SlideShare a Scribd company logo
SOLAR THERMAL POWER!
  GEEN 4830 – ECEN 5007!




     2. Solar Resource!



      Manuel A. Silva Pérez
                          !
        silva@esi.us.es !
Contents

       }    The sun as energy source
       }    Sun‐Earth relationships
       }    Solar radiation measurements
       }    Quality control of solar radiation data
       }    Solar radiation estimation
             }    From meteorological data
             }    Models for the estimation of the beam component
             }    From Satellite images
       }    Databases and tools
       }    Typical Meteorological Years

1	

                               GEEN 4830 – ECEN 5007
El	
  espectro	
  electromagné0co	
  
The	
  electromagne.c	
  spectrum	
  is	
  a	
  con.nuum	
  of	
  all	
  
electromagne.c	
  waves	
  arranged	
  according	
  to	
  frequency	
  
and	
  wavelength.	
  
	
  
Energy	
  =	
  h·∙f	
   	
   	
  Planck’s	
  constant	
  h	
  =	
  6.62·∙10-­‐34	
  J·∙s	
  
                                                                    3·∙106	
  GHz	
  



                                                                                  E
                                                                                  N
                                                                                  E
                                                                                  R
                                                                                  G
                                                                                  Y	
  




 2	

                                                  GEEN 4830 – ECEN 5007
The	
  electromagne0c	
  spectrum	
  


Bands	
  adopted	
  by	
  the	
  Interna.onal	
  Commission	
  on	
  Illumina.on	
  
(Commission	
  Interna.onal	
  de	
  l'Eclairage,	
  CIE)	
  UV,	
  visible	
  e	
  IR	
  

                                                                                                                       3	
  !m	
  
                                                                                                                     (3000	
  nm)	
  
                                               0.3	
  !m	
  
                                              (300	
  nm)	
  
                                                                  Shortwave	
  solar	
  radia.on	
                             Longwave	
  solar	
  radia.on	
  




                            UV	
  C	
   UV	
  B	
   UV	
  A	
   Visible	
   IR	
  A	
                         IR	
  B	
               IR	
  C	
  
                 100	
              280	
             315	
         400	
           760	
              1400	
          3000	
                   106	
  

                                                                                                                                                    λ	
  (nm)	
  
               3·∙106	
                                         7.5·∙105	
                                                  105	
                   300	
  

  3	

 	
  f	
  (GHz)	
                                                        GEEN 4830 – ECEN 5007
Black	
  body	
  
A	
  black	
  body	
  is	
  an	
  ideal	
  object	
  that	
  absorbs	
  100%	
  of	
  the	
  
radia.on	
  that	
  hits	
  it.	
  It	
  also	
  emits	
  the	
  maximum	
  radia.on	
  at	
  all	
  
wavelengths	
  and	
  all	
  direc.ons	
  at	
  a	
  given	
  temperature.	
  
The	
  spectral	
  (	
  or	
  monochroma.c)	
  p	
  )	
  emissive	
  power	
  of	
  a	
  black	
  
body.	
  
	
  
ebλ	
  is	
  the	
  energy	
  emited	
  per	
  .me	
  and	
  area	
  units	
  at	
  each	
  
wavelength,	
  and	
  it	
  is	
  a	
  func.on	
  of	
  temperature	
  
                                                      C1
   Planck’s	
  equa.on	
            ebλ =     5
                                            λ ⋅e  [   C2 / λT
                                                                 ]
                                                                −1
                                                                        (W·∙m-­‐2	
  ·∙μm-­‐1)	
  

                                         λ → µm            T→K


              C1 = 3.7427 ⋅108 W ⋅ m-2µm4                   C2 = 1.4388 ⋅104 µm ⋅ K


4	

                                                   GEEN 4830 – ECEN 5007
Black	
  body	
  radia0on	
  

  For	
  a	
  black	
  body,	
  as	
  the	
  temperature	
  increases:	
  
                                                                                         ebλ
                                                                                          8

       -­‐ The	
  emissive	
  power	
                                                    10


       increases	
  for	
  every	
                                                        7
                                                                                         10

       wavelength	
  




                                                   Potencia emisiva espectral (Wm µm )
                                                   -1
                                                                                          6
                                                                                         10




                                                   -2
       -­‐	
  The	
  rela.ve	
  amount	
  of	
                                            5
                                                                                         10

       energy	
  emifed	
  at	
  short	
                                                  4
                                                                                         10

       wavelengths	
  increases	
                                                         3
                                                                                         10                                         5777 K
                                                                                                                                    2500 K
                                                                                          2
                                                                                                                                    1000 K
       -­‐	
  The	
  posi.on	
  of	
  the	
                                              10


       maximum	
  emissive	
                                                              1
                                                                                         10                                         300 K


       power	
  is	
  displaced	
  to	
                                                   0
                                                                                         10

       shorter	
  wavelengths	
                                                                     0        5           10
                                                                                                                     λ (µm)
                                                                                                                              15   20


5	

                                                                                          GEEN 4830 – ECEN 5007
Black	
  body	
  radia0on	
  
Stefan-­‐Boltzmann’s	
  Law	
  
 The	
  total	
  emissive	
  power	
  is	
  the	
  radia.on	
  emifed	
  by	
  the	
  black	
  body	
  
 at	
  all	
  wavelengths,	
  and	
  is	
  given	
  by:	
  
                              λ =∞            C1
       eb =    λ =∞
              ∫λ =0 ebλ dλ   = ∫                          dλ              eb = σT 4          (W·∙m-­‐2)	
  
                               λ =0 λ
                                     5
                                          [           ]
                                         ⋅ eC2 / λT − 1


              Stefan-­‐Boltzman’s	
  constant	
  	
  
              σ	
  =	
  5.6866·∙10-­‐8	
  W·∙m-­‐2K-­‐4	
  

   Wien’s	
  Law	
  
   The	
  wavelengths	
  corresponding	
  to	
  the	
  
                                                                                            2897.8
   maximum	
  emifed	
  power	
  is	
  inversely	
                                 λmax =               (μm)	
  
                                                                                              T
   propor.onal	
  to	
  temperature	
  
6	

                                                           GEEN 4830 – ECEN 5007
Irradiance; spectral irradiance
The	
  irradiance	
  (at	
  a	
  point	
  of	
  a	
  surface)	
  is	
  the	
  radiant	
  power	
  of	
  all	
  wavelengths	
  
incident	
  from	
  all	
  upward	
  direc.ons	
  on	
  a	
  small	
  element	
  of	
  surface	
  containing	
  the	
  
point	
  
under	
  considera.on	
  divided	
  by	
  the	
  area	
  of	
  the	
  element.	
  SI	
  unit	
  is	
  W·∙m-­‐2.	
  
	
  
The	
  spectral	
  irradiance	
  is	
  the	
  irradiance	
  at	
  a	
  given	
  wavelength	
  per	
  unit	
  wavelength	
  
interval.	
  The	
  SI	
  unit	
  is	
  W	
  m–3,	
  but	
  a	
  commonly	
  used	
  unit	
  is	
  W	
  m–2	
  μm–1.	
  




                                                                         ⋅              ⎛ remit ⎞
                                                                                                         2
                                                                        I 0nλ     = ebλ ⎜       ⎟
                                                                                        ⎝ r ⎠

                                  remit	
  

      7	

                                                         GEEN 4830 – ECEN 5007
8	

   GEEN 4830 – ECEN 5007
Solar Spectrum. Solar constant

  Solar Constant                                Total Radiative flux (at all wavelengths)
         ⋅                   2500               inciding on a surface perpendicular to
        I 0 nλ                                  the sun rays at a distance of 1 AU
(W·∙m-­‐2	
  ·∙!m-­‐1)	
  
                             2000
                                                                                                  GSC (W·∙m-­‐2)	
  
                             1500                                               NASA                    1353
                                                                                WRC                     1367

                             1000


                                                                                GSC =	
  4921	
  kJ·∙m-­‐2·∙h-­‐1	
  
                             500
                                                                                GSC =	
  0.082	
  MJ·∙m-­‐2·∙min-­‐1	
  

                               0

                                                                                                    λ	
  (μm)	
  
                                    0,0   0,5    1,0    1,5      2,0      2,5            3,0

   hfp://rredc.nrel.gov/solar/spectra/am0/	
  
9	

                                                    GEEN 4830 – ECEN 5007
The Sun as a blackbody
                             2500

                                                   Visible	
  
                             2000                                                     http://mesola.obspm.fr/solar_spect.php
                                          UV	
                   IR	
  
            ⋅
            I 0 nλ           1500                                                                    Extraterrestrial solar spectrum
(W·∙m-­‐2	
  ·∙μm-­‐1)	
  

                             1000
                                                                                                     Black	
  body	
  @	
  5777	
  K	
  
                                                                                                     Size	
  of	
  the	
  Sun	
  @	
  1	
  AU	
  
                              500



                                0

                                                                                                                    λ	
  (μm)	
  
                                    0,0             0,5               1,0   1,5    2,0       2,5       3,0



                             hfp://rredc.nrel.gov/solar/standards/am0/wehrli1985.new.html	
  

    10	

                                                                         GEEN 4830 – ECEN 5007
¡The Sun is a high quality energy source!

                                 ⎛ Tamb ⎞
                                        ⎟ = QSun ⎛1 −
                                                      300K ⎞
                                 ⎜1 −
                        W = QSun ⎜      ⎟        ⎜         ⎟
                                 ⎝ TSun ⎠        ⎝ 5777 K ⎠


}    Aprox. 95% of the extraterrrestrial solar radiation can be converted
                                   to work




       11	

                           GEEN 4830 – ECEN 5007
Extraterrestrial solar radiation
        On a normal surface
               !            "r %
                                 2

               I 0n   = GSC $ 0 ' = GSC E0
                            # r&


          On a horizontal surface
                       !     !
                       I 0 = I 0n cos! z




          !         "r %
                            2

          I 0 = GSC $ 0 ' cos! z = GSC E0 cos! z
                    # r&



12	

                                        GEEN 4830 – ECEN 5007
Average solar irradiance on the Earth

                                                   GSC = 1367 W·m-2




         Earth	
  radius	
  =	
  6740	
  km.	
  The	
      The	
  energy	
  received	
  on	
  1	
  day	
  is	
  
        intercepted	
  solar	
  radia.on	
  is	
             distributed	
  on	
  an	
  area	
  4πR2	
  
             propor.onal	
  to	
  πR2	
  

        The	
  average	
  solar	
  irradiance	
  on	
  the	
  top	
  of	
  the	
  atmosphere	
  is	
  
                                          342	
  W·∙m-­‐2	
  
13	

                                             	
  
                                       GEEN 4830 – ECEN 5007
14	

   GEEN 4830 – ECEN 5007
Interac.on	
  between	
  solar	
  radia.on	
  and	
  atmospheric	
  
                        components	
  


                                             Rayleigh
                                                          Mie diffusion	
  
                                             diffusion	

                     Beam                  Diffuse 
                                            irradiance	
  
                  irradiance	
  

                                                                Beam 
                                                             irradiance	
  

               Albedo
               irradiance	


15	

                                 GEEN 4830 – ECEN 5007
Interac.on	
  between	
  solar	
  radia.on	
  and	
  the	
  Earth’s	
  atmosphere	
  
                                                        (Clear	
  Day)	
  
                                                                       100%	
  
                                                                                                       1	
         Reflec0on	
  to	
  
                    Absorp0on	
                                                                                      space	
  %	
  
                        %	
                                      Air	
  molecules	
  

                                                                                                                      0.1	
  a	
  10	
  
                                      8	
  

                                                                                                     5	
  
                                                                 Dust,	
  aerosols	
  

                                     1	
  to	
  5	
                                                                           Diffuse	
  
                                                                                                                                %	
  
                                                                                                0.5	
  to	
  10	
  
                                                                    Moisture	
  


                                          2	
  to	
  10	
  
                                                                       Beam	
  
                   11%	
  to	
  23%	
  
                                                                  83%	
  to	
  56%	
          5%	
  a	
  15%	
  
    16	

                                                                GEEN 4830 – ECEN 5007
Scafering	
  (change	
  in	
  direc.on	
  per	
  air	
  molecules)
                                                                 	
  

                                        1
                                 0.9
  Coef. transmisión escaterin




                                 0.8
                                 0.7
                                                                                                      Atmosphere	
  
                                 0.6                                                                  θz	
  
                                 0.5                         θz=20º	

                                 0.4                         z = 0 m.	

                                 0.3                                                                     Earth	
  
                                 0.2
                                 0.1
                                        0
                                            0.3   1.3               2.3             3.3
                                                        Longitud onda (micras)




                                17	

                                      GEEN 4830 – ECEN 5007
Absorp.on	
  by	
  ozone	
  
                                                                          	
  

                           1

                          0.9
                          0.8
Coef. transmisión ozono




                          0.7
                          0.6                                                                       Atmosphere	
  
                                                                                                    θz	
  
                          0.5

                          0.4
                          0.3
                                                                                                       Earth	
  
                          0.2
                                                                                    θz=20º	

                          0.1                                                       Lo=0.2	

                           0
                                0.3   0.4   0.5         0.6      0.7          0.8        0.9    1
                                                  Longitud de onda (micras)




        18	

                                                          GEEN 4830 – ECEN 5007
Lo	
  =	
  Ozone	
  layer	
  thickness	
  (cm)	
  

                                                    0.5                                       Enero
        Espesor capa ozono (cm)
                                                                                              Febrero
                                                   0.45                                       Marzo
                                                    0.4                                       Abril
                                                                                              Mayo
                                                   0.35
                                                                                              Junio
                                                    0.3                                       Julio
                                                                                              Agosto
                                                   0.25
                                                                                              Septiembre
                                                    0.2                                       Octubre
                                  -90 -70 -50 -30 -10       10      30    50     70      90
                                                                                              Noviembre
                                       Norte	
      Latitud (º)                Sur	
          Diciembre
19	

                                                            GEEN 4830 – ECEN 5007
Absorp.on	
  by	
  gases	
  (CO2,	
  O2)
                                                                                             	
  
                                                                         	
  

                                           1
  Coef. transmisión por mezcla de gases




                                          0.9
                                          0.8
                                                                                                                             Atmosphere	
  
                                          0.7                                                                                θz	
  
                                          0.6
                                          0.5
                                          0.4                                                                                   Earth	
  
                                          0.3           θz=20º	
  
                                          0.2           z	
  =	
  0	
  m.	
  
