow ratio
   High purity feed gases:
                                                (R)= SiF4/H2
   SiF4 , Ar & H2

                              R=1/1   R=1/5       R=1/10
   Rf frequency 13.56 MHz



   Ts=200 oC
                                  Thickness series
Film characterization


                                                Electrical Properties
Structural Properties


                                        σd(T) measurement
                                          15K≤T ≤ 450K
        Xray Diffraction
                                      σPh(T,∅) measurement
                                          15K≤T ≤ 325K
       Raman Scattering
                                        CPM measurement
       Spectroscopy Ellipsometry
                                                 Hall effect

                                                     TRMC
        Atomic Force Microscopy
Microstructural Properties
Spectroscopic Ellipsometry : measured imaginary part
              of the pseudo-dielectric function <ε2> spectra
     30                                                    * Reference c-Si in BEMA model :
                                        E2 (4.2 eV)
                          E1 (3.4 eV)                      LPCVD polysilicon with large
     25                                         d=390 nm
                                                           (pc-Si-l) and fine (pc-Si-f) grains
               d=170 nm
                                                d=590 nm
     20                                         d=950 nm
               d=55 nm                                                                        E2 (4.2 eV)
                                                                50
                                                                                       E1 (3.4 eV)
< ε2 >




     15                                                         40             c-Si
                                                                             pc-Si-l
                                                                30




                                                           < ε2 >
                                                                             pc-Si-f
     10                                                                       a-Si
                                                                20
                                                                                            μ c-Si:H
         5                                                      10                        (d = 950 nm)

                                                                    0
         0                                                                                           (a)
                                                               -10
                                                                        2         3             4           5
         -5                                                                 Energy (eV)
           2         3          4                      5
                    Energy (eV)                                 •Ram et al, Thin Solid Films 515 (2007) 7619.

               thickness series of R=1/10                       •Ram et al, Thin Solid Films (2008) in print.
Analyses of SE data: schematic view for two films
                       (initial and final growth stages)
                                               Fcf = small grains
                   TSL (8.3 nm)                Fcl = large grains
              Fcf = 73.6 %, Fcl = 0 %,         Fv = voids
               Fv = 26.4 %, Fa =0 %
                                               Fa = amorphous phase

                                                  TSL (7.9 nm)
                  MBL (918.9 nm)
d = 950 nm




                                           Fcf = 32.3 %, Fcl = 0.6 %,
             Fcf = 50.4 %, Fcl = 40.8 %,
                                             Fv = 67.1%, Fa =0 %
                  Fv=8.8 %, Fa=0%




                                                                        d = 55 nm
                                                BL (48.2 nm)
                    BIL (27.7 nm)
                                           Fcf = 88.4 %, Fcl = 0 %,
                Fcf = 0 %, Fcl = 0 %,
                                           Fv = 10.1 %, Fa = 1.5 %
              Fv = 35.6 %, Fa =64.4 %
X-ray diffraction
Intensity (arb.unit)



                                                                          (400)
                            (111)


                                                (220)
                                                             (311)

                       20      30        40            50            60       70

                                        Cu Kα 2θ (degrees)


                                    thickness ~ 1 µm
X-ray diffraction analysis
                                                                                                                                                                            Exp. XRD peak (400)
                                                                                   Exp. XRD peak (111)
                                                                                                                                                                            Total Fit
                                                                                   Total Fit
                                                                                                                                                                            Peak 1 (22.4 nm)
            Intensity (arb. unit)                                                  Peak 1 (14.8 nm)




                                                                                                                                              Intensity (arb. unit)
                                                                                                                                                                            Peak 2 (9 nm)
                                                                                   Peak 2 (4.8 nm)


                                                                                 Exp. XRD peak (400)                           Exp. XRD peak(220)
                                                                                                                                 Exp. XRD peak (111)
                                                                                 Total Fit
                                                                                                                               Total Fit (11.4 nm)
                                                                                                                                 Total Fit
                                                                                                                                Exp. XRD peak (311)
  Intensity (arb. unit)

                                                                                 Peak 1 (22.4 nm)
 Intensity (arb. unit)

                                                                                                                               Peak 1 (14.8 nm)
 Intensity (arb. unit)

                                                                                                                                Total Fit
Intensity (arb. unit)


                                                                                 Peak 2 (9 nm)
                                                                                                                               Peak 2 (4.8 nm) 69.5 70.0
                                                                                                                                        (48 nm)
                                                                                                                                Peak 1 68.5 69.0
                                    26    27    28      29 30 31                              32         33                       68.0
                                                      2θ (degree)
                                                                                                                                Peak 2 (11.4(degree)
                                                                                                                                            2θ
                                                                                                                                               nm)
                                                     Intensity (arb.unit)




                                                                                                                                                                                      (400)
                                                                                        (111)


                                                                                                                                                                                                       thickness ~ 1 µm
                                                                                                                      (220)
                                                                                                                                   (311)

                                                                            20                30               40         50                                               60                 70

                                                                                                              Cu Kα 2θ (degrees)                                                                   Exp. XRD peak (311)
                                                                                    Exp. XRD peak (220)
                                                                                                                                                                                                   Total Fit
                                                                                    Total Fit (11.4 nm)
                                                                                                                                                                                                   Peak 1 (48 nm)
                 Intensity (arb. unit)




                                                                                                                                   Intensity (arb. unit)
                                                                                                                                                                                                   Peak 2 (11.4 nm)




                                         68.0 2768.5 4729 4869.5 49 70.0 50
                                               46 28 69.0 30 5731 32 58
                                          26                              33
                                         45
                                          55        56
                                                     2θ (degree)
                                                     2θ (degree)
                                                      2θ (degree)
                                    45     46                 47     48                    49            50                                                           55              56          57                 58
                                                                                                                                                                                       2θ (degree)
                                                              2θ (degree)
Surface morphology by AFM

                                                         σrms= 4 nm + 0.3 nm
                                        d = 950 nm


                                                         σrms= 3.3 nm + 0.1 nm
                                        d = 590 nm
Frequency (arb. unit)




                                                         σrms= 4.3 nm + 0.4 nm
                                        d = 390 nm


                                                         σrms= 7 nm + 0.1 nm
                                        d = 180 nm


                                                         σrms= 2.1 nm + 0.2 nm
                                        d = 55 nm
                        0   100   200    300    400
Conglomerate surface grain size (nm)
                                                           •Ram et al, Thin Solid Films 515 (2007) 7619.
                            thickness series of R=1/10     •Ram et al, Thin Solid Films (2008) in print.
Bifacial Raman Spectroscopy
                                Expt. data (glass side)
                                                                   collection
                          (a)                                                 excitation

Intensity (arb. unit)
                                                               glass
                                                                film




                                Expt. data (film side)
                           (b)                                         collection


                                                          excitation
                                                                              film

                                                                             glass



                  400 425 450 475 500 525 550
                                       -1
                        Raman Shift (cm )
                           R=1/1, thickness = 1200 nm
Deconvolution of Raman Spectroscopy Data
• Microstructure of our samples:
   – No a-Si:H phase
   – Presence of two (mean) sizes of crystallites
• Conventional deconvolution:
   – Single mean crystallite size
   – A peak assigned to grain boundary material
   – An amorphous phase : asymmetric tail
• Previous efforts
   – Deconvolution based on two asymmetric Lorentzian peaks
     [Touir et al, J. Non-Cryst. Solids 227-230 (1998) 906]
   – Method of subtracting the amorphous contribution and
     fitting the resulting crystalline part of spectrum with three
     or five Gaussian peaks [Smit et al, J. Appl. Phys. 94 (2003) 3582]
RS Data Deconvolution : Our Model
    inclusion of crystallite size distribution (CSD)

              In absence of amorphous phase
• Asymmetry in the Raman lineshape of RS profiles
  (low energy tail)  distribution of smaller sized
  crystallites
• Incorporation of a bimodal CSD                                                in           the
  deconvolution of RS profiles avoids:
  – Overestimation of amorphous content
  – Inaccuracy in the estimation of the total crystalline volume
    fraction                      •Islam & Kumar, Appl. Phys. Lett. 78 (2001) 715.

                                            •Islam et al, J. Appl. Phys. 98 (2005) 024309.

