This document describes a study that uses community detection models to identify prevalent news topics discussed on both Twitter and traditional media like BBC. It collects tweets and news articles about sports over a one-month period. Keywords are extracted from the data and a graph is constructed to represent relationships between words. Three community detection models - Girvan-Newman clustering, CLIQUE, and Louvain - are used to cluster similar content and detect communities of keywords representing news topics. The number of unique Twitter users engaged with each topic is also calculated to rank topics by user attention. The goal is to analyze how information is distributed between social and traditional media and identify emerging topics with low coverage in traditional sources.