                                          0.1
                                           0
                                                0.3     0.8           1.3        1.8     2.3      2.8     3.3     3.8
                                                                            Longitud de onda (micras)




20	

                                                                                             GEEN 4830 – ECEN 5007
Absorp.on	
  by	
  water	
  molecules
                                                                                            	
  


                                       1
Coef. transmisión por absorción del




                                      0.9
                                      0.8
                                                                                     θz=20º	
  
                                      0.7                                                                         Atmosphere	
  
                                                                                     T=25ºC	
  
           vapor de agua




                                      0.6
                                                                                                                  θz	
  
                                      0.5                                            RH=50%	
  
                                      0.4
                                      0.3
                                                                                                                     Earth	
  
                                      0.2
                                      0.1
                                       0
                                            0.3   0.8     1.3        1.8     2.3      2.8     3.3      3.8
                                                                Longitud de onda (micras)




                   21	

                                                               GEEN 4830 – ECEN 5007
Absorp.on	
  and	
  diffusion	
  by	
  aerosols
                                                                                               	
  


                                     1
Coeficiente transmisión aerosoles




                                    0.9
                                    0.8
                                                                                                                        Atmosphere	
  
                                    0.7                                                                                 θz	
  
                                    0.6
                                                                       τa(total	
  afenua.on)	
     θz=20º	
  
                                    0.5
                                                                                                    α=1.3	
  
                                                        τas(difussion)	
                            β=0.15	
               Earth	
  
                                    0.4
                                                τaa(absorp.on)	
  
                                    0.3
                                    0.2
                                    0.1
                                     0
                                          0.3       0.8      1.3        1.8       2.3       2.8     3.3      3.8
                                                                   Longitud de onda (micras)


22	

                                                                                        GEEN 4830 – ECEN 5007
Solar	
  radia.on	
  on	
  the	
  Earth’s	
  surface	
  
           2000
                        O3	
                                                          nd	
  =	
  94	
  
                                              Extraterrestre
                                              5777 K                                  θz=20º	
  
           1500
                           O2	
                                                       z	
  =	
  0	
  m.	
  
                                              In
                                              Idh                                     α=1.3	
  
                                                                                      β=0.15	
  
W/m 2·µm




                                              IT
                                                                                      Ts=25ºC	
  
           1000
                                                                                      RH=50%	
  
                                    H2O	
                                             Lo	
  =	
  0.3   	
  
                                                               CO2	
  
            500                                                H2O	
  


              0
                  0,3               1,3                 2,3                     3,3
                                     Longitud de onda (micras)

   23	

                                             GEEN 4830 – ECEN 5007
CHARACTERISTICS	
  OF	
  SOLAR	
  RADIATION	
  
            Cycles	
  

   Solar	
  energy	
  reaches	
  the	
  earth	
  in	
  a	
  
   discon.nuous	
  form,	
  resul.ng	
  in	
  
   different	
  cycles:

        }    Daily	
  cycle:	
  	
  
              }    accounts	
  for	
  50%	
  of	
  the	
  total	
  
                    availability	
  of	
  daily	
  hours.	
  
              }    Another	
  effect	
  of	
  the	
  daily	
  cycle	
  is	
  the	
  
                    modula.on	
  of	
  the	
  received	
  energy	
  
                    throughout	
  the	
  day.
        }    Seasonal	
  cycle:	
  	
  
              }    modula.on	
  of	
  the	
  received	
  energy	
  
                    throughout	
  the	
  year.	
  



24	

                                                   GEEN 4830 – ECEN 5007
SOLAR	
  RADIATION	
  CHARACTERISTICS	
  
                 Low	
  density	
  


    }    The	
  maximum	
  possible	
  
          amount	
  of	
  solar	
  radia.on	
  
          received	
  by	
  the	
  surface	
  of	
  the	
  
          atmosphere	
  at	
  1	
  AU	
  is	
  1367	
  
          W/m2	
  	
  
    }    Large	
  surfaces	
  are	
  needed	
  to	
  
          achieve	
  high	
  power	
  outputs.	
  
    }    To	
  increase	
  the	
  density	
  
          concentra.on	
  should	
  be	
  
          used.	
  
    }    Only	
  the	
  direct	
  component	
  of	
  
          solar	
  radia.on	
  can	
  be	
  
          concentrated.	
  

25	

                                          GEEN 4830 – ECEN 5007
SOLAR	
  RADIATION	
  CHARACTERISTICS	
  
                    Dependence	
  on	
  geography	
  (la0tude)	
  



    }    Under	
  clear	
  sky	
  condi.ons:	
  the	
  solar	
  
          radia.on	
  depends	
  mainly	
  on	
  the	
  la.tude.	
  
    }    La.tude	
  effect	
  is	
  equivalent	
  to	
  the	
  
          modifica.on	
  of	
  the	
  angle	
  of	
  incidence	
  of	
  
          solar	
  radia.on.	
  
    }    For	
  the	
  modula.on	
  of	
  the	
  received	
  
          energy	
  the	
  following	
  can	
  be	
  used:	
  
          }    Solar	
  tracker	
  
          }    Tilted	
  Plane	
  	
  
    }    The	
  inclina.on	
  of	
  the	
  recep.on	
  plane	
  
          means:	
  
          }    	
  Modifica.on	
  of	
  the	
  la.tude	
  effect	
  	
  
          }    Modifica.on	
  of	
  the	
  annual	
  distribu.on.	
  
26	

                                             GEEN 4830 – ECEN 5007
SOLAR	
  RADIATION	
  CHARACTERISTICS	
  
                 Random	
  character	
  
}  Solar	
  radia.on	
  on	
  the	
  Earth's	
  surface	
  is	
  modulated	
  by	
  clima.c	
  
    condi.ons.	
  
}  Clear	
  sky	
  condi.ons	
  are	
  not	
  common.	
  
}  The	
  la.tude	
  indicates	
  a	
  maximum	
  range,	
  but	
  the	
  energy	
  
    received	
  is	
  determined	
  by	
  local	
  clima.c	
  condi.ons.	
  




      27	

                           GEEN 4830 – ECEN 5007
SUN-­‐EARTH	
  RELATIONSHIPS	
  
                 Sun-­‐Earth	
  distance	
  
}      The earth revolves around the Sun in an elliptical orbit, with the Sun
        in one of its foci.
}      The amount of solar radiation incoming to the Earth is inversely
        proportional to the square of the Sun – Earth distance.
}      The distance is measured in astronomical units (AU) equivalent to
        the mean Sun ‐ Earth distance.	
  




      28	

                         GEEN 4830 – ECEN 5007
SUN-­‐EARTH	
  RELATIONSHIPS	
  
                   Declina0on	
  

}     Eclip.c	
  plane	
  (ECLP):	
  the	
  plane	
  of	
  Earth's	
  revolu.on	
  around	
  the	
  Sun
}     Equatorial	
  plane	
  (EQUP):	
  the	
  plane	
  containing	
  the	
  equator	
  
}     The	
  Polar	
  axis	
  is	
  .lted	
  23.5o	
  with	
  respect	
  to	
  the	
  normal	
  to	
  the	
  ECLP.	
  


      w  ECLP	
  and	
  EQUP	
  cross	
  in	
  the	
  
          equinoxes	
  and	
  the	
  distance	
  is	
  
          maximum	
  in	
  the	
  sols.ces.	
  
      w  The	
  angle	
  in	
  a	
  specific	
  moment	
  
          between	
  both	
  planes	
  is	
  called	
  
          DECLINATION	
  




  29	

                                             GEEN 4830 – ECEN 5007
SUN-­‐EARTH	
  RELATIONSHIPS	
  	
  
  Rela0ve	
  posi0on	
  sun-­‐horizontal	
  surface	
  


    w 

    w 


    w 


                           ‐       ␣
    w 

30	

                          GEEN 4830 – ECEN 5007
SUN-­‐EARTH	
  RELATIONSHIPS	
  
                 	
  	
  Rela.ve	
  posi.on	
  Sun	
  -­‐	
  inclined	
  surface	
  




    }    Considering	
  a	
  south	
  
          orienta.on,	
  the	
  diagram	
  
          shows	
  how	
  a	
  surface	
  
          inclined	
  β	
  in	
  a	
  la.tude	
  φ	
  
          is	
  similar	
  to	
  a	
  horizontal	
  
          surface	
  in	
  a	
  la.tude	
  φ-­‐β.	
  

31	

                                          GEEN 4830 – ECEN 5007
EXTRATERRESTRIAL	
  SOLAR	
  RADIATION	
  
                	
  	
  Hourly	
  radia.on	
  over	
  horizontal	
  surface	
  


    }    The	
  extraterrestrial	
  radia.on	
  on	
  a	
  
          normal	
  surface	
  (perpendicular	
  to	
  the	
  
          Sun´s	
  rays)	
  is	
  expressed	
  as:	
  

                I 0 n = I sc (ro r ) = I sc E0
                                       2



    w  For	
  an	
  horizontal	
  surface	
  

                   I 0 = I sc E0 cosθ z



32	

                                            GEEN 4830 – ECEN 5007
SOLAR	
  RADIATION	
  ON	
  THE	
  EARTH	
  SURFACE	
  
                 	
  	
  Direct	
  solar	
  radia.on	
  (beam)	
  



    }    Is	
  the	
  radia.on	
  coming	
  directly	
  from	
  the	
  Sun	
  disk.	
  
    }    It	
  has	
  a	
  direc.onal	
  character	
  and	
  can	
  be	
  concentrated.	
  
    }    Accounts	
  for	
  approx.	
  90%	
  of	
  the	
  solar	
  radia.on	
  on	
  clear	
  
          sky	
  days,	
  and	
  can	
  be	
  null	
  in	
  cloud	
  covered	
  days.	
  
    }    As	
  a	
  direc.onal	
  component,	
  the	
  contribu.on	
  on	
  a	
  surface	
  
          is	
  the	
  perpendicular	
  projec.on	
  over	
  this	
  surface:	
  beam	
  
          radia.on	
  is	
  the	
  radia.on	
  on	
  a	
  plane	
  perpendicular	
  to	
  the	
  
          sun´s	
  rays.	
  
               I	
  =	
  B	
  cos	
  θ	
  It	
  can	
  be	
  maximized	
  with	
  solar	
  trackers.	
  	
  
33	

                                             GEEN 4830 – ECEN 5007
SOLAR	
  RADIATION	
  ON	
  THE	
  EARTH	
  SURFACE	
  
                    	
  	
  Diffuse	
  solar	
  radia.on	
  


    }    Part	
  of	
  the	
  solar	
  radia.on	
  is	
  absorbed	
  by	
  the	
  atmospheric	
  
          components.	
  Another	
  part	
  is	
  reflected	
  by	
  these	
  
          components	
  producing	
  direc.on	
  changes	
  and	
  energy	
  
          reduc.on.	
  
    }    Diffuse	
  radia.on	
  =	
  the	
  part	
  of	
  this	
  radia.on	
  that	
  reaches	
  
          the	
  earth´s	
  surface.	
  
    }    Diffuse	
  radia.on	
  has	
  three	
  components:	
  
          }    Circumsolar	
  
          }    Horizon	
  band	
  
          }    Blue	
  sky	
  

34	

                                        GEEN 4830 – ECEN 5007
SOLAR	
  RADIATION	
  ON	
  THE	
  EARTH	
  SURFACE	
  
                 	
  	
  Reflected	
  solar	
  radia.on	
  


    }    Radia.on	
  coming	
  from	
  the	
  reflec.on	
  of	
  the	
  solar	
  radia.on	
  
          on	
  the	
  ground	
  or	
  on	
  other	
  nearby	
  surfaces.	
  
    }    Usually	
  is	
  small,	
  but	
  in	
  occasionally	
  can	
  account	
  for	
  up	
  to	
  
          40%	
  of	
  the	
  solar	
  radia.on	
  on	
  a	
  given	
  surface.	
  




35	

                                          GEEN 4830 – ECEN 5007
Solar	
  radia0on	
  measurement	
  
                                                  	
  




36	

        Meteorological	
  Sta0on	
  at	
  GEENS4830 – ECEN 5007	

                                          the	
   eville	
  Engineering	
  School	
  (since	
  1984)	
  
                                                                                                    	
  
Measurement	
  of	
  Solar	
  Radia0on	
  

	
  	
  	
  	
  § 	
  S	
  ince	
  1830,	
  Herschel,	
  Beloni	
  and	
  Pouillet	
  developed	
  instruments,	
  capable	
  of	
  	
  
                 	
  	
   	
   	
  
             	
   	
  	
  m	
  easuring	
  the	
  intensity	
  of	
  solar	
  radia.on	
  
                          	
  	
  	
   	
  	
  	
  	
  
   § 	
  	
  P	
  recise	
  determina.on	
  of	
  the	
  solar	
  constant	
  in	
  the	
  early	
  1900’s,	
  during	
  the	
  energy	
  crisis	
  
                   	
   	
  	
  	
  	
  	
  	
  	
  
   	
  	
  	
  	
  a	
  nd	
  solar	
  energy	
  development	
  in	
  1970s.	
  