                                            •Ram et al, Thin Solid Films 515 (2007) 7619.
Bifacial Raman Study
                        1.2                                                                                     1.2         glass side exp. data of F0E31
                                    film side exp. data of F0E31
                                                                                                                            cd1
                                    cd1
                                                                                                                            cd2
                                    cd2




                                                                                        Intensity (arb. unit)
                                                                                                                            a
Intensity (arb. unit)




                                    fit with - cd1cd2                                                                       fit with - cd1cd2a
                        0.9                                                                                     0.9


                        0.6                                                                                     0.6


                        0.3                                                                                     0.3


                        0.0                                                                                     0.0
                          450         475    500       525                      550                               400      425      450 475 500 525                  550
                                                         -1
                                         Raman Shift (cm )                                                                                         -1
                                                                                                                                    Raman Shift (cm )
                                 RS(F) data            bimodal CSD                                                     RS(G) data               bimodal CSD +
                                                                                                                                               amorphous phase

                                                                        Small grain (cd1)                                  Large grain (cd2)                a-Si:H
                           Sample #E31
                                          Fitting Model
                         (1200 nm, R=1/1)                          Size (nm) [σ (nm)]                                 Size (nm) [σ (nm)]
                                                                                         XC1 (%)                                                XC2 (%)     Xa (%)

                              Film side         cd1+cd2                6.1, [1.68]                       20                72.7, [0]                80        0

                              Glass side       cd1+cd2+a               6.6, [1.13]                     8.4                97.7, [4.7]             52.4      39.2
RS analysis
                              fit model quot;cd1+cd2quot;
                                                    cd1

                                                    cd2
                                                           3 models:
                           d = 950 nm, RS(F)

                                                           cd1 + cd2
Intensity (arb. unit)




                                                    cd1
                            fit model quot;cd1+cd2+aquot;
                                                          cd1 +cd2 +a
                        d = 950 nm, RS(G)           cd2
                                                      a
                                                             cd +a

                              fit model quot;cd+aquot;      cd
                        d = 55 nm, RS(F)             a


                        fit model quot;cd+aquot;
                                                    cd
                                                     a



                        d = 55 nm, RS(G)


            400                450     500      550
                                             -1
                              Raman shift (cm )
Fractional composition of films: Qualitative
                                  agreement between RS and SE studies
                 100                                                                  Xc1 (%) 100
                                                          Fcf               (b)
                                           (a)
                                                          Fcl
Fcf , Fcl , Fv (%) by SE




                                                                                      Xc2 (%)




                                                                                                      Xa, Xc1, Xc2 (%) by RS
                           80                                                         Xa (%) 80
                                                          Fv

                           60                                                                    60

                           40                                                                    40

                           20                                                                    20

                           0                                                                     0
                                 200 400 600 800 1000 1200      200   400   600     800   1000
                                                                   Film Thickness (nm)
                                    Film Thickness (nm)


                                     Samples belong to thickness series of R=1/10
Summary of variation in fractional compositions and roughness with film growth
               (a)                                            (c)
                                       (b)
Fc , Fcf and Fcl (%) by SE




                                                                                                                       Roughness by SE, σSE(nm)
  100
                     Fc                        Fc                      Fc 8
                                                         Fcf
              Fcf
   80                           Fcf
                                                                                                                   6
                             60
                                                                  σSE
                                                                                        σSE
                             40                                                                                    4
                                                                                              Fcl
                                     σSE
                             20             Fcl                                                                    2
                                                                Fcl
                                            R = 1/1                                                 R = 1/10
                                                                          R = 1/5
                              0
                                                                300 600 900 1200
                                     300 600 900 1200                                     300 600 900 1200
                                           d (nm)                       d (nm)                  d (nm)


      σrms= 2.1 nm                                σrms= 7 nm          σrms= 3.3 nm   σrms= 4.3 nm          σrms= 5 nm




                             d = 55 nm                                d = 390 nm
                                                   d = 170 nm                         d = 590 nm          d = 950 nm
             Surface morphologies of the samples belonging to thickness series of R=1/10
Dark Electrical Transport
Properties
– Above Room Temperature
Electrical transport in single phase µc-Si:H

• Microstructure:
   – >90% crystallinity, no amorphous phase
• Electrical transport:
   – Crystallinity ?
   – Crystallite size ?
   – Interfacial regions between crystallites or columns ?
• Carrier transport is influenced by:
   – Film morphology
   – Compositional variation in constituent crystallites
      • large grain fraction?
• Microstructure ↔ Electrical transport:
   – Need for investigation of correlation with large grain fraction
Above room temperature dark electrical conductivity (σd) shows
                 Arrhenius type thermally activated behavior: σd(T)=σo e –Ea / kT

              -2
            10                           R = 1/1                                     R = 1/10                (b)
                                                         (a)                                                           -3
                                                                                                                   10
              -4
            10                                                                                                         -4
                                                                                                                   10
-1
σd (Ω.cm)




                                                                                                                        -1
                                                                                                                            σd (Ω.cm)
              -6                                                                                                       -5
            10                                                                                                     10
                                                               d (nm); Ea (eV)
                                                                     950; 0.33
                   d (nm); Ea (eV)
                                                                     590; 0.44                                         -6
                         1200; 0.2
                                                                                                                   10
                                                                     390; 0.44
              -8          920; 0.15
            10                                                       170; 0.54
                          450; 0.55
                                                                     150; 0.54                                         -7
                          180; 0.58
                                                                                                                   10
                                                                      55; 0.54
                            62; 0.58
                                                                     Fit
             -10          Fit
       10
                   2.1         2.4        2.7    3.0   3.3     2.1        2.4    2.7     3.0             3.3
                                                -1                                    -1
                                       1000/T (K )                           1000/T (K )



                                                                             •Ram et al, Thin Solid Films 515 (2007) 7469.
0
                                                                 TS =250 C
                          -2
                        10                     P =1.5 Torr


                          -4
                        10

            -1
            σd (Ω cm)
                                                                            0
                                                                  TS =150 C              (a)
                          -6
                        10                                             R, TS
                                                                                         0
                                                                      1/10, 200 C
                                                                               0
                                                                      1/5, 200 C
                          -8
                        10                                            1/5, variable TS
                                                             0
                                               TS =100 C                             0
                                                                      1/1, 200 C
                                                                               0
                                                                      1/20, 200 C
                         -10
                   10
                                    200         400 600 800 1000 1200
                                               Film thickness (nm)
                                                                                                                    5
                                                                                                                   10
      0.7                                                                                                    (c)
                                                       (b)
                                     0
      0.6                      TS =100 C                                                                            3
                                                                                             0
                                                                                TS =100 C                          10




                                                                                                                        -1
      0.5




                                                                                                                         σ0 (Ω cm)
Ea (eV)




                                                                                                       0
                                                                                                 TS =150 C
                                                   0
                                             TS =150 C                                                              1
      0.4                                                                                                          10
                                                                                 0
                                                                      TS =250 C
      0.3
                                                                                                                    -1
                                                                                                                   10
      0.2
                                         0
                               TS =250 C                               P=1.5 Torr

      0.1         P=1.5 Torr                                                                                        -3
                                                                                                                   10
                                                                 200 400 600 800 1000 1200
            200 400 600 800 1000 1200
                                                                     Film thickness (nm)
                Film thickness (nm)
Ea (eV)
                            0.1 0.2 0.3 0.4 0.5 0.6

                1200                                                                                                               1200
                                                                                                     d = 950 nm

                1000                                                                                                               1000
Film Thickness (nm)




                                                                                                                                         Film Thickness (nm)
                                                                                                     d = 590 nm




                                                             Frequency (arb. unit)
                      800                                                                                                          800


                      600                                                                                                          600
                                                                                                     d = 390 nm

                      400                                                                                                          400
                                                                                                     d = 180 nm
                      200                                                                                                          200

                                                                                                     d = 55 nm
                       0                                                                                                           0
                                                                                     0   100   200    300    400 0
                              -7   -6    -5   -4   -3   -2                                                           20 40 60 80
                            10 10 10 10 10 10                                                                          Fcl (%)
                                                             Conglomerate surface grain size (nm)
                                  σd (Ω cm)
                                           -1




                                        Samples belong to thickness series of R=1/10
Classification of films: electrical transport behavior and Fcl

                                                              σ0
                 4
                10
                                                              Ea        0.5
                 3
                10
                 2
                10                                                      0.4
    -1
    σ0 (Ω cm)




                                                                              Ea (eV)
                 1
                10
                                                                        0.3
                 1
                                                                        0.2
                 -1
           10
                 -2
           10                                                           0.1
                                   type-B
                          type-A                 type-C
                      0       20     40     60       80            100
                                      Fcl (%)             •Ram et al, J. Non-Cryst. Solids 354
                                                          (2008) 2263.
σ0
                                                             4
                                                            10
                                                                                                      Ea    0.5
                                                             3
                                                            10
                                                             2
                                                            10                                              0.4




                                                -1
                                                σ0 (Ω cm)
        Classification