                   	
   	
  	
  
   § 	
  N	
  eed	
  	
  to	
  befer	
  understand	
  global	
  climate	
  change	
  in	
  the	
  1980s	
  and	
  1990s.	
  
          	
  	
   	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  




       37	

                                                        GEEN 4830 – ECEN 5007
Solar	
  radia0on	
  sensors
                                   	
  




38	

            GEEN 4830 – ECEN 5007
Solar radiation sensors
}      Rotating shadowband
        radiometer
        }    Measures global + diffuse
        }    Calculates direct from global +
              difusse measurements




      39	

                            GEEN 4830 – ECEN 5007
Measurement	
  of	
  Solar	
  Radia.on	
  
  § 	
  Broad-­‐band	
  global	
  solar	
  irradiance:	
  Pyranometer	
  
	
  	
  	
  	
  § 	
  	
  M	
  
                 	
   	
  	
  	
  easures	
  energy	
  incident	
  on	
  a	
  flat	
  surface,	
  usually	
  horizontal	
  
                           	
  	
  	
  	
  	
  	
  
             § 	
  Response	
  decreases	
  approximately	
  as	
  the	
  cosine	
  of	
  the	
  angle	
  of	
  incidence.	
  
                           	
  
  § 	
  D	
  iffuse	
  radia.on	
  is	
  measured	
  with	
  a	
  pyranometer	
  and	
  a	
  shading	
  device	
  (disc,	
  shadow	
  ring,	
  
         	
  	
   	
  	
  
  or	
  band)	
  	
  that	
  excludes	
  direct	
  solar	
  radia.on	
  




       40	

                                                     GEEN 4830 – ECEN 5007
Global	
  irradiance	
  
 }  Most	
  readily	
  available	
  data,	
  required	
  for	
  
     many	
  different	
  applica.ons	
  
 }  Difficult	
  to	
  model	
  
 }  Sensi.ve	
  to	
  the	
  albedo	
  of	
  the	
  surroundings	
  


 	
  Measurement	
  
 }  No	
  absolute	
  reference	
  for	
  calibra.on	
  	
  
 }  Cosine	
  effect	
  (correc.on	
  required)	
  
 }  Many	
  instruments	
  available	
  
 	
  


41	

                                GEEN 4830 – ECEN 5007
Global	
  irradiance	
  measurement	
  –	
  error	
  sources	
  	
  



}     Calibra.on	
  errors	
  
}     Stability	
  	
  
}     Non-­‐Linearity	
  
}     Shadows	
  and	
  reflec.ons	
  from	
  the	
  surroundings	
  
}     Cosine	
  effect	
  
}     Spectral	
  transmissivity	
  of	
  the	
  dome	
  
}     Thermal	
  offset	
  of	
  the	
  dome	
  
}     Temperature	
  dependence	
  
}     Cleanliness	
  of	
  the	
  dome	
  
}     Leveling	
  



      42	

                                              GEEN 4830 – ECEN 5007
Diffuse	
  irradiance	
  measurement	
  –	
  error	
  sources	
  	
  

     Same	
  as	
  global,	
  plus	
  
     }  Geometry	
  of	
  shading	
  device	
  

     }    Incorrect	
  alignment	
  of	
  shading	
  device	
  




 43	

                                               GEEN 4830 – ECEN 5007
Direct	
  normal	
  (beam)	
  irradiance	
  measurement	
  
                                                                                                      5.7	
  º	
  

}       Easy	
  to	
  model	
  
}       Sensi.ve	
  to	
  afenua.on	
  	
  
}       It	
  is	
  the	
  main	
  component	
  under	
  clear	
  
         sky	
  

Measurement	
  
}  Precise	
  calibra.on	
  (absolute	
  –cavity-­‐	
  
    radiometer)	
  
}  Requires	
  con.nuous	
  tracking	
  


	
  


                                                                      Eppley	
  Labs	
  pyrheliometer	
  (NIP)	
  	
  tracker	
  



 44	

                                                      GEEN 4830 – ECEN 5007
Direct	
  normal	
  (beam)	
  irradiance	
  measurement	
  –	
  
 error	
  sources	
  

    }     Calibra.on	
  errors	
  
    }     Calibra.on	
  stability	
  
    }     Linearity	
  
    }     Spectral	
  transmissivity	
  of	
  the	
  window	
  
    }     Incorrect	
  alignment,	
  obstacles	
  
    }     Temperature	
  dependence	
  
    }     Window	
  cleanliness	
  	
  

    	
  




45	

                                                GEEN 4830 – ECEN 5007
Measurement	
  of	
  Solar	
  Radia.on	
  
The	
  Baseline	
  Surface	
  Radia.on	
  Network	
  (BSRN)	
  
hfp://www.bsrn.awi.de/en/home/bsrn/	
  
	
  
               § The	
  BSRN	
  was	
  recently	
  (early	
  2004)	
  designated	
  as	
  the	
  global	
  
               baseline	
  network	
  for	
  surface	
  radia.on	
  for	
  the	
  Global	
  Climate	
  
               Observing	
  System	
  (GCOS).	
  The	
  BSRN	
  sta.ons	
  also	
  contribute	
  to	
  
               the	
  Global	
  Atmospheric	
  Watch	
  (GAW).	
  
               § Proposed	
  by	
  the	
  World	
  Climate	
  Research	
  Program	
  (late	
  1980s)	
  
               § Objec.ve:	
  high	
  accuracy	
  surface	
  irradiance	
  measurement	
  all	
  over	
  
               the	
  world	
  
                     § Valida.on	
  of	
  satellite	
  es.ma.on	
  models	
  
                     § Valida.on	
  of	
  radia.on	
  codes	
  for	
  climate	
  models	
  




       46	

                                     GEEN 4830 – ECEN 5007
Measurement	
  of	
  Solar	
  Radia.on	
  –	
  BSRN	
  Sta.ons	
  
The	
  SURFRAD	
  network	
  Sta.on	
  at	
  Boulder,	
  CO.	
  
La0tude:	
  40.13	
  degrees	
  North	
  	
  
Longitude:	
  105.24	
  degrees	
  West	
  	
  
Eleva0on:	
  1689	
  meters	
  	
  
Time	
  Zone:	
  Local	
  Time	
  +	
  7	
  hours	
  =	
  UTC	
  	
  
Installed:	
  July	
  1995	
  	
  
	
  




                                                                                The	
  Boulder	
  SURFRAD	
  instruments	
  are	
  
                                                                                located	
  on	
  the	
  deck	
  at	
  SRRB's	
  Table	
  Mountain	
  
                                                                                Test	
  Facility,	
  located	
  8	
  miles	
  north	
  of	
  Boulder.	
  
                                                                                These	
  instruments	
  are	
  part	
  of	
  a	
  larger	
  set	
  
                                                                                maintained	
  at	
  this	
  loca.on	
  and	
  used	
  for	
  
                                                                                annual	
  intercomparisons	
  and	
  other	
  research.	
  	
  


   47	

                                                         GEEN 4830 – ECEN 5007
Contents

        }    Quality control of solar radiation data
        }    Solar radiation estimation
              }    From meteorological data
              }    Models for the estimation of the beam component
              }    From Satellite images
        }    Databases and tools
        }    Typical Meteorological Years




48	

                                      GEEN 4830 – ECEN 5007
Quality control of solar radiation data
        }    Different procedures, all based on data filtering by:
              }    Comparison with physical constraints, other measurements,
                    models.
              }    Visual inspection by experienced staff
        }    An example follows (see also
              http://rredc.nrel.gov/solar/pubs/qc_tnd/ for a different,
              more exhaustive procedure)




49	

                                GEEN 4830 – ECEN 5007
Quality	
  control	
  of	
  solar	
  radia.on	
  data	
  

1.        Physically	
  Possible	
  Limits	
  
2.        Extremely	
  Rare	
  Limits	
  
3.        Comparisons	
  vs	
  other	
  measurements	
  
4.        Comparisons	
  vs	
  model	
  
5.        Visual	
  inspec.on	
  




  50	

                             GEEN 4830 – ECEN 5007
FILTER	
  1:	
  Physically	
  Possible	
  Limits	
  
         	
  



                        Lower	
  limit	
                   Irradiance	
                     Upper	
  limit	
  
                            0	
                                Igo	
                            Io	
  
                                    0	
                              Ido	
                       Itop+10	
  

                                    0	
                               ID	
                             Io	
  

                   Subscripts:	
  go	
  =	
  Global	
  horizontal,	
  do	
  =	
  diffuse	
  horzontal,	
  D	
  =	
  beam	
  
                Io	
  =	
  extraterrestrial	
  irradiance;	
  Itop	
  =	
  irradiance	
  at	
  minimum	
  zenith	
  angle	
  
                                                            Units:	
  W	
  m-­‐2	
  

 51	

                                                    GEEN 4830 – ECEN 5007
FILTER	
  2:	
  Extremely	
  Rare	
  Limits	
  




            Subscripts:	
  go	
  =	
  Global	
  horizontal,	
  do	
  =	
  diffuse	
  horizontal,	
  D	
  =	
  beam	
  
         Z:	
  zenith	
  angle;	
  m	
  =	
  air	
  mass;	
  Eo	
  =	
  Sun	
  –	
  Earth	
  distance	
  correc.on	
  factor	
  
         Io	
  =	
  extraterrestrial	
  irradiance;	
  Itop	
  =	
  irradiance	
  at	
  minimum	
  zenith	
  angle	
  
                                                         Units:	
  W	
  m-­‐2	
  
 52	

                                                GEEN 4830 – ECEN 5007
FILTER	
  3:	
  Comparison	
  vs	
  other	
  measurements	
  


                           Lower	
  limit	
  	
                             Irradiance	
  	
                             Upper	
  limit	
  

                       (Igo-­‐Ido)-­‐50	
  Wm-­‐2	
                             ID·∙cosZ	
                         (Igo-­‐Ido)+50	
  Wm-­‐2	
  

                       ID·∙cosZ-­‐50	
  Wm-­‐2	
                                  Igo-­‐Ido	
                      ID·∙cosZ+50	
  Wm-­‐2	
  
	
  
                                                       |Igo-­‐Ido	
  –	
  ID	
  cos	
  z|±	
  50	
  Wm-­‐2	
  
                          Subscripts:	
  go	
  =	
  Global	
  horizontal,	
  do	
  =	
  diffuse	
  horizontal,	
  D	
  =	
  beam	
  
                	
  
                       Z:	
  zenith	
  angle;	
  m	
  =	
  air	
  mass;	
  Eo	
  =	
  Sun	
  –	
  Earth	
  distance	
  correc.on	
  factor	
  
                       Io	
  =	
  extraterrestrial	
  irradiance;	
  Itop	
  =	
  irradiance	
  at	
  minimum	
  zenith	
  angle	
  
                                                                       Units:	
  W	
  m-­‐2	
  
        53	

                                                       GEEN 4830 – ECEN 5007
FILTER	
  4:	
  Comparison	
  vs	
  model	
  


   	
  Comparison	
  vs	
  a	
  model.	
  The	
  
        model	
  has	
  to	
  be	
  adapted	
  to	
  
        the	
  clima.c	
  characterisi.cs	
  
        of	
  the	
  Sta.on.	
  	
  
   	
  
   	
  
          	
  	
  Example:	
  Hourly	
  beam-­‐to-­‐
          extraterrestrial	
  irradiance	
  
          plofed	
  against	
  clearness	
  
          index	
  (NREL’s	
  quality	
  control	
  
          procedure)	
  	
  


 54	

                                         GEEN 4830 – ECEN 5007
FILTER	
  5:	
  Visual	
  Inspec.on	
  



                                                                   1400




                                                                   1200




                                                                   1000
          irradiancias W/m2




                                                                    800                          IDmedida
                                                                                                 ig
                                                                    600                          id

                                                                    400




                                                                    200




                                                                      0
                              -­‐ 8   -­‐ 6   -­‐ 4   -­‐ 2               0   2      4   6   8


                                                                 hora solar




 55	

                                                        GEEN 4830 – ECEN 5007
Visual	
  inspec.on	
  

                          Estación: Cáceres (SAMCA)    18/11/2007
                   1400

                   1200

                   1000

                    800
         I(W/m2)




                    600

                    400

                    200

                     0
                          0   2   4   6   8 10 12 14 16 18 20 22 24
                                             GMT(h)




 56	

                                                                GEEN 4830 – ECEN 5007
Time	
  offset	
  
Incorrect	
  .me	
  stamp	
  
	
  
                                      900                                                                 900

                                                             Ig                                                             Ig
                                      800                                                                 800
                                                             horas sol                                                      horas sol
                                      700                                                                 700               Igcorregida


                                      600                                                                 600

                                      500                                                                 500

                                      400                                                                 400

                                      300                                                                 300

                                      200                                                                 200

                                      100                                                                 100
                                                        t2
               t1                                        tocaso                    t1                                         t2
                    torto              0                                                t1'                0                       t2'
         -8    -6 dm        -4   -2         0   2   4         6          8              torto                                 tocaso
                                                        dt                   -8    -6           -4   -2         0   2   4            6    8




       57	

                                            GEEN 4830 – ECEN 5007
CLASSICAL	
  ESTIMATION	
  OF	
  
	
  	
  	
  	
  SOLAR	
  RADIATION	
  
Models	
  depend	
  on	
  the	
  variable	
  to	
  es.mate	
  and	
  on	
  the	
  available	
  
    data	
  and	
  their	
  characteris.cs:	
  
}  Es.ma.on	
  of	
  daily	
  or	
  monthly	
  global	
  horizontal	
  or	
  direct	
  
    normal	
  irradia.on	
  from	
  sunshine	
  dura.on	
  
}  Es.ma.on	
  of	
  hourly	
  values	
  from	
  daily	
  values	
  of	
  global	
  
    horizontal	
  irradia.on	
  	
  
}  Es.ma.on	
  of	
  global	
  irradia.on	
  on	
  .lted	
  surfaces	
  
}  Es.ma.on	
  of	
  the	
  beam	
  component	
  from	
  global	
  horizontal	
  
    irradia.on	
  	
  
}  Etc.	
  