                                                                                                                  Ea (eV)
                                                             1
                                                            10
                                                                                                            0.3
                                                             1
           of films                                                                                         0.2
                                                             -1
                                                       10
                                                             -2
                                                       10                                                   0.1
Type-A material           Type-B material                                      type-B
                                                                      type-A                 type-C
                                                                  0       20     40     60       80        100
•   Small grains (SG)     •   Rising fraction of LG.                              Fcl (%)
•   Low amount of                                                     Type-C material
                          •   Marked
    conglomeration            morphological                           •    Highest fraction of LG.
    (without column           variation: column
                                                                      •    Well formed large
    formation)                formation
                                                                           columns
•   High density of       •   Moderate amount of
                                                                      •    Least amount of
    intergrain boundary       disordered phase in
                                                                           disordered phase in the
    regions containing        the columnar
                                                                           columnar boundaries.
    disordered phase.         boundaries.
Meyer Neldel Rule (MNR) & anti-MNR behaviors in
             dark electrical transport
Meyer Neldel Rule (MNR)
                              Observed in:
 Materials:                                         Processes:
                             Activated process:
                                                    Annealing Phenomena
 Ionic Materials              Y=A.exp (-B/X)
                                                    Trapping      in   crystalline
 Chalcogenide glasses      MNR    A=A’.exp(GB)
                                                    Semiconductors
 Organic thin films           where G and A’ are
                                                    Aging of insulating polymers
 Amorphous Silicon             MNR parameters
                                                    Biological death rates
 doped μc-Si:H
                                                    Chemical reactions
                                                    Electrical conduction
   microscopic origin of MNR
   & physical meaning of G ??
                                               Statistical shift of Fermi level
electrical transport in a-Si:H/
                                                                 σ0=σ00 eGEa ,
                                σd=σ0.exp(-Ea/kT)      MNR
disordered semiconductor:
                                                    where G or EMN (=1/G)
                                                    and σ00 are MNR parameters
Statistical Shift Model
According to Mott: σd(T) =σM exp{-(EC - EF)/kT}

EC(T ) = EC0 - γCT ; EF(T ) = EF0 - γFT

Ea= EC0 - EF0, at T=0 K

σd=σo exp (–Ea / kT )

σo=σM exp {(γC - γF) / k}

σ0=σ00 exp (GEa)                   --- MNR
Anti Meyer Neldel Rule
Correlation between σ0 and Ea appears to change
sign
– a negative value of MN energy (EMN) is seen

Experimentally observed in:
– Heavily doped μc-Si:H
– Heterogeneous Si (het-Si) thin film transistor
– Organic semiconductors
The reason for observed anti MNR
                 in doped µc-Si:H
Lucovsky & Overhof (LO) model
    in a degenerate case Ef
  moves above Ec in the
  crystalline phase
    consequently Ef can move
  deeply into the tail states in the
  disordered region, giving rise to
  anti MNR behavior.
                                       Energy band diagram as proposed by
                                       Lucovsky et al, J.N.C.S. 164-166, 973 (1993)
σ0 vs. Ea                                          Findings
                                                                                      σo and Ea follow linear
                                                                                    relationship  Type-A and
                                      MNR parameters
                     type-A
            4                                                                       Type-B samples.
                     type-B                  -1
                                    G=25.3 eV (EMN=39.5 meV)
        10           type-C
                                    σ00=7.2x10 (Ωcm)
                                             -4      -1



                                                                     γf ~ 0           Type-A   samples   are
                  anti MNR parameters
                                                                                    having high values of Ea
-1




            2                 -1

        10        G = -44.6 eV
                                                                     γf ~ γc
σ0 (Ω cm)




                                                                                    and σ0
                  or EMN=-22.5 meV
                  σ00= 87 (Ωcm)
                               -1




                                                                                                         γF
                                                                                      This   shows            is
            0
        10                                                                          extremely small in Type-A
                                                                                    samples due to its pinning
            -2
       10                                                                            The values of MNR
                                                                                   parameters nearly the same
                                                                               0.8 as found in a-Si:H.
            0.0               0.2           0.4                0.6
                                          Ea (eV)
                                                                                      Correlation between σo
                                                                                    and Ea appears to change
     MNR & anti MNR in single phase μc-Si:H                                         sign for type-C samples:
                                                                                    anti-MNR
                 •Ram et al, Phys. Rev. B 77 (2008) 045212.

                 •Ram et al, J. Non-Cryst. Solids 354 (2008) 2263.
MNR: type-A μc-Si:H
• Consists mainly of SG with an                                                  MNR parameters
                                                                type-A
                                                       4        type-B                  -1
                                                                               G=25.3 eV (EMN=39.5 meV)
                                                   10
  increased   number   of    SG                                 type-C
                                                                               σ00=7.2x10 (Ωcm)
                                                                                        -4    -1



                                                                                                                γf ~ 0
  boundaries.                                                anti MNR parameters




                                           -1
                                                       2                 -1

                                                   10        G = -44.6 eV
                                                                                                                γf ~ γc




                                           σ0 (Ω cm)
    – No question of formation of                            or EMN=-22.5 meV
                                                             σ00= 87 (Ωcm)
                                                                         -1



      potential barrier (i.e., transport               0
                                                   10
      through crystallites)
    – transport will be governed by                    -2
                                                  10
      the band tail transport.
                                                       0.0               0.2           0.4                0.6             0.8
                                                                                     Ea (eV)
• Ea saturates (≈ 0.55 eV) and σo ≈ 103 (Ωcm)-1.
    – EF is lying in the gap where the DOS does not vary much and there is a
      minimal movement of EF, or γF ≈ 0
• The initial data points for type-A have higher σo [≈ 104 (Ωcm)-1] and Ea (≈
  0.66 eV)
    – because of a shift in EC and/or a negative value of γF, as happens in
      a-Si:H for Ea towards the higher side.
MNR: type-B μc-Si:H
Improvement in film microstructure                                                 MNR parameters
                                                                  type-A
                                                         4        type-B                  -1
                                                                                 G=25.3 eV (EMN=39.5 meV)
                                                     10
delocalization of the tail states
                                                                  type-C
                                                                                 σ00=7.2x10 (Ωcm)
                                                                                          -4    -1



                                                                                                                  γf ~ 0
 – EF moves towards the band edges,                            anti MNR parameters




                                             -1
                                                         2                 -1
                                                               G = -44.6 eV
                                                     10                                                           γf ~ γc




                                             σ0 (Ω cm)
                                                               or EMN=-22.5 meV
   closer to the current path at EC.                           σ00= 87 (Ωcm)
                                                                           -1




 – γF depends on T and initial position                  0
                                                     10
   of EF, and when EF is closer to any of
                                                         -2
                                                    10
   the tail states and the tail states are
   steep, γF is rapid and marked.                        0.0               0.2           0.4                0.6             0.8
                                                                                       Ea (eV)
Transition between Type-A and Type-B materials
– Nearly constant σo [70-90 (Ωcm)-1] with the fall in Ea (0.54-0.40 eV),
– γF ≈ γC, canceling each other out in σo=σM exp [(γC - γF) / k]
– EF pinned near the minimum of the DOS between the exponential CBT
  and the tail of the defect states (DB–)
– With increasing crystallinity and/or improvement in microstructure,
  minimum shifts towards EC leading to a decrease of Ea.
Is the model by Lucovsky et al applicable for
        explaining Anti MNR in type-C μc-Si:H ?
• The value of EMN = -22.5 meV is close to the value reported in
  heavily doped µc-Si:H (-20meV)
• EB diagram as suggested by LO model seems inapplicable to
  our undoped µc-Si:H case
   – Calculated free electron concentrations          do not suggest
     degenerate condition.
   – Consideration of equal band edge discontinuities at both ends of
     c-Si and a-Si:H interface   Doubtful
   – Also, in a degenerate case, the conductivity behavior of
     polycrystalline material is found to exhibit a T 2 dependence of σd
Applying the statistical shift model
    in explaining Anti MNR in type-C μc-Si:H

• Considering transport through the encapsulating
  disordered tissue, a band tail transport is mandatory.
• The large columnar microstructure      in a long range
  ordering delocalizes an appreciable range of states in the
  tail state distribution.
• In addition, higher density of available free carriers and low
  value of defect density can cause a large increase in DB–
  density together with a decrease in DB+ states in the gap
  a lower DOS near the CB edge       possibility of a steeper CB
  tail.
• In this situation, if Ef is lying in the plateau region of the
  DOS, it may create an anti MNR situation.
Evidence of Anti MNR in μc-Si:H
              in
          Literature
Undoped µc-Si:H
             5
            10
                   #1 (rH=21) MNR line of types: A & B μc-Si:H
                   #1 (rH=32) MNR line of a-Si:H
                   #2
             3
            10     #3 (a-Si:H)
-1




                   this work
σ0 (Ω.cm)




             1
            10

                                   # 1 undoped µc-Si:H
             -1
        10                         # 2 lightly p-doped µc-Si:H

                               anti-MNR line of type-C μc-Si:H
             -3
        10
             0.0     0.2         0.4    0.6          0.8
                                 Ea(eV)     •Ram et al, Phys. Rev. B 77 (2008) 045212.
Doped µc-Si:H


                    anti MNR line (#7)
                  [heavily doped μc-Si:H]
            3
        10
-1
σ0 (Ω.cm)