 58	

                                GEEN 4830 – ECEN 5007
Es.ma.on	
  of	
  daily	
  or	
  monthly	
  global	
  horizontal	
  
irradia.on	
  from	
  sunshine	
  dura.on	
  
}      Angstrom	
  –	
  type	
  formulas	
  
                                                  H/H0	
  =	
  a	
  +	
  b	
  (s/s0)	
  
}      Where	
  	
  
        }  H	
  is	
  the	
  monthly	
  average	
  of	
  the	
  daily	
  global	
  irradia.on	
  on	
  a	
  
            horizontal	
  surface	
  
        }  H0	
  is	
  the	
  monthly	
  average	
  of	
  the	
  daily	
  extraterrestrial	
  irradia.on	
  on	
  
            a	
  horizontal	
  surface	
  
        }  s	
  is	
  the	
  monthly	
  average	
  of	
  the	
  daily	
  number	
  of	
  hours	
  of	
  bright	
  
            sunshine,	
  	
  
        }  s0	
  is	
  the	
  monthly	
  average	
  of	
  the	
  daily	
  maximum	
  number	
  of	
  hours	
  of	
  
            possible	
  sunshine	
  	
  
        }  a	
  and	
  b	
  are	
  regression	
  constants	
  

      59	

                                       GEEN 4830 – ECEN 5007
Es.ma.on	
  of	
  direct	
  normal	
  irradia.on	
  from	
  sunshine	
  
dura.on	
  


              1000

               900

               800

               700
Ebn / W·m-2




               600

               500

               400

               300

               200

               100

                 0
                     -8   -6   -4   -2         0          2    4   6   8

                                         hora solar / h

    60	

                           GEEN 4830 – ECEN 5007
Decomposi0on	
  models	
  (es0ma0on	
  of	
  beam	
  and	
  diffuse	
  components	
  
                              from	
  global	
  horizontal)   	
  




61	

                                  GEEN 4830 – ECEN 5007
Kd	
  –	
  KT	
  models	
  

                                                         Modelos Kt-Kd diarios

             1.2



              1



             0.8
        Kd




             0.6



             0.4



             0.2



              0
                   0   0.1          0.2            0.3            0.4        0.5      0.6            0.7        0.8     0.9
                                                                        Kt

                         Collares         Muneer         Liu-Jordan     GTER00-05   Ruth and Chant         GTERD00-05




62	

                                                GEEN 4830 – ECEN 5007
SOLAR	
  RADIATION	
  ESTIMATION	
  FROM	
  SATELLITE	
  IMAGES	
  




63	

                     GEEN 4830 – ECEN 5007
SOLAR	
  RADIATION	
  ESTIMATION	
  FROM	
  SATELLITE	
  IMAGES	
  


     }    Energy	
  balance	
  



                                                  I 0 e = I s + Ea + Et
                                                                          Modeled
                                                          1
                                                    Ig =      (I 0e − I s − Ea )
                                                         1− A
                                                                           Modeled
                                          Measured -
                                                              Measured
                                          Estimated
 64	

                             GEEN 4830 – ECEN 5007
THE	
  SATELLITE	
  
                       	
  	
  Meteorological	
  satellites	
  


 }     In	
  meteorology	
  studies	
  frequent	
  	
  and	
  
        high	
  density	
  observa.ons	
  on	
  the	
  
        Earth's	
  surface	
  are	
  required.	
  
        	
  Conven.onal	
  systems	
  do	
  not	
  provide	
  
        a	
  global	
  cover.	
  



 w  An	
  important	
  tool	
  to	
  analyse	
  the	
  distribu.on	
  of	
  the	
  clima.c	
  system	
  are	
  the	
  
         METEOROLOGICAL	
  SATELLITES.	
  These	
  can	
  be:	
  
                  ð    Polar	
  satellites	
  
                  ð    Geosta.onary:	
  In	
  Europe,	
  the	
  system	
  of	
  geosta.onary	
  meteorological	
  satellites	
  is	
  called	
  
                        METEOSAT	
  	
  	
  

65	

                                                       GEEN 4830 – ECEN 5007
THE	
  SATELLITE	
  
                       	
  	
  Satellite	
  classifica.on	
  

 Related	
  to	
  the	
  type	
  of	
  orbit	
  :	
  
 Polar	
  satellites:	
  placed	
  in	
  polar	
  orbits,	
  
        modifying	
  its	
  perspec.ve	
  and	
  distance	
  
        to	
  the	
  Earth.	
  	
  
        	
  Resolu.on	
  1m	
  to	
  1km.	
  



 Geosta.onary	
  satellites:	
  placed	
  in	
  the	
  geosta.onary	
  orbit	
  that	
  is,	
  
          the	
  place	
  in	
  the	
  space	
  where	
  the	
  Earth's	
  afrac.on	
  force	
  is	
  
          null.	
  It	
  is	
  an	
  unique	
  circumference	
  	
  where	
  all	
  the	
  
          geosta.onary	
  satellites	
  are	
  situated	
  in	
  order	
  to	
  cover	
  the	
  
          whole	
  Earth's	
  surface.	
  The	
  resolu.on	
  of	
  these	
  satellites	
  are	
  
          maximum	
  at	
  the	
  equator,	
  and	
  decrease	
  in	
  all	
  direc.ons.	
  
66	

                                                         GEEN 4830 – ECEN 5007
METHODOLOGY	
  
                        	
  	
  Advantages	
  



        	
  	
  
        }         The	
  geosta.onary	
  satellites	
  show	
  simultaneously	
  wide	
  areas.	
  	
  
        }         The	
  informa.on	
  of	
  these	
  satellites	
  is	
  always	
  referred	
  to	
  the	
  
                   same	
  .me	
  window.	
  
        }         It	
  is	
  possible	
  to	
  analyse	
  past	
  climate	
  using	
  satellite	
  images	
  of	
  
                   previous	
  years.	
  
        }         The	
  u.lisa.on	
  of	
  the	
  same	
  detector	
  to	
  evaluate	
  the	
  radia.on	
  in	
  
                   different	
  places.	
  

67	

                                                 GEEN 4830 – ECEN 5007
METHODOLOGY	
  
                        	
  	
  Disadvantages	
  



        	
  	
  
        }         The	
  range	
  of	
  the	
  brilliance	
  values	
  of	
  cloud	
  cover	
  (90-­‐255)	
  and	
  of	
  
                   the	
  soils	
  (30-­‐100)	
  overlap.	
  	
  
        }         The	
  digital	
  conversion	
  results	
  in	
  imprecision	
  for	
  low	
  values	
  of	
  
                   brilliance.	
  	
  
        }         The	
  image	
  informa.on	
  is	
  related	
  to	
  an	
  instant,	
  while	
  the	
  
                   radia.on	
  data	
  is	
  es.mated	
  in	
  a	
  hourly	
  or	
  daily	
  period.	
  	
  
        }         The	
  spectral	
  response	
  of	
  the	
  detector	
  is	
  not	
  in	
  the	
  same	
  range	
  
                   of	
  that	
  of	
  	
  conven.onal	
  pyranometers.	
  

68	

                                                 GEEN 4830 – ECEN 5007
METHODOLOGY	
  
                  	
  	
  Physical	
  and	
  sta.s.cal	
  models	
  


        }    	
  The	
  purpose	
  of	
  all	
  models	
  is	
  the	
  es.ma.on	
  of	
  the	
  
              solar	
  global	
  irradia.on	
  on	
  every	
  	
  pixel	
  of	
  the	
  image.	
  
        }    The	
  exis.ng	
  models	
  are	
  classified	
  in:	
  physical	
  and	
  
              sta/s/cal	
  depending	
  of	
  the	
  nature	
  of	
  the	
  approach	
  to	
  
              evaluate	
  the	
  interac.on	
  between	
  the	
  solar	
  radia.on	
  
              and	
  the	
  atmosphere.	
  
        }    Both	
  types	
  of	
  models	
  show	
  similar	
  error	
  ranges.	
  

69	

                                       GEEN 4830 – ECEN 5007
METHODOLOGY	
  
                      	
  	
  Physical	
  and	
  sta.s.cal	
  models	
  

        STATISTICAL	
  MODELS	
  
        }    Based	
  on	
  rela.onships	
  (usually	
  sta.s.cal	
  regressions)	
  between	
  pyranometric	
  
              data	
  and	
  the	
  digital	
  count	
  of	
  the	
  satellite.	
  
        }    This	
  rela.on	
  is	
  used	
  to	
  calculate	
  the	
  global	
  radia.on	
  from	
  the	
  digital	
  count	
  of	
  
              the	
  satellite.	
  	
  
        }    Simple	
  and	
  easy	
  to	
  apply.	
  	
  
        }    They	
  do	
  not	
  need	
  meteorological	
  measurements.	
  
        }    The	
  main	
  limita.ons	
  are:	
  
              }    The	
  needed	
  of	
  surface	
  data.	
  	
  
              }    The	
  lack	
  of	
  universality.	
  

70	

                                                     GEEN 4830 – ECEN 5007
METHODOLOGY	
  
                	
  	
  Physical	
  and	
  sta.s.cal	
  models	
  

        PHYSICAL	
  MODELS	
  
        }    Based	
  on	
  the	
  physics	
  of	
  the	
  atmosphere.	
  They	
  consider:	
  
              }    The	
  absorp.on	
  and	
  scafer	
  coefficients	
  of	
  the	
  atmospheric	
  
                    components.	
  
              }    The	
  albedo	
  of	
  the	
  clouds	
  and	
  their	
  absorp.on	
  coefficients.	
  
              }    The	
  ground	
  albedo.	
  
        }    Physical	
  models	
  do	
  not	
  need	
  ground	
  data	
  and	
  are	
  universal	
  
              models.	
  
        }    Need	
  atmospheric	
  measurements.	
  
71	

                                           GEEN 4830 – ECEN 5007
4.	
  DATA	
  BASES	
  AND	
  TOOLS	
  

     EUROPE	
  
     }  HELIOCLIM1	
  and	
  HELIOCLIM.	
  
                      }    h+p://www.helioclim.net/index.html	
  
                      }    h+p://www.soda-­‐is.com/eng/index.html	
  
     }     ESRA	
  (European	
  Solar	
  Radia0on	
  Atlas).	
  
                      }    h+p://www.helioclim.net/esra/	
  
     }     PVGIS	
  (Photovoltaic	
  Gis)	
  
                      }    h+p://re.jrc.cec.eu.int/pvgis/pv/	
  	
  
     }     SOLEMI	
  (Solar	
  Energy	
  Mining)	
  
                      }    h+p://www.solemi.de/home.html	
  
     USA	
  
           	
  Na0onal	
  Solar	
  Radia0on	
  Database	
  
                      }    h+p://rredc.nrel.gov/solar/old_data/nsrdb/1991-­‐2005/tmy3	
  
           NASA	
  
                      }    h+p://eosweb.larc.nasa.gov/sse/             	
         	
  	
  	
  
     WORLD	
  
     }  METEONORM.	
  
                      }    h+p://www.meteotest.ch/en/mn_home?w=ber	
  	
  
     }     WRDC	
  (World	
  Radia0on	
  Data	
  Centre)	
  
                }     h+p://wrdc-­‐mgo.nrel.gov/	
  	
  



 72	

                                                            GEEN 4830 – ECEN 5007
The	
  Na.onal	
  Solar	
  Radia.on	
  Database	
  
}      Project	
  Par.cipants	
  -­‐	
  Primary	
  project	
  funding	
  came	
  from	
  NREL	
  
        with	
  support	
  from	
  the	
  following	
  collaborators:	
  	
  
        }    The	
  Atmospheric	
  Sciences	
  Research	
  Center,	
  State	
  University	
  of	
  New	
  
              York	
  at	
  Albany	
  	
  
        }    Climate	
  Systems	
  Branch,	
  Na.onal	
  Aeronau.cs	
  and	
  Space	
  
              Administra.on	
  	
  
        }    Na.onal	
  Clima.c	
  Data	
  Center,	
  U.S.	
  Department	
  of	
  Commerce	
  	
  
        }    Northeast	
  Regional	
  Climate	
  Center,	
  Cornell	
  University	
  	
  
        }    Solar	
  Consul.ng	
  Services,	
  Colebrook,	
  New	
  Hampshire	
  	
  
        }    Solar	
  Radia.on	
  Monitoring	
  Laboratory,	
  University	
  of	
  Oregon.	
  	
  



      73	

                                    GEEN 4830 – ECEN 5007
The	
  Na.onal	
  Solar	
  Radia.on	
  Database	
  
}      Measured	
  Data	
  -­‐	
  About	
  40	
  sta.ons	
  in	
  the	
  updated	
  NSRDB	
  
        include	
  measured	
  solar	
  data,	
  supplied	
  by	
  these	
  agencies:	
  	
  
        }    Atmospheric	
  Radia.on	
  Measurement	
  (ARM)	
  Program,	
  DOE	
  	
  
        }    Florida	
  Solar	
  Energy	
  Center,	
  State	
  of	
  Florida	
  	
  
        }    Integrated	
  Surface	
  Irradiance	
  Study	
  (ISIS)	
  and	
  Surface	
  Radia.on	
  
              Budget	
  Measurement	
  (SURFRAD)	
  Networks,	
  NOAA/ARL,	
  NOAA/
              ESRL/Global	
  Monitoring	
  Division	
  	
  
        }    Measurement	
  and	
  Instrumenta.on	
  Data	
  Center,	
  NREL	
  	
  
        }    University	
  of	
  Oregon	
  Solar	
  Radia.on	
  Monitoring	
  Laboratory	
  Network	
  	
  
        }    University	
  of	
  Texas	
  Solar	
  Energy	
  Laboratory.	
  	
  



      74	

                                    GEEN 4830 – ECEN 5007
75	

   GEEN 4830 – ECEN 5007
The	
  Na.onal	
  Solar	
  Radia.on	
  Database.	
  TMY3	
  
}      The	
  TMY3s	
  are	
  data	
  sets	
  of	
  hourly	
  values	
  of	
  solar	
  radia.on	
  and	
  
        meteorological	
  elements	
  for	
  a	
  1-­‐year	
  period.	
  Their	
  intended	
  
        use	
  is	
  for	
  computer	
  simula.ons	
  of	
  solar	
  energy	
  conversion	
  
        systems	
  and	
  building	
  systems	
  to	
  facilitate	
  performance	
  
        comparisons	
  of	
  different	
  system	
  types,	
  configura.ons,	
  and	
  
        loca.ons	
  in	
  the	
  United	
  States	
  and	
  its	
  territories.	
  Because	
  they	
  
        represent	
  typical	
  rather	
  than	
  extreme	
  condi.ons,	
  they	
  are	
  not	
  
        suited	
  for	
  designing	
  systems	
  to	
  meet	
  the	
  worst-­‐case	
  condi.ons	
  
        occurring	
  at	
  a	
  loca.on.	
  	
  

}      hfp://rredc.nrel.gov/solar/old_data/nsrdb/1991-­‐2005/tmy3.	
  	
  

      76	

                                  GEEN 4830 – ECEN 5007
Statistical characterization of the solar resource
}      The statistical characterization of solar radiation requires long
        series of MEASURED data
        }    Sunshine hours – good availability
        }    Global horizontal (GH) – good availability
        }    Direct Normal (DNI) – poor availability
}      The statistical distribution of solar radiation depends on the
        aggregation periods
        }    Monthly and yearly values of global irradiation have normal
              distribution
        }    The distribution of yearly values of DNI is not normal (Weibul?)



      77	

                            GEEN 4830 – ECEN 5007
Solar resource assessment
for CSP plants
1.         Estimate the solar resource from readily available information
          1    Surface measurements
               1    On site
               2    Nearby
          2   Satellite estimates
          3   Sunshine hours
          4   Qualitative information
2.         Set up a measurement station
          1.  Datalogger
          2.  Pyrheliometer
          3.  Pyranometer (global and diffuse)
          4.  Meteo (wind, temperature, RH)
3.         Maintain the station (frequent cleaning!)

      78	

                              GEEN 4830 – ECEN 5007
Solar resource assessment
for CSP plants
5.          Perfom quality control of measured data
6.          Compare estimates with measurements and assess solar
            resource (DNI, Global)
      }    After 1 year of on-site measurements
      }    1 year is not significant:
            }    long term estimates should prevail
            }    Analysis must be made by experts
7.          Elaborate design year(s) from measured data
      }    Time series -1 year- of hourly or n-minute values
            }    Typical
            }    Percentiles (P50, P90, P10)


  79	

                                     GEEN 4830 – ECEN 5007

More Related Content

What's hot

Solar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsSolar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
Tuong Do
 
Electromagnetic Wave
Electromagnetic WaveElectromagnetic Wave
Electromagnetic WaveYong Heui Cho
 
Fiber optics ray theory
Fiber optics ray theoryFiber optics ray theory
Fiber optics ray theory
Solo Hermelin
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : Wavelets
Gabriel Peyré
 
Optical Characterization of Inorganic Semiconductors
Optical Characterization of Inorganic SemiconductorsOptical Characterization of Inorganic Semiconductors
Optical Characterization of Inorganic Semiconductors
University of Liverpool
 
Mit6 007 s11_lec20
Mit6 007 s11_lec20Mit6 007 s11_lec20
Mit6 007 s11_lec20Bipin Kujur
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003
Nityanand Gopalika
 
9702 s11 qp_12
9702 s11 qp_129702 s11 qp_12
9702 s11 qp_12
Hira Rizvi
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic Photovoltaics
Tuong Do
 
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTsFull-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTsayubimoak
 

What's hot (18)

Solar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsSolar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
 
Electromagnetic Wave
Electromagnetic WaveElectromagnetic Wave
Electromagnetic Wave
 
Anschp31
Anschp31Anschp31
Anschp31
 
Fiber optics ray theory
Fiber optics ray theoryFiber optics ray theory
Fiber optics ray theory
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : Wavelets
 
Optical Characterization of Inorganic Semiconductors
Optical Characterization of Inorganic SemiconductorsOptical Characterization of Inorganic Semiconductors
Optical Characterization of Inorganic Semiconductors
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
 
Microwave Filter
Microwave FilterMicrowave Filter
Microwave Filter
 
dpss
dpssdpss
dpss
 
Anschp23
Anschp23Anschp23
Anschp23
 
Mit6 007 s11_lec20
Mit6 007 s11_lec20Mit6 007 s11_lec20
Mit6 007 s11_lec20
 
Anschp22
Anschp22Anschp22
Anschp22
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003
 
9702 s11 qp_12
9702 s11 qp_129702 s11 qp_12
9702 s11 qp_12
 
Anschp25
Anschp25Anschp25
Anschp25
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic Photovoltaics
 
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTsFull-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
 
Smith Chart
Smith ChartSmith Chart
Smith Chart
 

Viewers also liked

Renewable energy course#01
Renewable energy course#01Renewable energy course#01
Renewable energy course#01Syed_Sajjad_Raza
 
Renewable energy course#04
Renewable energy course#04Renewable energy course#04
Renewable energy course#04Syed_Sajjad_Raza
 
ΟΜΑΔΑ Β_2
ΟΜΑΔΑ Β_2ΟΜΑΔΑ Β_2
ΟΜΑΔΑ Β_2ANGTSA
 
Renewable energy course#06
Renewable energy course#06Renewable energy course#06
Renewable energy course#06Syed_Sajjad_Raza
 
Ansys ppt
Ansys pptAnsys ppt
Ansys ppt
Avinash Harale
 
Finite Element Simulation with Ansys Workbench 14
Finite Element Simulation with Ansys Workbench 14Finite Element Simulation with Ansys Workbench 14
Finite Element Simulation with Ansys Workbench 14
Prem Prakash Pandey
 
SOLAR RADIATION MEASUREMENT
SOLAR RADIATION MEASUREMENTSOLAR RADIATION MEASUREMENT
SOLAR RADIATION MEASUREMENT
Vanita Thakkar
 
Solar Radiation Geometry
Solar Radiation GeometrySolar Radiation Geometry
Solar Radiation GeometryVanita Thakkar
 

Viewers also liked (8)

Renewable energy course#01
Renewable energy course#01Renewable energy course#01
Renewable energy course#01
 
Renewable energy course#04
Renewable energy course#04Renewable energy course#04
Renewable energy course#04
 
ΟΜΑΔΑ Β_2
ΟΜΑΔΑ Β_2ΟΜΑΔΑ Β_2
ΟΜΑΔΑ Β_2
 
Renewable energy course#06
Renewable energy course#06Renewable energy course#06
Renewable energy course#06
 
Ansys ppt
Ansys pptAnsys ppt
Ansys ppt
 
Finite Element Simulation with Ansys Workbench 14
Finite Element Simulation with Ansys Workbench 14Finite Element Simulation with Ansys Workbench 14
Finite Element Simulation with Ansys Workbench 14
 
SOLAR RADIATION MEASUREMENT
SOLAR RADIATION MEASUREMENTSOLAR RADIATION MEASUREMENT
SOLAR RADIATION MEASUREMENT
 
Solar Radiation Geometry
Solar Radiation GeometrySolar Radiation Geometry
Solar Radiation Geometry
 

Similar to Cu stp 02_solar_resource

Workshop problems solving
Workshop problems solvingWorkshop problems solving
Workshop problems solving
Prof. Dr. Ahmed Ennaoui
 
Optical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsOptical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film Semiconductors
Enrico Castro
 
INFRARED SPECTROSCOPY(IR)
INFRARED SPECTROSCOPY(IR)INFRARED SPECTROSCOPY(IR)
INFRARED SPECTROSCOPY(IR)
AJAYKUMAR4872
 
Spectrometry
SpectrometrySpectrometry
SpectrometryGaurav Kr
 
Light sources based on optical-scale accelerators
Light sources based on optical-scale acceleratorsLight sources based on optical-scale accelerators
Light sources based on optical-scale accelerators
Gil Travish
 
2 spectra and energy levels
2 spectra and energy levels2 spectra and energy levels
2 spectra and energy levelsMissingWaldo
 
Physics of remote sensing
Physics  of remote sensing  Physics  of remote sensing
Physics of remote sensing
Ghassan Hadi
 
Microprobing with electrons
Microprobing with electronsMicroprobing with electrons
Microprobing with electrons
Jonathan Price
 
Introduction to electron microscope
Introduction to electron microscope Introduction to electron microscope
Introduction to electron microscope
Antilen Jacob
 
Ch34 ssm
Ch34 ssmCh34 ssm
Ch34 ssm
Marta Díaz
 
Dyelaser
DyelaserDyelaser
Dyelaser
Amine ADoukkali
 
Infrared presentation
Infrared presentationInfrared presentation
Infrared presentationShiv Kumar
 
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTSUnit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
KPR INSTITUE OF ENGINEERING AND TECHNOLOGY
 
استخدام جهاز ATR-FTIR
استخدام جهاز ATR-FTIRاستخدام جهاز ATR-FTIR
استخدام جهاز ATR-FTIR
MohammedTahir35
 
GAMMA-RAY SPECTROSCOPY
GAMMA-RAY SPECTROSCOPYGAMMA-RAY SPECTROSCOPY
GAMMA-RAY SPECTROSCOPY
MOIN KHAN HUSSAIN
 
Lec (1 2-3) ch one- optical analytical instrumentation
Lec (1 2-3)  ch one- optical analytical instrumentationLec (1 2-3)  ch one- optical analytical instrumentation
Lec (1 2-3) ch one- optical analytical instrumentation
cairo university
 
CHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodCHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodAlia Najiha
 
Ir spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P KhobragadeIr spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P Khobragade
BhavanaKhobragade
 
RBS
RBSRBS

Similar to Cu stp 02_solar_resource (20)

Workshop problems solving
Workshop problems solvingWorkshop problems solving
Workshop problems solving
 
Optical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsOptical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film Semiconductors
 
INFRARED SPECTROSCOPY(IR)
INFRARED SPECTROSCOPY(IR)INFRARED SPECTROSCOPY(IR)
INFRARED SPECTROSCOPY(IR)
 
Spectrometry
SpectrometrySpectrometry
Spectrometry
 
Light sources based on optical-scale accelerators
Light sources based on optical-scale acceleratorsLight sources based on optical-scale accelerators
Light sources based on optical-scale accelerators
 
2 spectra and energy levels
2 spectra and energy levels2 spectra and energy levels
2 spectra and energy levels
 
Physics of remote sensing
Physics  of remote sensing  Physics  of remote sensing
Physics of remote sensing
 
Microprobing with electrons
Microprobing with electronsMicroprobing with electrons
Microprobing with electrons
 
Introduction to electron microscope
Introduction to electron microscope Introduction to electron microscope
Introduction to electron microscope
 
Ch34 ssm
Ch34 ssmCh34 ssm
Ch34 ssm
 
Dyelaser
DyelaserDyelaser
Dyelaser
 
Infrared presentation
Infrared presentationInfrared presentation
Infrared presentation
 
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTSUnit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
Unit 1 ppt notes /BM8702 /RADIOLOGICAL EQUIPMENTS
 
استخدام جهاز ATR-FTIR
استخدام جهاز ATR-FTIRاستخدام جهاز ATR-FTIR
استخدام جهاز ATR-FTIR
 
x-rays.pdf
x-rays.pdfx-rays.pdf
x-rays.pdf
 
GAMMA-RAY SPECTROSCOPY
GAMMA-RAY SPECTROSCOPYGAMMA-RAY SPECTROSCOPY
GAMMA-RAY SPECTROSCOPY
 
Lec (1 2-3) ch one- optical analytical instrumentation
Lec (1 2-3)  ch one- optical analytical instrumentationLec (1 2-3)  ch one- optical analytical instrumentation
Lec (1 2-3) ch one- optical analytical instrumentation
 
CHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodCHM260 - Spectroscopy Method
CHM260 - Spectroscopy Method
 
Ir spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P KhobragadeIr spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P Khobragade
 
RBS
RBSRBS
RBS
 

More from Manuel Silva

Ecen 5007 lecture 7
Ecen 5007   lecture 7Ecen 5007   lecture 7
Ecen 5007 lecture 7Manuel Silva
 
Cu stp 07_crs(tower)
Cu stp 07_crs(tower)Cu stp 07_crs(tower)
Cu stp 07_crs(tower)Manuel Silva
 
Cu stp 09_parabolic dish
Cu stp 09_parabolic dishCu stp 09_parabolic dish
Cu stp 09_parabolic dishManuel Silva
 