                                                     MNR line (#7)
            1
        10                                      [a-Si,C:H+μc-Si,C alloy]



            -1
       10                                #4 (thickness series)
                                         #4 (doped series)
                                         #5 dope series, p-nc-Si-SiC:H alloy
                                        #5 dilution series, p-nc-Si-SiC:H alloy
                                         #6 (Boron doped μc-Si:H)
            -3                           #7
       10
            0.0          0.2         0.4     0.6                    0.8
                                     Ea (eV)                •Ram et al, Phys. Rev. B 77 (2008) 045212.
MNR parameters              Anti MNR parameters
              σ00                           σ00
                                 EMN                             EMN
                            G                            G
                     -1                           -1
                             -1
                                                       (eV-1)
 Samples    (Ω.cm)                       (Ω.cm)
                          (eV ) (meV)                           (meV)
This work
            7.2×10-4
Type-A&B                  25.3                           --
                                 39.5                             --
                                            --
 Type-C        --          --                          -44.6
                                  --                            -22.5
                                            87
Published
   Data
            4×10-3                       1.26×1010
 Case#1                   20.7                         -97.7
                                 48.4                           -10.2
 (rH=21)
            3.2×10-6
 Case#1                                     --
                          36.6                           --
                                 27.3                            --
 (rH=32)
            1.7×10-4
 Case#2                                     6
                          23.4                         -32.5
                                  42.7                          -30.8
            7.7×10-3
 Case#3                                     --
                           24                            --
                                  41.6                            --
 Case#4       0.32                          59
                          15.4                         -66.1
                                  65.1                          -15.1
            4.2×10-3
 Case#5                                     21
                          15.3                         -64.9
                                  65.4                          -15.4
            3.2×10-6
 Case#6                                    2.4
                          31.3                         -39.9
                                  31.9                          -25.1
               2.3
 Case#7                                    309
                           8.5                         -49.5
                                 118.3                          -20.2
               0.5
 Case#8                                     --
                          11.8                           --
                                  84.5                            --
            7.2×10-3
 Case#9                                     --
                           20                            --
                                   50                             --
If one has a collection of G and σ00 then:
                             a-Si,C:H alloy (#7)                     #1 (rH=21)
                                                                                  σ00=σM exp [(γC- γF)/k –GEa]
              0
             10                                                      #1 (rH=32)
                                               Porous Si (#9)
                                                                     #2
                                                                     #3
                                                                                  σ00=σM exp [(γC- γF)/k –G(EC0 –EF0)]
                                                      a-Si:H (#3)    #4
-1




                                                                     #5
σ00 (Ω.cm)




              -2
         10                                                          #6
                                                                                  At a position of EF in DOS where
                                                                     #7
                                                                     #8
                      p-nc-Si-SiC:H alloy (#5)
                                                                                  γF(EC0-Emin)=0
                                                                     #9
              -4
         10                                                          this work
                                     -1
                      σM=100 (Ωcm) (at γf=γc)                        Fit
                                                                                  σ00=σM exp [(γC/k) –GEmin]
                      Emin=0.61 eV
                                3         -1
                      σ0=1.2x10 (Ωcm) (at γf=0)
              -6
                                                                                  The quantity Emin is a measure for the
         10
                  5       10        15         20 25            30   35      40
                                                    -1
                                               G (eV )                            position of the DOS minimum within
                                                                                  the mobility gap.
                                                                                  If γC is known then for such a value of
                                                                                  σ00 where G=0, one can obtain σM
       •Ram et al, Phys. Rev. B 77 (2008) 045212.
Summary
• In single phase µc-Si:H films, film morphology shows
  correspondence with large grain fraction independent of film
  thickness and deposition conditions
• Percentage fraction of constituent large crystallite grains can be used
  as an empirical parameter to correlate a wide range of
  microstructures to the electrical transport properties
• Both MNR and anti MNR can be seen in the dark conductivity
  behavior of this material, depending on the microstructure and the
  correlative DOS features.
• The statistical shift model can successfully explain both the MNR
  and anti MNR behavior in our material.
• Corroborative evidence of similar electrical transport behavior of µc-
  Si:H in literature is present
Acknowledgements

• Dr. Satyendra Kumar (I.I.T. Kanpur, India)
• Dr. Pere Roca i Cabarrocas (LPICM, France)
Thank you

More Related Content

What's hot

ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...
ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...
ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...NMDG NV
 
ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...
ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...
ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...
ESS BILBAO
 
Evm Test Impairements
Evm Test ImpairementsEvm Test Impairements
Evm Test Impairements
chiportal
 
NRAD - ANS 2012
NRAD - ANS 2012NRAD - ANS 2012
NRAD - ANS 2012
jdbess
 
Analog Communications Jntu Model Paper{Www.Studentyogi.Com}
Analog Communications Jntu Model Paper{Www.Studentyogi.Com}Analog Communications Jntu Model Paper{Www.Studentyogi.Com}
Analog Communications Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...
CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...
CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...
Pawan Kumar
 
IGARSS11 End-to-end calibration v2.pdf
IGARSS11 End-to-end calibration v2.pdfIGARSS11 End-to-end calibration v2.pdf
IGARSS11 End-to-end calibration v2.pdfgrssieee
 
D Gonzalez Diaz Optimization Mstip Rp Cs
D Gonzalez Diaz Optimization Mstip Rp CsD Gonzalez Diaz Optimization Mstip Rp Cs
D Gonzalez Diaz Optimization Mstip Rp CsMiguel Morales
 
シンプルモデル:トランスモデルのパラメータ及び説明について
シンプルモデル:トランスモデルのパラメータ及び説明についてシンプルモデル:トランスモデルのパラメータ及び説明について
シンプルモデル:トランスモデルのパラメータ及び説明について
Tsuyoshi Horigome
 
シンプルモデルのトランスのモデルの種類
シンプルモデルのトランスのモデルの種類シンプルモデルのトランスのモデルの種類
シンプルモデルのトランスのモデルの種類
Tsuyoshi Horigome
 
Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)
Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)
Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)
Piero Belforte
 
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...grssieee
 
Mechanistic Empirical Pavement Design
Mechanistic Empirical Pavement Design Mechanistic Empirical Pavement Design
Mechanistic Empirical Pavement Design mecocca5
 
CMPP 2012 held in conjunction with ICNC&rsquo;12
CMPP 2012 held in conjunction with ICNC&rsquo;12CMPP 2012 held in conjunction with ICNC&rsquo;12
CMPP 2012 held in conjunction with ICNC&rsquo;12
Ryohei Kobayashi
 

What's hot (19)

ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...
ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...
ZVxPlus Application: Transistor Characterization, Reliability and Model Verif...
 
ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...
ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...
ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
 
Evm Test Impairements
Evm Test ImpairementsEvm Test Impairements
Evm Test Impairements
 
Smith Chart
Smith ChartSmith Chart
Smith Chart
 
NRAD - ANS 2012
NRAD - ANS 2012NRAD - ANS 2012
NRAD - ANS 2012
 
Simplified Model
Simplified ModelSimplified Model
Simplified Model
 
Analog Communications Jntu Model Paper{Www.Studentyogi.Com}
Analog Communications Jntu Model Paper{Www.Studentyogi.Com}Analog Communications Jntu Model Paper{Www.Studentyogi.Com}
Analog Communications Jntu Model Paper{Www.Studentyogi.Com}
 
50
5050
50
 
CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...
CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...
CVD grown nitrogen doped graphene is an exceptional visible-light driven phot...
 
IGARSS11 End-to-end calibration v2.pdf
IGARSS11 End-to-end calibration v2.pdfIGARSS11 End-to-end calibration v2.pdf
IGARSS11 End-to-end calibration v2.pdf
 
D Gonzalez Diaz Optimization Mstip Rp Cs
D Gonzalez Diaz Optimization Mstip Rp CsD Gonzalez Diaz Optimization Mstip Rp Cs
D Gonzalez Diaz Optimization Mstip Rp Cs
 
シンプルモデル:トランスモデルのパラメータ及び説明について
シンプルモデル:トランスモデルのパラメータ及び説明についてシンプルモデル:トランスモデルのパラメータ及び説明について
シンプルモデル:トランスモデルのパラメータ及び説明について
 
シンプルモデルのトランスのモデルの種類
シンプルモデルのトランスのモデルの種類シンプルモデルのトランスのモデルの種類
シンプルモデルのトランスのモデルの種類
 
Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)
Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)
Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)
 
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...
WE4.L09 - ORTHOGONAL POLARIMETRIC SAR PROCESSOR BASED ON SIGNAL AND INTERFERE...
 