Cu stp 09_parabolic dish
Cu stp 09_parabolic dishCu stp 09_parabolic dish
Cu stp 09_parabolic dishManuel Silva
 
Cu stp 08_tes+hybrid
Cu stp 08_tes+hybridCu stp 08_tes+hybrid
Cu stp 08_tes+hybridManuel Silva
 
Custp 06 parabolic_trough
Custp 06 parabolic_troughCustp 06 parabolic_trough
Custp 06 parabolic_troughManuel Silva
 
Cu stp 04_fundamentals
Cu stp 04_fundamentalsCu stp 04_fundamentals
Cu stp 04_fundamentalsManuel Silva
 
Cu stp 03_basics td
Cu stp 03_basics tdCu stp 03_basics td
Cu stp 03_basics tdManuel Silva
 
Custp 05 stp_plants
Custp 05 stp_plantsCustp 05 stp_plants
Custp 05 stp_plantsManuel Silva
 
Geen4830syllabus 11 01
Geen4830syllabus 11 01Geen4830syllabus 11 01
Geen4830syllabus 11 01Manuel Silva
 
Geen4830 courseoutline 11_01
Geen4830 courseoutline 11_01Geen4830 courseoutline 11_01
Geen4830 courseoutline 11_01Manuel Silva
 

More from Manuel Silva (14)

Ecen 5007 lecture 7
Ecen 5007   lecture 7Ecen 5007   lecture 7
Ecen 5007 lecture 7
 
Cu stp 07_crs(tower)
Cu stp 07_crs(tower)Cu stp 07_crs(tower)
Cu stp 07_crs(tower)
 
Cu stp 09_parabolic dish
Cu stp 09_parabolic dishCu stp 09_parabolic dish
Cu stp 09_parabolic dish
 
Cu stp 09_parabolic dish
Cu stp 09_parabolic dishCu stp 09_parabolic dish
Cu stp 09_parabolic dish
 
Cu stp 10_clfr
Cu stp 10_clfrCu stp 10_clfr
Cu stp 10_clfr
 
Cstp project
Cstp projectCstp project
Cstp project
 
Cu stp 08_tes+hybrid
Cu stp 08_tes+hybridCu stp 08_tes+hybrid
Cu stp 08_tes+hybrid
 
Custp 06 parabolic_trough
Custp 06 parabolic_troughCustp 06 parabolic_trough
Custp 06 parabolic_trough
 
Cu stp 04_fundamentals
Cu stp 04_fundamentalsCu stp 04_fundamentals
Cu stp 04_fundamentals
 
Cu stp 03_basics td
Cu stp 03_basics tdCu stp 03_basics td
Cu stp 03_basics td
 
Custp 05 stp_plants
Custp 05 stp_plantsCustp 05 stp_plants
Custp 05 stp_plants
 
Geen4830syllabus 11 01
Geen4830syllabus 11 01Geen4830syllabus 11 01
Geen4830syllabus 11 01
 
Geen4830 courseoutline 11_01
Geen4830 courseoutline 11_01Geen4830 courseoutline 11_01
Geen4830 courseoutline 11_01
 
Cu stp 01_intro
Cu stp 01_introCu stp 01_intro
Cu stp 01_intro
 

Recently uploaded

GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
Neo4j
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
Kari Kakkonen
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
Aftab Hussain
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems S.M.S.A.
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
Neo4j
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
danishmna97
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
SOFTTECHHUB
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
Rohit Gautam
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
James Anderson
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
Matthew Sinclair
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Aggregage
 
Mind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AIMind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AI
Kumud Singh
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
DianaGray10
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
Octavian Nadolu
 
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
名前 です男
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
mikeeftimakis1
 

Recently uploaded (20)

GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
 
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
 
Mind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AIMind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AI
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
 