Pll Basic
Pll BasicPll Basic
Pll Basic
 
Mechanistic Empirical Pavement Design
Mechanistic Empirical Pavement Design Mechanistic Empirical Pavement Design
Mechanistic Empirical Pavement Design
 
CMPP 2012 held in conjunction with ICNC&rsquo;12
CMPP 2012 held in conjunction with ICNC&rsquo;12CMPP 2012 held in conjunction with ICNC&rsquo;12
CMPP 2012 held in conjunction with ICNC&rsquo;12
 

Viewers also liked

Content - A Fairytale Wedding of Social and Enterprise
Content - A Fairytale Wedding of Social and EnterpriseContent - A Fairytale Wedding of Social and Enterprise
Content - A Fairytale Wedding of Social and Enterprise
John Newton
 
Oppekavaarenduse mudel
Oppekavaarenduse mudelOppekavaarenduse mudel
Oppekavaarenduse mudelkiq
 
Beautiful Bridges
Beautiful BridgesBeautiful Bridges
Beautiful Bridgessanctuary
 
E Mail & Lists
E Mail & ListsE Mail & Lists
E Mail & Lists
Javier Ávila
 
書く技術
書く技術書く技術
書く技術
Atsushi Nakatsugawa
 
ICT Development in Kyrgyzstan - Presentation for University of Washington
ICT Development in Kyrgyzstan - Presentation for University of WashingtonICT Development in Kyrgyzstan - Presentation for University of Washington
ICT Development in Kyrgyzstan - Presentation for University of Washington
Bolot Bazarbaev
 
4. open innov lifecycle
4. open innov lifecycle4. open innov lifecycle
4. open innov lifecycle
Michele Missikoff
 
Spring 3 - An Introduction
Spring 3 - An IntroductionSpring 3 - An Introduction
Spring 3 - An Introduction
Thorsten Kamann
 
プッシュからデータ保存まで。アプリ開発でニフティクラウド mobile backendを使う上での良くある質問、疑問にお答えします
プッシュからデータ保存まで。アプリ開発でニフティクラウド mobile backendを使う上での良くある質問、疑問にお答えしますプッシュからデータ保存まで。アプリ開発でニフティクラウド mobile backendを使う上での良くある質問、疑問にお答えします
プッシュからデータ保存まで。アプリ開発でニフティクラウド mobile backendを使う上での良くある質問、疑問にお答えします
Atsushi Nakatsugawa
 
Oop2012 mobile workshops
Oop2012 mobile workshopsOop2012 mobile workshops
Oop2012 mobile workshops
Michael Chaize
 
CSI Content: Who Killed ECM?
CSI Content: Who Killed ECM?CSI Content: Who Killed ECM?
CSI Content: Who Killed ECM?
John Newton
 
Martin karlssons vykortssamling sigtunastiftelsen
Martin karlssons vykortssamling   sigtunastiftelsenMartin karlssons vykortssamling   sigtunastiftelsen
Martin karlssons vykortssamling sigtunastiftelsenhembygdsigtuna
 
3. open innov organization
3. open innov organization3. open innov organization
3. open innov organization
Michele Missikoff
 
Jax2010 adobe lcds
Jax2010 adobe lcdsJax2010 adobe lcds
Jax2010 adobe lcds
Michael Chaize
 
大家行04
大家行04大家行04
大家行04
liuruifeng
 
Devoxx 2010: Develop mobile applications with Flex
Devoxx 2010: Develop mobile applications with FlexDevoxx 2010: Develop mobile applications with Flex
Devoxx 2010: Develop mobile applications with Flex
Michael Chaize
 

Viewers also liked (17)

Free Corpus I M S
Free  Corpus  I M SFree  Corpus  I M S
Free Corpus I M S
 
Content - A Fairytale Wedding of Social and Enterprise
Content - A Fairytale Wedding of Social and EnterpriseContent - A Fairytale Wedding of Social and Enterprise
Content - A Fairytale Wedding of Social and Enterprise
 
Oppekavaarenduse mudel
Oppekavaarenduse mudelOppekavaarenduse mudel
Oppekavaarenduse mudel
 
Beautiful Bridges
Beautiful BridgesBeautiful Bridges
Beautiful Bridges
 
E Mail & Lists
E Mail & ListsE Mail & Lists
E Mail & Lists
 
書く技術
書く技術書く技術
書く技術
 
ICT Development in Kyrgyzstan - Presentation for University of Washington
ICT Development in Kyrgyzstan - Presentation for University of WashingtonICT Development in Kyrgyzstan - Presentation for University of Washington
ICT Development in Kyrgyzstan - Presentation for University of Washington
 
4. open innov lifecycle
4. open innov lifecycle4. open innov lifecycle
4. open innov lifecycle
 
Spring 3 - An Introduction
Spring 3 - An IntroductionSpring 3 - An Introduction
Spring 3 - An Introduction
 
プッシュからデータ保存まで。アプリ開発でニフティクラウド mobile backendを使う上での良くある質問、疑問にお答えします
プッシュからデータ保存まで。アプリ開発でニフティクラウド mobile backendを使う上での良くある質問、疑問にお答えしますプッシュからデータ保存まで。アプリ開発でニフティクラウド mobile backendを使う上での良くある質問、疑問にお答えします
プッシュからデータ保存まで。アプリ開発でニフティクラウド mobile backendを使う上での良くある質問、疑問にお答えします
 
Oop2012 mobile workshops
Oop2012 mobile workshopsOop2012 mobile workshops
Oop2012 mobile workshops
 
CSI Content: Who Killed ECM?
CSI Content: Who Killed ECM?CSI Content: Who Killed ECM?
CSI Content: Who Killed ECM?
 
Martin karlssons vykortssamling sigtunastiftelsen
Martin karlssons vykortssamling   sigtunastiftelsenMartin karlssons vykortssamling   sigtunastiftelsen
Martin karlssons vykortssamling sigtunastiftelsen
 
3. open innov organization
3. open innov organization3. open innov organization
3. open innov organization
 
Jax2010 adobe lcds
Jax2010 adobe lcdsJax2010 adobe lcds
Jax2010 adobe lcds
 
大家行04
大家行04大家行04
大家行04
 
Devoxx 2010: Develop mobile applications with Flex
Devoxx 2010: Develop mobile applications with FlexDevoxx 2010: Develop mobile applications with Flex
Devoxx 2010: Develop mobile applications with Flex
 

Similar to Variation of Electrical Transport Parameters with Large Grain Fraction in Highly Crystalline Undoped Microcrystalline Silicon

Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Sanjay Ram
 
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTsFull-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTsayubimoak
 
Multiscale methods for graphene based nanocomposites
Multiscale methods for graphene based nanocompositesMultiscale methods for graphene based nanocomposites
Multiscale methods for graphene based nanocomposites
University of Glasgow
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxides
nirupam12
 
Development Of Emissive Layers For High Definition Plasma Displays
Development Of Emissive Layers For High Definition Plasma DisplaysDevelopment Of Emissive Layers For High Definition Plasma Displays
Development Of Emissive Layers For High Definition Plasma Displays
Sanjay Ram
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Tuong Do
 
Cu stp 02_solar_resource
Cu stp 02_solar_resourceCu stp 02_solar_resource
Cu stp 02_solar_resourceManuel Silva
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalAlan Elbanhawy
 
Fatigue behavior of welded steel
Fatigue behavior of welded steelFatigue behavior of welded steel
Fatigue behavior of welded steelAygMA
 
Schottky Barrier Heigh oriented process integration 2012
Schottky Barrier Heigh oriented process integration 2012Schottky Barrier Heigh oriented process integration 2012
Schottky Barrier Heigh oriented process integration 2012
Sidewinder2011
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac UpgradeLobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
thinfilmsworkshop
 
NanowireSensor
NanowireSensorNanowireSensor
NanowireSensor
dalgetty
 
A Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect ModelsA Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect Modelshappybhatia
 
A comparison of VLSI interconnect models
A comparison of VLSI interconnect modelsA comparison of VLSI interconnect models
A comparison of VLSI interconnect modelshappybhatia
 
ISIMS 2012: First High-Resolution Thermal-Ions Imaging in a DT-IMS
ISIMS 2012: First High-Resolution Thermal-Ions Imaging in a DT-IMSISIMS 2012: First High-Resolution Thermal-Ions Imaging in a DT-IMS
ISIMS 2012: First High-Resolution Thermal-Ions Imaging in a DT-IMSohadjar
 
LiNbO3
LiNbO3LiNbO3

Similar to Variation of Electrical Transport Parameters with Large Grain Fraction in Highly Crystalline Undoped Microcrystalline Silicon (20)

Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
 
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTsFull-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
 
Multiscale methods for graphene based nanocomposites
Multiscale methods for graphene based nanocompositesMultiscale methods for graphene based nanocomposites
Multiscale methods for graphene based nanocomposites
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxides
 
Development Of Emissive Layers For High Definition Plasma Displays
Development Of Emissive Layers For High Definition Plasma DisplaysDevelopment Of Emissive Layers For High Definition Plasma Displays
Development Of Emissive Layers For High Definition Plasma Displays
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
 
Cu stp 02_solar_resource
Cu stp 02_solar_resourceCu stp 02_solar_resource
Cu stp 02_solar_resource
 