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
 

Cu stp 02_solar_resource

  • 1. SOLAR THERMAL POWER! GEEN 4830 – ECEN 5007! 2. Solar Resource! Manuel A. Silva Pérez ! silva@esi.us.es !
  • 2. Contents }  The sun as energy source }  Sun‐Earth relationships }  Solar radiation measurements }  Quality control of solar radiation data }  Solar radiation estimation }  From meteorological data }  Models for the estimation of the beam component }  From Satellite images }  Databases and tools }  Typical Meteorological Years 1 GEEN 4830 – ECEN 5007
  • 3. El  espectro  electromagné0co   The  electromagne.c  spectrum  is  a  con.nuum  of  all   electromagne.c  waves  arranged  according  to  frequency   and  wavelength.     Energy  =  h·∙f      Planck’s  constant  h  =  6.62·∙10-­‐34  J·∙s   3·∙106  GHz   E N E R G Y   2 GEEN 4830 – ECEN 5007
  • 4. The  electromagne0c  spectrum   Bands  adopted  by  the  Interna.onal  Commission  on  Illumina.on   (Commission  Interna.onal  de  l'Eclairage,  CIE)  UV,  visible  e  IR   3  !m   (3000  nm)   0.3  !m   (300  nm)   Shortwave  solar  radia.on   Longwave  solar  radia.on   UV  C   UV  B   UV  A   Visible   IR  A   IR  B   IR  C   100   280   315   400   760   1400   3000   106   λ  (nm)   3·∙106   7.5·∙105   105   300   3  f  (GHz)   GEEN 4830 – ECEN 5007
  • 5. Black  body   A  black  body  is  an  ideal  object  that  absorbs  100%  of  the   radia.on  that  hits  it.  It  also  emits  the  maximum  radia.on  at  all   wavelengths  and  all  direc.ons  at  a  given  temperature.   The  spectral  (  or  monochroma.c)  p  )  emissive  power  of  a  black   body.     ebλ  is  the  energy  emited  per  .me  and  area  units  at  each   wavelength,  and  it  is  a  func.on  of  temperature   C1 Planck’s  equa.on   ebλ = 5 λ ⋅e [ C2 / λT ] −1 (W·∙m-­‐2  ·∙μm-­‐1)   λ → µm T→K C1 = 3.7427 ⋅108 W ⋅ m-2µm4 C2 = 1.4388 ⋅104 µm ⋅ K 4 GEEN 4830 – ECEN 5007
  • 6. Black  body  radia0on   For  a  black  body,  as  the  temperature  increases:   ebλ 8 -­‐ The  emissive  power   10 increases  for  every   7 10 wavelength   Potencia emisiva espectral (Wm µm ) -1 6 10 -2 -­‐  The  rela.ve  amount  of   5 10 energy  emifed  at  short   4 10 wavelengths  increases   3 10 5777 K 2500 K 2 1000 K -­‐  The  posi.on  of  the   10 maximum  emissive   1 10 300 K power  is  displaced  to   0 10 shorter  wavelengths   0 5 10 λ (µm) 15 20 5 GEEN 4830 – ECEN 5007
  • 7. Black  body  radia0on   Stefan-­‐Boltzmann’s  Law   The  total  emissive  power  is  the  radia.on  emifed  by  the  black  body   at  all  wavelengths,  and  is  given  by:   λ =∞ C1 eb = λ =∞ ∫λ =0 ebλ dλ = ∫ dλ eb = σT 4 (W·∙m-­‐2)   λ =0 λ 5 [ ] ⋅ eC2 / λT − 1 Stefan-­‐Boltzman’s  constant     σ  =  5.6866·∙10-­‐8  W·∙m-­‐2K-­‐4   Wien’s  Law   The  wavelengths  corresponding  to  the   2897.8 maximum  emifed  power  is  inversely   λmax = (μm)   T propor.onal  to  temperature   6 GEEN 4830 – ECEN 5007
  • 8. Irradiance; spectral irradiance The  irradiance  (at  a  point  of  a  surface)  is  the  radiant  power  of  all  wavelengths   incident  from  all  upward  direc.ons  on  a  small  element  of  surface  containing  the   point   under  considera.on  divided  by  the  area  of  the  element.  SI  unit  is  W·∙m-­‐2.     The  spectral  irradiance  is  the  irradiance  at  a  given  wavelength  per  unit  wavelength   interval.  The  SI  unit  is  W  m–3,  but  a  commonly  used  unit  is  W  m–2  μm–1.   ⋅ ⎛ remit ⎞ 2 I 0nλ = ebλ ⎜ ⎟ ⎝ r ⎠ remit   7 GEEN 4830 – ECEN 5007
  • 9. 8 GEEN 4830 – ECEN 5007
  • 10. Solar Spectrum. Solar constant Solar Constant Total Radiative flux (at all wavelengths) ⋅ 2500 inciding on a surface perpendicular to I 0 nλ the sun rays at a distance of 1 AU (W·∙m-­‐2  ·∙!m-­‐1)   2000 GSC (W·∙m-­‐2)   1500 NASA 1353 WRC 1367 1000 GSC =  4921  kJ·∙m-­‐2·∙h-­‐1   500 GSC =  0.082  MJ·∙m-­‐2·∙min-­‐1   0 λ  (μm)   0,0 0,5 1,0 1,5 2,0 2,5 3,0 hfp://rredc.nrel.gov/solar/spectra/am0/   9 GEEN 4830 – ECEN 5007
  • 11. The Sun as a blackbody 2500 Visible   2000 http://mesola.obspm.fr/solar_spect.php UV   IR   ⋅ I 0 nλ 1500 Extraterrestrial solar spectrum (W·∙m-­‐2  ·∙μm-­‐1)   1000 Black  body  @  5777  K   Size  of  the  Sun  @  1  AU   500 0 λ  (μm)   0,0 0,5 1,0 1,5 2,0 2,5 3,0 hfp://rredc.nrel.gov/solar/standards/am0/wehrli1985.new.html   10 GEEN 4830 – ECEN 5007
  • 12. ¡The Sun is a high quality energy source! ⎛ Tamb ⎞ ⎟ = QSun ⎛1 − 300K ⎞ ⎜1 − W = QSun ⎜ ⎟ ⎜ ⎟ ⎝ TSun ⎠ ⎝ 5777 K ⎠ }  Aprox. 95% of the extraterrrestrial solar radiation can be converted to work 11 GEEN 4830 – ECEN 5007
  • 13. Extraterrestrial solar radiation On a normal surface ! "r % 2 I 0n = GSC $ 0 ' = GSC E0 # r& On a horizontal surface ! ! I 0 = I 0n cos! z ! "r % 2 I 0 = GSC $ 0 ' cos! z = GSC E0 cos! z # r& 12 GEEN 4830 – ECEN 5007
  • 14. Average solar irradiance on the Earth GSC = 1367 W·m-2 Earth  radius  =  6740  km.  The   The  energy  received  on  1  day  is   intercepted  solar  radia.on  is   distributed  on  an  area  4πR2   propor.onal  to  πR2   The  average  solar  irradiance  on  the  top  of  the  atmosphere  is   342  W·∙m-­‐2   13   GEEN 4830 – ECEN 5007
  • 15. 14 GEEN 4830 – ECEN 5007
  • 16. Interac.on  between  solar  radia.on  and  atmospheric   components   Rayleigh Mie diffusion   diffusion Beam Diffuse irradiance   irradiance   Beam irradiance   Albedo irradiance 15 GEEN 4830 – ECEN 5007
  • 17. Interac.on  between  solar  radia.on  and  the  Earth’s  atmosphere   (Clear  Day)   100%   1   Reflec0on  to   Absorp0on   space  %   %   Air  molecules   0.1  a  10   8   5   Dust,  aerosols   1  to  5   Diffuse   %   0.5  to  10   Moisture   2  to  10   Beam   11%  to  23%   83%  to  56%   5%  a  15%   16 GEEN 4830 – ECEN 5007
  • 18. Scafering  (change  in  direc.on  per  air  molecules)   1 0.9 Coef. transmisión escaterin 0.8 0.7 Atmosphere   0.6 θz   0.5 θz=20º 0.4 z = 0 m. 0.3 Earth   0.2 0.1 0 0.3 1.3 2.3 3.3 Longitud onda (micras) 17 GEEN 4830 – ECEN 5007
  • 19. Absorp.on  by  ozone     1 0.9 0.8 Coef. transmisión ozono 0.7 0.6 Atmosphere   θz   0.5 0.4 0.3 Earth   0.2 θz=20º 0.1 Lo=0.2 0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Longitud de onda (micras) 18 GEEN 4830 – ECEN 5007
  • 20. Lo  =  Ozone  layer  thickness  (cm)   0.5 Enero Espesor capa ozono (cm) Febrero 0.45 Marzo 0.4 Abril Mayo 0.35 Junio 0.3 Julio Agosto 0.25 Septiembre 0.2 Octubre -90 -70 -50 -30 -10 10 30 50 70 90 Noviembre Norte   Latitud (º) Sur   Diciembre 19 GEEN 4830 – ECEN 5007
  • 21. Absorp.on  by  gases  (CO2,  O2)     1 Coef. transmisión por mezcla de gases 0.9 0.8 Atmosphere   0.7 θz   0.6 0.5 0.4 Earth   0.3 θz=20º   0.2 z  =  0  m.   0.1 0 0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8 Longitud de onda (micras) 20 GEEN 4830 – ECEN 5007
  • 22. Absorp.on  by  water  molecules   1 Coef. transmisión por absorción del 0.9 0.8 θz=20º   0.7 Atmosphere   T=25ºC   vapor de agua 0.6 θz   0.5 RH=50%   0.4 0.3 Earth   0.2 0.1 0 0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8 Longitud de onda (micras) 21 GEEN 4830 – ECEN 5007
  • 23. Absorp.on  and  diffusion  by  aerosols   1 Coeficiente transmisión aerosoles 0.9 0.8 Atmosphere   0.7 θz   0.6 τa(total  afenua.on)   θz=20º   0.5 α=1.3   τas(difussion)   β=0.15   Earth   0.4 τaa(absorp.on)   0.3 0.2 0.1 0 0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8 Longitud de onda (micras) 22 GEEN 4830 – ECEN 5007
  • 24. Solar  radia.on  on  the  Earth’s  surface   2000 O3   nd  =  94   Extraterrestre 5777 K θz=20º   1500 O2   z  =  0  m.   In Idh α=1.3   β=0.15   W/m 2·µm IT Ts=25ºC   1000 RH=50%   H2O   Lo  =  0.3   CO2   500 H2O   0 0,3 1,3 2,3 3,3 Longitud de onda (micras) 23 GEEN 4830 – ECEN 5007
  • 25. CHARACTERISTICS  OF  SOLAR  RADIATION   Cycles   Solar  energy  reaches  the  earth  in  a   discon.nuous  form,  resul.ng  in   different  cycles: }  Daily  cycle:     }  accounts  for  50%  of  the  total   availability  of  daily  hours.   }  Another  effect  of  the  daily  cycle  is  the   modula.on  of  the  received  energy   throughout  the  day. }  Seasonal  cycle:     }  modula.on  of  the  received  energy   throughout  the  year.   24 GEEN 4830 – ECEN 5007
  • 26. SOLAR  RADIATION  CHARACTERISTICS   Low  density   }  The  maximum  possible   amount  of  solar  radia.on   received  by  the  surface  of  the   atmosphere  at  1  AU  is  1367   W/m2     }  Large  surfaces  are  needed  to   achieve  high  power  outputs.   }  To  increase  the  density   concentra.on  should  be   used.   }  Only  the  direct  component  of   solar  radia.on  can  be   concentrated.   25 GEEN 4830 – ECEN 5007
  • 27. SOLAR  RADIATION  CHARACTERISTICS   Dependence  on  geography  (la0tude)   }  Under  clear  sky  condi.ons:  the  solar   radia.on  depends  mainly  on  the  la.tude.   }  La.tude  effect  is  equivalent  to  the   modifica.on  of  the  angle  of  incidence  of   solar  radia.on.   }  For  the  modula.on  of  the  received   energy  the  following  can  be  used:   }  Solar  tracker   }  Tilted  Plane     }  The  inclina.on  of  the  recep.on  plane   means:   }   Modifica.on  of  the  la.tude  effect     }  Modifica.on  of  the  annual  distribu.on.   26 GEEN 4830 – ECEN 5007
  • 28. SOLAR  RADIATION  CHARACTERISTICS   Random  character   }  Solar  radia.on  on  the  Earth's  surface  is  modulated  by  clima.c   condi.ons.   }  Clear  sky  condi.ons  are  not  common.   }  The  la.tude  indicates  a  maximum  range,  but  the  energy   received  is  determined  by  local  clima.c  condi.ons.   27 GEEN 4830 – ECEN 5007
  • 29. SUN-­‐EARTH  RELATIONSHIPS   Sun-­‐Earth  distance   }  The earth revolves around the Sun in an elliptical orbit, with the Sun in one of its foci. }  The amount of solar radiation incoming to the Earth is inversely proportional to the square of the Sun – Earth distance. }  The distance is measured in astronomical units (AU) equivalent to the mean Sun ‐ Earth distance.   28 GEEN 4830 – ECEN 5007
  • 30. SUN-­‐EARTH  RELATIONSHIPS   Declina0on   }  Eclip.c  plane  (ECLP):  the  plane  of  Earth's  revolu.on  around  the  Sun }  Equatorial  plane  (EQUP):  the  plane  containing  the  equator   }  The  Polar  axis  is  .lted  23.5o  with  respect  to  the  normal  to  the  ECLP.   w  ECLP  and  EQUP  cross  in  the   equinoxes  and  the  distance  is   maximum  in  the  sols.ces.   w  The  angle  in  a  specific  moment   between  both  planes  is  called   DECLINATION   29 GEEN 4830 – ECEN 5007
  • 31. SUN-­‐EARTH  RELATIONSHIPS     Rela0ve  posi0on  sun-­‐horizontal  surface   w  w  w  ‐ ␣ w  30 GEEN 4830 – ECEN 5007
  • 32. SUN-­‐EARTH  RELATIONSHIPS      Rela.ve  posi.on  Sun  -­‐  inclined  surface   }  Considering  a  south   orienta.on,  the  diagram   shows  how  a  surface   inclined  β  in  a  la.tude  φ   is  similar  to  a  horizontal   surface  in  a  la.tude  φ-­‐β.   31 GEEN 4830 – ECEN 5007
  • 33. EXTRATERRESTRIAL  SOLAR  RADIATION      Hourly  radia.on  over  horizontal  surface   }  The  extraterrestrial  radia.on  on  a   normal  surface  (perpendicular  to  the   Sun´s  rays)  is  expressed  as:   I 0 n = I sc (ro r ) = I sc E0 2 w  For  an  horizontal  surface   I 0 = I sc E0 cosθ z 32 GEEN 4830 – ECEN 5007
  • 34. SOLAR  RADIATION  ON  THE  EARTH  SURFACE      Direct  solar  radia.on  (beam)   }  Is  the  radia.on  coming  directly  from  the  Sun  disk.   }  It  has  a  direc.onal  character  and  can  be  concentrated.   }  Accounts  for  approx.  90%  of  the  solar  radia.on  on  clear   sky  days,  and  can  be  null  in  cloud  covered  days.   }  As  a  direc.onal  component,  the  contribu.on  on  a  surface   is  the  perpendicular  projec.on  over  this  surface:  beam   radia.on  is  the  radia.on  on  a  plane  perpendicular  to  the   sun´s  rays.   I  =  B  cos  θ  It  can  be  maximized  with  solar  trackers.     33 GEEN 4830 – ECEN 5007
  • 35. SOLAR  RADIATION  ON  THE  EARTH  SURFACE      Diffuse  solar  radia.on   }  Part  of  the  solar  radia.on  is  absorbed  by  the  atmospheric   components.  Another  part  is  reflected  by  these   components  producing  direc.on  changes  and  energy   reduc.on.   }  Diffuse  radia.on  =  the  part  of  this  radia.on  that  reaches   the  earth´s  surface.   }  Diffuse  radia.on  has  three  components:   }  Circumsolar   }  Horizon  band   }  Blue  sky   34 GEEN 4830 – ECEN 5007
  • 36. SOLAR  RADIATION  ON  THE  EARTH  SURFACE      Reflected  solar  radia.on   }  Radia.on  coming  from  the  reflec.on  of  the  solar  radia.on   on  the  ground  or  on  other  nearby  surfaces.   }  Usually  is  small,  but  in  occasionally  can  account  for  up  to   40%  of  the  solar  radia.on  on  a  given  surface.   35 GEEN 4830 – ECEN 5007
  • 37. Solar  radia0on  measurement     36 Meteorological  Sta0on  at  GEENS4830 – ECEN 5007 the   eville  Engineering  School  (since  1984)    
  • 38. Measurement  of  Solar  Radia0on          §   S  ince  1830,  Herschel,  Beloni  and  Pouillet  developed  instruments,  capable  of                  m  easuring  the  intensity  of  solar  radia.on                 §     P  recise  determina.on  of  the  solar  constant  in  the  early  1900’s,  during  the  energy  crisis                          a  nd  solar  energy  development  in  1970s.         §   N  eed    to  befer  understand  global  climate  change  in  the  1980s  and  1990s.                             37 GEEN 4830 – ECEN 5007
  • 39. Solar  radia0on  sensors   38 GEEN 4830 – ECEN 5007
  • 40. Solar radiation sensors }  Rotating shadowband radiometer }  Measures global + diffuse }  Calculates direct from global + difusse measurements 39 GEEN 4830 – ECEN 5007
  • 41. Measurement  of  Solar  Radia.on   §   Broad-­‐band  global  solar  irradiance:  Pyranometer          §     M          easures  energy  incident  on  a  flat  surface,  usually  horizontal               §   Response  decreases  approximately  as  the  cosine  of  the  angle  of  incidence.     §   D  iffuse  radia.on  is  measured  with  a  pyranometer  and  a  shading  device  (disc,  shadow  ring,           or  band)    that  excludes  direct  solar  radia.on   40 GEEN 4830 – ECEN 5007
  • 42. Global  irradiance   }  Most  readily  available  data,  required  for   many  different  applica.ons   }  Difficult  to  model   }  Sensi.ve  to  the  albedo  of  the  surroundings    Measurement   }  No  absolute  reference  for  calibra.on     }  Cosine  effect  (correc.on  required)   }  Many  instruments  available     41 GEEN 4830 – ECEN 5007
  • 43. Global  irradiance  measurement  –  error  sources     }  Calibra.on  errors   }  Stability     }  Non-­‐Linearity   }  Shadows  and  reflec.ons  from  the  surroundings   }  Cosine  effect   }  Spectral  transmissivity  of  the  dome   }  Thermal  offset  of  the  dome   }  Temperature  dependence   }  Cleanliness  of  the  dome   }  Leveling   42 GEEN 4830 – ECEN 5007
  • 44. Diffuse  irradiance  measurement  –  error  sources     Same  as  global,  plus   }  Geometry  of  shading  device   }  Incorrect  alignment  of  shading  device   43 GEEN 4830 – ECEN 5007