Presentation B Engproject
Presentation B EngprojectPresentation B Engproject
Presentation B Engproject
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET Final
 
Fatigue behavior of welded steel
Fatigue behavior of welded steelFatigue behavior of welded steel
Fatigue behavior of welded steel
 
Schottky Barrier Heigh oriented process integration 2012
Schottky Barrier Heigh oriented process integration 2012Schottky Barrier Heigh oriented process integration 2012
Schottky Barrier Heigh oriented process integration 2012
 
Gx3113351337
Gx3113351337Gx3113351337
Gx3113351337
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac UpgradeLobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
 
NanowireSensor
NanowireSensorNanowireSensor
NanowireSensor
 
A Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect ModelsA Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect Models
 
A comparison of VLSI interconnect models
A comparison of VLSI interconnect modelsA comparison of VLSI interconnect models
A comparison of VLSI interconnect models
 
Nanoscale Vacuum Tubes
Nanoscale Vacuum Tubes Nanoscale Vacuum Tubes
Nanoscale Vacuum Tubes
 
ISIMS 2012: First High-Resolution Thermal-Ions Imaging in a DT-IMS
ISIMS 2012: First High-Resolution Thermal-Ions Imaging in a DT-IMSISIMS 2012: First High-Resolution Thermal-Ions Imaging in a DT-IMS
ISIMS 2012: First High-Resolution Thermal-Ions Imaging in a DT-IMS
 
LiNbO3
LiNbO3LiNbO3
LiNbO3
 

Recently uploaded

Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
Quotidiano Piemontese
 
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdfSAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
Peter Spielvogel
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
Neo4j
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
Kari Kakkonen
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
mikeeftimakis1
 
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
SOFTTECHHUB
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
Aftab Hussain
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Free Complete Python - A step towards Data Science
Free Complete Python - A step towards Data ScienceFree Complete Python - A step towards Data Science
Free Complete Python - A step towards Data Science
RinaMondal9
 
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptxSecstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
nkrafacyberclub
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 

Recently uploaded (20)

Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
 
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdfSAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
 
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Free Complete Python - A step towards Data Science
Free Complete Python - A step towards Data ScienceFree Complete Python - A step towards Data Science
Free Complete Python - A step towards Data Science
 
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptxSecstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 

Variation of Electrical Transport Parameters with Large Grain Fraction in Highly Crystalline Undoped Microcrystalline Silicon

  • 1. Variation of Electrical Transport Parameters with Large Grain Fraction in Highly Crystalline Undoped Microcrystalline Silicon Sanjay K. Ram Dept. of Physics, I.I.T. Kanpur, India & LPICM (UMR 7647 du CNRS ), Ecole Polytechnique, France
  • 2. Motivation: study of μc-Si:H thin films • Promising material for large area electronics – Good carrier mobility – Greater stability – Low temperature deposition • Electrical transport properties : important for device applications
  • 3. Optimization of μc-Si:H device applications: Issues columnar boundaries grains grain boundaries conglomerate crystallites surface roughness voids Film growth substrate Complex microstructure of μc-Si:H How is film microstructure related to transport properties in µc-Si:H???
  • 4. Objectives • To study the optoelectronic properties of well characterized μc-Si:H films • Identify the role of microstructure in determining the electrical transport behavior
  • 5. Sample preparation PECVD RF Parallel-plate glow discharge HH H Si H H N H H plasma deposition system H H H Si N Si N Si N μc-Si:H Substrate: Corning 1773 film Flow ratio High purity feed gases: (R)= SiF4/H2 SiF4 , Ar & H2 R=1/1 R=1/5 R=1/10 Rf frequency 13.56 MHz Ts=200 oC Thickness series
  • 6. Film characterization Electrical Properties Structural Properties σd(T) measurement 15K≤T ≤ 450K Xray Diffraction σPh(T,∅) measurement 15K≤T ≤ 325K Raman Scattering CPM measurement Spectroscopy Ellipsometry Hall effect TRMC Atomic Force Microscopy
  • 8. Spectroscopic Ellipsometry : measured imaginary part of the pseudo-dielectric function <ε2> spectra 30 * Reference c-Si in BEMA model : E2 (4.2 eV) E1 (3.4 eV) LPCVD polysilicon with large 25 d=390 nm (pc-Si-l) and fine (pc-Si-f) grains d=170 nm d=590 nm 20 d=950 nm d=55 nm E2 (4.2 eV) 50 E1 (3.4 eV) < ε2 > 15 40 c-Si pc-Si-l 30 < ε2 > pc-Si-f 10 a-Si 20 μ c-Si:H 5 10 (d = 950 nm) 0 0 (a) -10 2 3 4 5 -5 Energy (eV) 2 3 4 5 Energy (eV) •Ram et al, Thin Solid Films 515 (2007) 7619. thickness series of R=1/10 •Ram et al, Thin Solid Films (2008) in print.
  • 9. Analyses of SE data: schematic view for two films (initial and final growth stages) Fcf = small grains TSL (8.3 nm) Fcl = large grains Fcf = 73.6 %, Fcl = 0 %, Fv = voids Fv = 26.4 %, Fa =0 % Fa = amorphous phase TSL (7.9 nm) MBL (918.9 nm) d = 950 nm Fcf = 32.3 %, Fcl = 0.6 %, Fcf = 50.4 %, Fcl = 40.8 %, Fv = 67.1%, Fa =0 % Fv=8.8 %, Fa=0% d = 55 nm BL (48.2 nm) BIL (27.7 nm) Fcf = 88.4 %, Fcl = 0 %, Fcf = 0 %, Fcl = 0 %, Fv = 10.1 %, Fa = 1.5 % Fv = 35.6 %, Fa =64.4 %
  • 10. X-ray diffraction Intensity (arb.unit) (400) (111) (220) (311) 20 30 40 50 60 70 Cu Kα 2θ (degrees) thickness ~ 1 µm
  • 11. X-ray diffraction analysis Exp. XRD peak (400) Exp. XRD peak (111) Total Fit Total Fit Peak 1 (22.4 nm) Intensity (arb. unit) Peak 1 (14.8 nm) Intensity (arb. unit) Peak 2 (9 nm) Peak 2 (4.8 nm) Exp. XRD peak (400) Exp. XRD peak(220) Exp. XRD peak (111) Total Fit Total Fit (11.4 nm) Total Fit Exp. XRD peak (311) Intensity (arb. unit) Peak 1 (22.4 nm) Intensity (arb. unit) Peak 1 (14.8 nm) Intensity (arb. unit) Total Fit Intensity (arb. unit) Peak 2 (9 nm) Peak 2 (4.8 nm) 69.5 70.0 (48 nm) Peak 1 68.5 69.0 26 27 28 29 30 31 32 33 68.0 2θ (degree) Peak 2 (11.4(degree) 2θ nm) Intensity (arb.unit) (400) (111) thickness ~ 1 µm (220) (311) 20 30 40 50 60 70 Cu Kα 2θ (degrees) Exp. XRD peak (311) Exp. XRD peak (220) Total Fit Total Fit (11.4 nm) Peak 1 (48 nm) Intensity (arb. unit) Intensity (arb. unit) Peak 2 (11.4 nm) 68.0 2768.5 4729 4869.5 49 70.0 50 46 28 69.0 30 5731 32 58 26 33 45 55 56 2θ (degree) 2θ (degree) 2θ (degree) 45 46 47 48 49 50 55 56 57 58 2θ (degree) 2θ (degree)
  • 12. Surface morphology by AFM σrms= 4 nm + 0.3 nm d = 950 nm σrms= 3.3 nm + 0.1 nm d = 590 nm Frequency (arb. unit) σrms= 4.3 nm + 0.4 nm d = 390 nm σrms= 7 nm + 0.1 nm d = 180 nm σrms= 2.1 nm + 0.2 nm d = 55 nm 0 100 200 300 400 Conglomerate surface grain size (nm) •Ram et al, Thin Solid Films 515 (2007) 7619. thickness series of R=1/10 •Ram et al, Thin Solid Films (2008) in print.
  • 13. Bifacial Raman Spectroscopy Expt. data (glass side) collection (a) excitation Intensity (arb. unit) glass film Expt. data (film side) (b) collection excitation film glass 400 425 450 475 500 525 550 -1 Raman Shift (cm ) R=1/1, thickness = 1200 nm
  • 14. Deconvolution of Raman Spectroscopy Data • Microstructure of our samples: – No a-Si:H phase – Presence of two (mean) sizes of crystallites • Conventional deconvolution: – Single mean crystallite size – A peak assigned to grain boundary material – An amorphous phase : asymmetric tail • Previous efforts – Deconvolution based on two asymmetric Lorentzian peaks [Touir et al, J. Non-Cryst. Solids 227-230 (1998) 906] – Method of subtracting the amorphous contribution and fitting the resulting crystalline part of spectrum with three or five Gaussian peaks [Smit et al, J. Appl. Phys. 94 (2003) 3582]
  • 15. RS Data Deconvolution : Our Model inclusion of crystallite size distribution (CSD) In absence of amorphous phase • Asymmetry in the Raman lineshape of RS profiles (low energy tail) distribution of smaller sized crystallites • Incorporation of a bimodal CSD in the deconvolution of RS profiles avoids: – Overestimation of amorphous content – Inaccuracy in the estimation of the total crystalline volume fraction •Islam & Kumar, Appl. Phys. Lett. 78 (2001) 715. •Islam et al, J. Appl. Phys. 98 (2005) 024309. •Ram et al, Thin Solid Films 515 (2007) 7619.
  • 16. Bifacial Raman Study 1.2 1.2 glass side exp. data of F0E31 film side exp. data of F0E31 cd1 cd1 cd2 cd2 Intensity (arb. unit) a Intensity (arb. unit) fit with - cd1cd2 fit with - cd1cd2a 0.9 0.9 0.6 0.6 0.3 0.3 0.0 0.0 450 475 500 525 550 400 425 450 475 500 525 550 -1 Raman Shift (cm ) -1 Raman Shift (cm ) RS(F) data bimodal CSD RS(G) data bimodal CSD + amorphous phase Small grain (cd1) Large grain (cd2) a-Si:H Sample #E31 Fitting Model (1200 nm, R=1/1) Size (nm) [σ (nm)] Size (nm) [σ (nm)] XC1 (%) XC2 (%) Xa (%) Film side cd1+cd2 6.1, [1.68] 20 72.7, [0] 80 0 Glass side cd1+cd2+a 6.6, [1.13] 8.4 97.7, [4.7] 52.4 39.2
  • 17. RS analysis fit model quot;cd1+cd2quot; cd1 cd2 3 models: d = 950 nm, RS(F) cd1 + cd2 Intensity (arb. unit) cd1 fit model quot;cd1+cd2+aquot; cd1 +cd2 +a d = 950 nm, RS(G) cd2 a cd +a fit model quot;cd+aquot; cd d = 55 nm, RS(F) a fit model quot;cd+aquot; cd a d = 55 nm, RS(G) 400 450 500 550 -1 Raman shift (cm )
  • 18. Fractional composition of films: Qualitative agreement between RS and SE studies 100 Xc1 (%) 100 Fcf (b) (a) Fcl Fcf , Fcl , Fv (%) by SE Xc2 (%) Xa, Xc1, Xc2 (%) by RS 80 Xa (%) 80 Fv 60 60 40 40 20 20 0 0 200 400 600 800 1000 1200 200 400 600 800 1000 Film Thickness (nm) Film Thickness (nm) Samples belong to thickness series of R=1/10
  • 19. Summary of variation in fractional compositions and roughness with film growth (a) (c) (b) Fc , Fcf and Fcl (%) by SE Roughness by SE, σSE(nm) 100 Fc Fc Fc 8 Fcf Fcf 80 Fcf 6 60 σSE σSE 40 4 Fcl σSE 20 Fcl 2 Fcl R = 1/1 R = 1/10 R = 1/5 0 300 600 900 1200 300 600 900 1200 300 600 900 1200 d (nm) d (nm) d (nm) σrms= 2.1 nm σrms= 7 nm σrms= 3.3 nm σrms= 4.3 nm σrms= 5 nm d = 55 nm d = 390 nm d = 170 nm d = 590 nm d = 950 nm Surface morphologies of the samples belonging to thickness series of R=1/10
  • 21. Electrical transport in single phase µc-Si:H • Microstructure: – >90% crystallinity, no amorphous phase • Electrical transport: – Crystallinity ? – Crystallite size ? – Interfacial regions between crystallites or columns ? • Carrier transport is influenced by: – Film morphology – Compositional variation in constituent crystallites • large grain fraction? • Microstructure ↔ Electrical transport: – Need for investigation of correlation with large grain fraction
  • 22. Above room temperature dark electrical conductivity (σd) shows Arrhenius type thermally activated behavior: σd(T)=σo e –Ea / kT -2 10 R = 1/1 R = 1/10 (b) (a) -3 10 -4 10 -4 10 -1 σd (Ω.cm) -1 σd (Ω.cm) -6 -5 10 10 d (nm); Ea (eV) 950; 0.33 d (nm); Ea (eV) 590; 0.44 -6 1200; 0.2 10 390; 0.44 -8 920; 0.15 10 170; 0.54 450; 0.55 150; 0.54 -7 180; 0.58 10 55; 0.54 62; 0.58 Fit -10 Fit 10 2.1 2.4 2.7 3.0 3.3 2.1 2.4 2.7 3.0 3.3 -1 -1 1000/T (K ) 1000/T (K ) •Ram et al, Thin Solid Films 515 (2007) 7469.
  • 23. 0 TS =250 C -2 10 P =1.5 Torr -4 10 -1 σd (Ω cm) 0 TS =150 C (a) -6 10 R, TS 0 1/10, 200 C 0 1/5, 200 C -8 10 1/5, variable TS 0 TS =100 C 0 1/1, 200 C 0 1/20, 200 C -10 10 200 400 600 800 1000 1200 Film thickness (nm) 5 10 0.7 (c) (b) 0 0.6 TS =100 C 3 0 TS =100 C 10 -1 0.5 σ0 (Ω cm) Ea (eV) 0 TS =150 C 0 TS =150 C 1 0.4 10 0 TS =250 C 0.3 -1 10 0.2 0 TS =250 C P=1.5 Torr 0.1 P=1.5 Torr -3 10 200 400 600 800 1000 1200 200 400 600 800 1000 1200 Film thickness (nm) Film thickness (nm)
  • 24. Ea (eV) 0.1 0.2 0.3 0.4 0.5 0.6 1200 1200 d = 950 nm 1000 1000 Film Thickness (nm) Film Thickness (nm) d = 590 nm Frequency (arb. unit) 800 800 600 600 d = 390 nm 400 400 d = 180 nm 200 200 d = 55 nm 0 0 0 100 200 300 400 0 -7 -6 -5 -4 -3 -2 20 40 60 80 10 10 10 10 10 10 Fcl (%) Conglomerate surface grain size (nm) σd (Ω cm) -1 Samples belong to thickness series of R=1/10