  • 45. Direct  normal  (beam)  irradiance  measurement   5.7  º   }  Easy  to  model   }  Sensi.ve  to  afenua.on     }  It  is  the  main  component  under  clear   sky   Measurement   }  Precise  calibra.on  (absolute  –cavity-­‐   radiometer)   }  Requires  con.nuous  tracking     Eppley  Labs  pyrheliometer  (NIP)    tracker   44 GEEN 4830 – ECEN 5007
  • 46. Direct  normal  (beam)  irradiance  measurement  –   error  sources   }  Calibra.on  errors   }  Calibra.on  stability   }  Linearity   }  Spectral  transmissivity  of  the  window   }  Incorrect  alignment,  obstacles   }  Temperature  dependence   }  Window  cleanliness       45 GEEN 4830 – ECEN 5007
  • 47. Measurement  of  Solar  Radia.on   The  Baseline  Surface  Radia.on  Network  (BSRN)   hfp://www.bsrn.awi.de/en/home/bsrn/     § The  BSRN  was  recently  (early  2004)  designated  as  the  global   baseline  network  for  surface  radia.on  for  the  Global  Climate   Observing  System  (GCOS).  The  BSRN  sta.ons  also  contribute  to   the  Global  Atmospheric  Watch  (GAW).   § Proposed  by  the  World  Climate  Research  Program  (late  1980s)   § Objec.ve:  high  accuracy  surface  irradiance  measurement  all  over   the  world   § Valida.on  of  satellite  es.ma.on  models   § Valida.on  of  radia.on  codes  for  climate  models   46 GEEN 4830 – ECEN 5007
  • 48. Measurement  of  Solar  Radia.on  –  BSRN  Sta.ons   The  SURFRAD  network  Sta.on  at  Boulder,  CO.   La0tude:  40.13  degrees  North     Longitude:  105.24  degrees  West     Eleva0on:  1689  meters     Time  Zone:  Local  Time  +  7  hours  =  UTC     Installed:  July  1995       The  Boulder  SURFRAD  instruments  are   located  on  the  deck  at  SRRB's  Table  Mountain   Test  Facility,  located  8  miles  north  of  Boulder.   These  instruments  are  part  of  a  larger  set   maintained  at  this  loca.on  and  used  for   annual  intercomparisons  and  other  research.     47 GEEN 4830 – ECEN 5007
  • 49. Contents }  Quality control of solar radiation data }  Solar radiation estimation }  From meteorological data }  Models for the estimation of the beam component }  From Satellite images }  Databases and tools }  Typical Meteorological Years 48 GEEN 4830 – ECEN 5007
  • 50. Quality control of solar radiation data }  Different procedures, all based on data filtering by: }  Comparison with physical constraints, other measurements, models. }  Visual inspection by experienced staff }  An example follows (see also http://rredc.nrel.gov/solar/pubs/qc_tnd/ for a different, more exhaustive procedure) 49 GEEN 4830 – ECEN 5007
  • 51. Quality  control  of  solar  radia.on  data   1.  Physically  Possible  Limits   2.  Extremely  Rare  Limits   3.  Comparisons  vs  other  measurements   4.  Comparisons  vs  model   5.  Visual  inspec.on   50 GEEN 4830 – ECEN 5007
  • 52. FILTER  1:  Physically  Possible  Limits     Lower  limit   Irradiance   Upper  limit   0   Igo   Io   0   Ido   Itop+10   0   ID   Io   Subscripts:  go  =  Global  horizontal,  do  =  diffuse  horzontal,  D  =  beam   Io  =  extraterrestrial  irradiance;  Itop  =  irradiance  at  minimum  zenith  angle   Units:  W  m-­‐2   51 GEEN 4830 – ECEN 5007
  • 53. FILTER  2:  Extremely  Rare  Limits   Subscripts:  go  =  Global  horizontal,  do  =  diffuse  horizontal,  D  =  beam   Z:  zenith  angle;  m  =  air  mass;  Eo  =  Sun  –  Earth  distance  correc.on  factor   Io  =  extraterrestrial  irradiance;  Itop  =  irradiance  at  minimum  zenith  angle   Units:  W  m-­‐2   52 GEEN 4830 – ECEN 5007
  • 54. FILTER  3:  Comparison  vs  other  measurements   Lower  limit     Irradiance     Upper  limit   (Igo-­‐Ido)-­‐50  Wm-­‐2   ID·∙cosZ   (Igo-­‐Ido)+50  Wm-­‐2   ID·∙cosZ-­‐50  Wm-­‐2   Igo-­‐Ido   ID·∙cosZ+50  Wm-­‐2     |Igo-­‐Ido  –  ID  cos  z|±  50  Wm-­‐2   Subscripts:  go  =  Global  horizontal,  do  =  diffuse  horizontal,  D  =  beam     Z:  zenith  angle;  m  =  air  mass;  Eo  =  Sun  –  Earth  distance  correc.on  factor   Io  =  extraterrestrial  irradiance;  Itop  =  irradiance  at  minimum  zenith  angle   Units:  W  m-­‐2   53 GEEN 4830 – ECEN 5007
  • 55. FILTER  4:  Comparison  vs  model    Comparison  vs  a  model.  The   model  has  to  be  adapted  to   the  clima.c  characterisi.cs   of  the  Sta.on.            Example:  Hourly  beam-­‐to-­‐ extraterrestrial  irradiance   plofed  against  clearness   index  (NREL’s  quality  control   procedure)     54 GEEN 4830 – ECEN 5007
  • 56. FILTER  5:  Visual  Inspec.on   1400 1200 1000 irradiancias W/m2 800 IDmedida ig 600 id 400 200 0 -­‐ 8 -­‐ 6 -­‐ 4 -­‐ 2 0 2 4 6 8 hora solar 55 GEEN 4830 – ECEN 5007
  • 57. Visual  inspec.on   Estación: Cáceres (SAMCA) 18/11/2007 1400 1200 1000 800 I(W/m2) 600 400 200 0 0 2 4 6 8 10 12 14 16 18 20 22 24 GMT(h) 56 GEEN 4830 – ECEN 5007
  • 58. Time  offset   Incorrect  .me  stamp     900 900 Ig Ig 800 800 horas sol horas sol 700 700 Igcorregida 600 600 500 500 400 400 300 300 200 200 100 100 t2 t1 tocaso t1 t2 torto 0 t1' 0 t2' -8 -6 dm -4 -2 0 2 4 6 8 torto tocaso dt -8 -6 -4 -2 0 2 4 6 8 57 GEEN 4830 – ECEN 5007
  • 59. CLASSICAL  ESTIMATION  OF          SOLAR  RADIATION   Models  depend  on  the  variable  to  es.mate  and  on  the  available   data  and  their  characteris.cs:   }  Es.ma.on  of  daily  or  monthly  global  horizontal  or  direct   normal  irradia.on  from  sunshine  dura.on   }  Es.ma.on  of  hourly  values  from  daily  values  of  global   horizontal  irradia.on     }  Es.ma.on  of  global  irradia.on  on  .lted  surfaces   }  Es.ma.on  of  the  beam  component  from  global  horizontal   irradia.on     }  Etc.   58 GEEN 4830 – ECEN 5007
  • 60. Es.ma.on  of  daily  or  monthly  global  horizontal   irradia.on  from  sunshine  dura.on   }  Angstrom  –  type  formulas   H/H0  =  a  +  b  (s/s0)   }  Where     }  H  is  the  monthly  average  of  the  daily  global  irradia.on  on  a   horizontal  surface   }  H0  is  the  monthly  average  of  the  daily  extraterrestrial  irradia.on  on   a  horizontal  surface   }  s  is  the  monthly  average  of  the  daily  number  of  hours  of  bright   sunshine,     }  s0  is  the  monthly  average  of  the  daily  maximum  number  of  hours  of   possible  sunshine     }  a  and  b  are  regression  constants   59 GEEN 4830 – ECEN 5007
  • 61. Es.ma.on  of  direct  normal  irradia.on  from  sunshine   dura.on   1000 900 800 700 Ebn / W·m-2 600 500 400 300 200 100 0 -8 -6 -4 -2 0 2 4 6 8 hora solar / h 60 GEEN 4830 – ECEN 5007
  • 62. Decomposi0on  models  (es0ma0on  of  beam  and  diffuse  components   from  global  horizontal)   61 GEEN 4830 – ECEN 5007
  • 63. Kd  –  KT  models   Modelos Kt-Kd diarios 1.2 1 0.8 Kd 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Kt Collares Muneer Liu-Jordan GTER00-05 Ruth and Chant GTERD00-05 62 GEEN 4830 – ECEN 5007
  • 64. SOLAR  RADIATION  ESTIMATION  FROM  SATELLITE  IMAGES   63 GEEN 4830 – ECEN 5007
  • 65. SOLAR  RADIATION  ESTIMATION  FROM  SATELLITE  IMAGES   }  Energy  balance   I 0 e = I s + Ea + Et Modeled 1 Ig = (I 0e − I s − Ea ) 1− A Modeled Measured - Measured Estimated 64 GEEN 4830 – ECEN 5007
  • 66. THE  SATELLITE      Meteorological  satellites   }  In  meteorology  studies  frequent    and   high  density  observa.ons  on  the   Earth's  surface  are  required.    Conven.onal  systems  do  not  provide   a  global  cover.   w  An  important  tool  to  analyse  the  distribu.on  of  the  clima.c  system  are  the   METEOROLOGICAL  SATELLITES.  These  can  be:   ð  Polar  satellites   ð  Geosta.onary:  In  Europe,  the  system  of  geosta.onary  meteorological  satellites  is  called   METEOSAT       65 GEEN 4830 – ECEN 5007
  • 67. THE  SATELLITE      Satellite  classifica.on   Related  to  the  type  of  orbit  :   Polar  satellites:  placed  in  polar  orbits,   modifying  its  perspec.ve  and  distance   to  the  Earth.      Resolu.on  1m  to  1km.   Geosta.onary  satellites:  placed  in  the  geosta.onary  orbit  that  is,   the  place  in  the  space  where  the  Earth's  afrac.on  force  is   null.  It  is  an  unique  circumference    where  all  the   geosta.onary  satellites  are  situated  in  order  to  cover  the   whole  Earth's  surface.  The  resolu.on  of  these  satellites  are   maximum  at  the  equator,  and  decrease  in  all  direc.ons.   66 GEEN 4830 – ECEN 5007
  • 68. METHODOLOGY      Advantages       }  The  geosta.onary  satellites  show  simultaneously  wide  areas.     }  The  informa.on  of  these  satellites  is  always  referred  to  the   same  .me  window.   }  It  is  possible  to  analyse  past  climate  using  satellite  images  of   previous  years.   }  The  u.lisa.on  of  the  same  detector  to  evaluate  the  radia.on  in   different  places.   67 GEEN 4830 – ECEN 5007
  • 69. METHODOLOGY      Disadvantages       }  The  range  of  the  brilliance  values  of  cloud  cover  (90-­‐255)  and  of   the  soils  (30-­‐100)  overlap.     }  The  digital  conversion  results  in  imprecision  for  low  values  of   brilliance.     }  The  image  informa.on  is  related  to  an  instant,  while  the   radia.on  data  is  es.mated  in  a  hourly  or  daily  period.     }  The  spectral  response  of  the  detector  is  not  in  the  same  range   of  that  of    conven.onal  pyranometers.   68 GEEN 4830 – ECEN 5007
  • 70. METHODOLOGY      Physical  and  sta.s.cal  models   }   The  purpose  of  all  models  is  the  es.ma.on  of  the   solar  global  irradia.on  on  every    pixel  of  the  image.   }  The  exis.ng  models  are  classified  in:  physical  and   sta/s/cal  depending  of  the  nature  of  the  approach  to   evaluate  the  interac.on  between  the  solar  radia.on   and  the  atmosphere.   }  Both  types  of  models  show  similar  error  ranges.   69 GEEN 4830 – ECEN 5007
  • 71. METHODOLOGY      Physical  and  sta.s.cal  models   STATISTICAL  MODELS   }  Based  on  rela.onships  (usually  sta.s.cal  regressions)  between  pyranometric   data  and  the  digital  count  of  the  satellite.   }  This  rela.on  is  used  to  calculate  the  global  radia.on  from  the  digital  count  of   the  satellite.     }  Simple  and  easy  to  apply.     }  They  do  not  need  meteorological  measurements.   }  The  main  limita.ons  are:   }  The  needed  of  surface  data.     }  The  lack  of  universality.   70 GEEN 4830 – ECEN 5007
  • 72. METHODOLOGY      Physical  and  sta.s.cal  models   PHYSICAL  MODELS   }  Based  on  the  physics  of  the  atmosphere.  They  consider:   }  The  absorp.on  and  scafer  coefficients  of  the  atmospheric   components.   }  The  albedo  of  the  clouds  and  their  absorp.on  coefficients.   }  The  ground  albedo.   }  Physical  models  do  not  need  ground  data  and  are  universal   models.   }  Need  atmospheric  measurements.   71 GEEN 4830 – ECEN 5007
  • 73. 4.  DATA  BASES  AND  TOOLS   EUROPE   }  HELIOCLIM1  and  HELIOCLIM.   }  h+p://www.helioclim.net/index.html   }  h+p://www.soda-­‐is.com/eng/index.html   }  ESRA  (European  Solar  Radia0on  Atlas).   }  h+p://www.helioclim.net/esra/   }  PVGIS  (Photovoltaic  Gis)   }  h+p://re.jrc.cec.eu.int/pvgis/pv/     }  SOLEMI  (Solar  Energy  Mining)   }  h+p://www.solemi.de/home.html   USA    Na0onal  Solar  Radia0on  Database   }  h+p://rredc.nrel.gov/solar/old_data/nsrdb/1991-­‐2005/tmy3   NASA   }  h+p://eosweb.larc.nasa.gov/sse/         WORLD   }  METEONORM.   }  h+p://www.meteotest.ch/en/mn_home?w=ber     }  WRDC  (World  Radia0on  Data  Centre)   }  h+p://wrdc-­‐mgo.nrel.gov/     72 GEEN 4830 – ECEN 5007
  • 74. The  Na.onal  Solar  Radia.on  Database   }  Project  Par.cipants  -­‐  Primary  project  funding  came  from  NREL   with  support  from  the  following  collaborators:     }  The  Atmospheric  Sciences  Research  Center,  State  University  of  New   York  at  Albany     }  Climate  Systems  Branch,  Na.onal  Aeronau.cs  and  Space   Administra.on     }  Na.onal  Clima.c  Data  Center,  U.S.  Department  of  Commerce     }  Northeast  Regional  Climate  Center,  Cornell  University     }  Solar  Consul.ng  Services,  Colebrook,  New  Hampshire     }  Solar  Radia.on  Monitoring  Laboratory,  University  of  Oregon.     73 GEEN 4830 – ECEN 5007
  • 75. The  Na.onal  Solar  Radia.on  Database   }  Measured  Data  -­‐  About  40  sta.ons  in  the  updated  NSRDB   include  measured  solar  data,  supplied  by  these  agencies:     }  Atmospheric  Radia.on  Measurement  (ARM)  Program,  DOE     }  Florida  Solar  Energy  Center,  State  of  Florida     }  Integrated  Surface  Irradiance  Study  (ISIS)  and  Surface  Radia.on   Budget  Measurement  (SURFRAD)  Networks,  NOAA/ARL,  NOAA/ ESRL/Global  Monitoring  Division     }  Measurement  and  Instrumenta.on  Data  Center,  NREL     }  University  of  Oregon  Solar  Radia.on  Monitoring  Laboratory  Network     }  University  of  Texas  Solar  Energy  Laboratory.     74 GEEN 4830 – ECEN 5007
  • 76. 75 GEEN 4830 – ECEN 5007
  • 77. The  Na.onal  Solar  Radia.on  Database.  TMY3   }  The  TMY3s  are  data  sets  of  hourly  values  of  solar  radia.on  and   meteorological  elements  for  a  1-­‐year  period.  Their  intended   use  is  for  computer  simula.ons  of  solar  energy  conversion   systems  and  building  systems  to  facilitate  performance   comparisons  of  different  system  types,  configura.ons,  and   loca.ons  in  the  United  States  and  its  territories.  Because  they   represent  typical  rather  than  extreme  condi.ons,  they  are  not   suited  for  designing  systems  to  meet  the  worst-­‐case  condi.ons   occurring  at  a  loca.on.     }  hfp://rredc.nrel.gov/solar/old_data/nsrdb/1991-­‐2005/tmy3.     76 GEEN 4830 – ECEN 5007
  • 78. Statistical characterization of the solar resource }  The statistical characterization of solar radiation requires long series of MEASURED data }  Sunshine hours – good availability }  Global horizontal (GH) – good availability }  Direct Normal (DNI) – poor availability }  The statistical distribution of solar radiation depends on the aggregation periods }  Monthly and yearly values of global irradiation have normal distribution }  The distribution of yearly values of DNI is not normal (Weibul?) 77 GEEN 4830 – ECEN 5007
  • 79. Solar resource assessment for CSP plants 1.  Estimate the solar resource from readily available information 1  Surface measurements 1  On site 2  Nearby 2  Satellite estimates 3  Sunshine hours 4  Qualitative information 2.  Set up a measurement station 1.  Datalogger 2.  Pyrheliometer 3.  Pyranometer (global and diffuse) 4.  Meteo (wind, temperature, RH) 3.  Maintain the station (frequent cleaning!) 78 GEEN 4830 – ECEN 5007
  • 80. Solar resource assessment for CSP plants 5.  Perfom quality control of measured data 6.  Compare estimates with measurements and assess solar resource (DNI, Global) }  After 1 year of on-site measurements }  1 year is not significant: }  long term estimates should prevail }  Analysis must be made by experts 7.  Elaborate design year(s) from measured data }  Time series -1 year- of hourly or n-minute values }  Typical }  Percentiles (P50, P90, P10) 79 GEEN 4830 – ECEN 5007