  • 25. Classification of films: electrical transport behavior and Fcl σ0 4 10 Ea 0.5 3 10 2 10 0.4 -1 σ0 (Ω cm) Ea (eV) 1 10 0.3 1 0.2 -1 10 -2 10 0.1 type-B type-A type-C 0 20 40 60 80 100 Fcl (%) •Ram et al, J. Non-Cryst. Solids 354 (2008) 2263.
  • 26. σ0 4 10 Ea 0.5 3 10 2 10 0.4 -1 σ0 (Ω cm) Classification Ea (eV) 1 10 0.3 1 of films 0.2 -1 10 -2 10 0.1 Type-A material Type-B material type-B type-A type-C 0 20 40 60 80 100 • Small grains (SG) • Rising fraction of LG. Fcl (%) • Low amount of Type-C material • Marked conglomeration morphological • Highest fraction of LG. (without column variation: column • Well formed large formation) formation columns • High density of • Moderate amount of • Least amount of intergrain boundary disordered phase in disordered phase in the regions containing the columnar columnar boundaries. disordered phase. boundaries.
  • 27. Meyer Neldel Rule (MNR) & anti-MNR behaviors in dark electrical transport
  • 28. Meyer Neldel Rule (MNR) Observed in: Materials: Processes: Activated process: Annealing Phenomena Ionic Materials Y=A.exp (-B/X) Trapping in crystalline Chalcogenide glasses MNR A=A’.exp(GB) Semiconductors Organic thin films where G and A’ are Aging of insulating polymers Amorphous Silicon MNR parameters Biological death rates doped μc-Si:H Chemical reactions Electrical conduction microscopic origin of MNR & physical meaning of G ?? Statistical shift of Fermi level electrical transport in a-Si:H/ σ0=σ00 eGEa , σd=σ0.exp(-Ea/kT) MNR disordered semiconductor: where G or EMN (=1/G) and σ00 are MNR parameters
  • 29. Statistical Shift Model According to Mott: σd(T) =σM exp{-(EC - EF)/kT} EC(T ) = EC0 - γCT ; EF(T ) = EF0 - γFT Ea= EC0 - EF0, at T=0 K σd=σo exp (–Ea / kT ) σo=σM exp {(γC - γF) / k} σ0=σ00 exp (GEa) --- MNR
  • 30. Anti Meyer Neldel Rule Correlation between σ0 and Ea appears to change sign – a negative value of MN energy (EMN) is seen Experimentally observed in: – Heavily doped μc-Si:H – Heterogeneous Si (het-Si) thin film transistor – Organic semiconductors
  • 31. The reason for observed anti MNR in doped µc-Si:H Lucovsky & Overhof (LO) model in a degenerate case Ef moves above Ec in the crystalline phase consequently Ef can move deeply into the tail states in the disordered region, giving rise to anti MNR behavior. Energy band diagram as proposed by Lucovsky et al, J.N.C.S. 164-166, 973 (1993)
  • 32. σ0 vs. Ea Findings σo and Ea follow linear relationship Type-A and MNR parameters type-A 4 Type-B samples. type-B -1 G=25.3 eV (EMN=39.5 meV) 10 type-C σ00=7.2x10 (Ωcm) -4 -1 γf ~ 0 Type-A samples are anti MNR parameters having high values of Ea -1 2 -1 10 G = -44.6 eV γf ~ γc σ0 (Ω cm) and σ0 or EMN=-22.5 meV σ00= 87 (Ωcm) -1 γF This shows is 0 10 extremely small in Type-A samples due to its pinning -2 10 The values of MNR parameters nearly the same 0.8 as found in a-Si:H. 0.0 0.2 0.4 0.6 Ea (eV) Correlation between σo and Ea appears to change MNR & anti MNR in single phase μc-Si:H sign for type-C samples: anti-MNR •Ram et al, Phys. Rev. B 77 (2008) 045212. •Ram et al, J. Non-Cryst. Solids 354 (2008) 2263.
  • 33. MNR: type-A μc-Si:H • Consists mainly of SG with an MNR parameters type-A 4 type-B -1 G=25.3 eV (EMN=39.5 meV) 10 increased number of SG type-C σ00=7.2x10 (Ωcm) -4 -1 γf ~ 0 boundaries. anti MNR parameters -1 2 -1 10 G = -44.6 eV γf ~ γc σ0 (Ω cm) – No question of formation of or EMN=-22.5 meV σ00= 87 (Ωcm) -1 potential barrier (i.e., transport 0 10 through crystallites) – transport will be governed by -2 10 the band tail transport. 0.0 0.2 0.4 0.6 0.8 Ea (eV) • Ea saturates (≈ 0.55 eV) and σo ≈ 103 (Ωcm)-1. – EF is lying in the gap where the DOS does not vary much and there is a minimal movement of EF, or γF ≈ 0 • The initial data points for type-A have higher σo [≈ 104 (Ωcm)-1] and Ea (≈ 0.66 eV) – because of a shift in EC and/or a negative value of γF, as happens in a-Si:H for Ea towards the higher side.
  • 34. MNR: type-B μc-Si:H Improvement in film microstructure MNR parameters type-A 4 type-B -1 G=25.3 eV (EMN=39.5 meV) 10 delocalization of the tail states type-C σ00=7.2x10 (Ωcm) -4 -1 γf ~ 0 – EF moves towards the band edges, anti MNR parameters -1 2 -1 G = -44.6 eV 10 γf ~ γc σ0 (Ω cm) or EMN=-22.5 meV closer to the current path at EC. σ00= 87 (Ωcm) -1 – γF depends on T and initial position 0 10 of EF, and when EF is closer to any of -2 10 the tail states and the tail states are steep, γF is rapid and marked. 0.0 0.2 0.4 0.6 0.8 Ea (eV) Transition between Type-A and Type-B materials – Nearly constant σo [70-90 (Ωcm)-1] with the fall in Ea (0.54-0.40 eV), – γF ≈ γC, canceling each other out in σo=σM exp [(γC - γF) / k] – EF pinned near the minimum of the DOS between the exponential CBT and the tail of the defect states (DB–) – With increasing crystallinity and/or improvement in microstructure, minimum shifts towards EC leading to a decrease of Ea.
  • 35. Is the model by Lucovsky et al applicable for explaining Anti MNR in type-C μc-Si:H ? • The value of EMN = -22.5 meV is close to the value reported in heavily doped µc-Si:H (-20meV) • EB diagram as suggested by LO model seems inapplicable to our undoped µc-Si:H case – Calculated free electron concentrations do not suggest degenerate condition. – Consideration of equal band edge discontinuities at both ends of c-Si and a-Si:H interface Doubtful – Also, in a degenerate case, the conductivity behavior of polycrystalline material is found to exhibit a T 2 dependence of σd
  • 36. Applying the statistical shift model in explaining Anti MNR in type-C μc-Si:H • Considering transport through the encapsulating disordered tissue, a band tail transport is mandatory. • The large columnar microstructure in a long range ordering delocalizes an appreciable range of states in the tail state distribution. • In addition, higher density of available free carriers and low value of defect density can cause a large increase in DB– density together with a decrease in DB+ states in the gap a lower DOS near the CB edge possibility of a steeper CB tail. • In this situation, if Ef is lying in the plateau region of the DOS, it may create an anti MNR situation.
  • 37. Evidence of Anti MNR in μc-Si:H in Literature
  • 38. Undoped µc-Si:H 5 10 #1 (rH=21) MNR line of types: A & B μc-Si:H #1 (rH=32) MNR line of a-Si:H #2 3 10 #3 (a-Si:H) -1 this work σ0 (Ω.cm) 1 10 # 1 undoped µc-Si:H -1 10 # 2 lightly p-doped µc-Si:H anti-MNR line of type-C μc-Si:H -3 10 0.0 0.2 0.4 0.6 0.8 Ea(eV) •Ram et al, Phys. Rev. B 77 (2008) 045212.
  • 39. Doped µc-Si:H anti MNR line (#7) [heavily doped μc-Si:H] 3 10 -1 σ0 (Ω.cm) MNR line (#7) 1 10 [a-Si,C:H+μc-Si,C alloy] -1 10 #4 (thickness series) #4 (doped series) #5 dope series, p-nc-Si-SiC:H alloy #5 dilution series, p-nc-Si-SiC:H alloy #6 (Boron doped μc-Si:H) -3 #7 10 0.0 0.2 0.4 0.6 0.8 Ea (eV) •Ram et al, Phys. Rev. B 77 (2008) 045212.
  • 40. MNR parameters Anti MNR parameters σ00 σ00 EMN EMN G G -1 -1 -1 (eV-1) Samples (Ω.cm) (Ω.cm) (eV ) (meV) (meV) This work 7.2×10-4 Type-A&B 25.3 -- 39.5 -- -- Type-C -- -- -44.6 -- -22.5 87 Published Data 4×10-3 1.26×1010 Case#1 20.7 -97.7 48.4 -10.2 (rH=21) 3.2×10-6 Case#1 -- 36.6 -- 27.3 -- (rH=32) 1.7×10-4 Case#2 6 23.4 -32.5 42.7 -30.8 7.7×10-3 Case#3 -- 24 -- 41.6 -- Case#4 0.32 59 15.4 -66.1 65.1 -15.1 4.2×10-3 Case#5 21 15.3 -64.9 65.4 -15.4 3.2×10-6 Case#6 2.4 31.3 -39.9 31.9 -25.1 2.3 Case#7 309 8.5 -49.5 118.3 -20.2 0.5 Case#8 -- 11.8 -- 84.5 -- 7.2×10-3 Case#9 -- 20 -- 50 --
  • 41. If one has a collection of G and σ00 then: a-Si,C:H alloy (#7) #1 (rH=21) σ00=σM exp [(γC- γF)/k –GEa] 0 10 #1 (rH=32) Porous Si (#9) #2 #3 σ00=σM exp [(γC- γF)/k –G(EC0 –EF0)] a-Si:H (#3) #4 -1 #5 σ00 (Ω.cm) -2 10 #6 At a position of EF in DOS where #7 #8 p-nc-Si-SiC:H alloy (#5) γF(EC0-Emin)=0 #9 -4 10 this work -1 σM=100 (Ωcm) (at γf=γc) Fit σ00=σM exp [(γC/k) –GEmin] Emin=0.61 eV 3 -1 σ0=1.2x10 (Ωcm) (at γf=0) -6 The quantity Emin is a measure for the 10 5 10 15 20 25 30 35 40 -1 G (eV ) position of the DOS minimum within the mobility gap. If γC is known then for such a value of σ00 where G=0, one can obtain σM •Ram et al, Phys. Rev. B 77 (2008) 045212.
  • 42. Summary • In single phase µc-Si:H films, film morphology shows correspondence with large grain fraction independent of film thickness and deposition conditions • Percentage fraction of constituent large crystallite grains can be used as an empirical parameter to correlate a wide range of microstructures to the electrical transport properties • Both MNR and anti MNR can be seen in the dark conductivity behavior of this material, depending on the microstructure and the correlative DOS features. • The statistical shift model can successfully explain both the MNR and anti MNR behavior in our material. • Corroborative evidence of similar electrical transport behavior of µc- Si:H in literature is present
  • 43. Acknowledgements • Dr. Satyendra Kumar (I.I.T. Kanpur, India) • Dr. Pere Roca i Cabarrocas (LPICM, France)