SlideShare a Scribd company logo
1 of 8
A. Definition of Integration
In Class XI, you have learned the concept of derivative. Comprehension
on the derivative concept you can use to understand
integration concept. For that, try to determine the following derivative functions:
 𝑓1(𝑥) = 3𝑥3
+ 3
 𝑓2(𝑥) = 3𝑥3
+ 7
 𝑓3(𝑥) = 3𝑥3
− 1
 𝑓4(𝑥) = 3𝑥3
− 10
 𝑓5(𝑥) = 3𝑥3
− 99
Note that these functions have the general form , 𝑓(𝑥) = 3𝑥3
+ 𝑐 with c is constant. Each
function has a derivative 𝑓′(𝑥) = 9𝑥2
. Thus, the derivative function 𝑓(𝑥) = 3𝑥3
+ 𝑐 is 𝑓′(𝑥) =
9𝑥2
.
Now,what if you have to define the function 𝑓(𝑥) of
𝑓′(𝑥) is known?Determine the function 𝑓(𝑥) from 𝑓′(𝑥), means determining
antiderivative of 𝑓′(𝑥). Thus, the integration is the antiderivative
(Antidiferensial) or the inverse operation of the differential.
If 𝐹(𝑥) is general function y that is common 𝐹′
(𝑥) = 𝑓(𝑥), then 𝐹(𝑥) is antiderivative
or integral of 𝑓(𝑥).
Integration function 𝑓(𝑥) with respect to 𝑥 is denoted as follows:
∫ 𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑥) + 𝑐
With :
∫ = integration
𝑓(𝑥) = function integration
𝐹(𝑥) = integration common function
𝑐 = constanta
Now, consider the derivative of the following functions ;
𝑔1(𝑥) = 𝑥, be obtained 𝑔1′(𝑥) = 1
So, if 𝑔1′(𝑥) = 1,then 𝑔1(𝑥) = ∫ 𝑔1
′ (𝑥) 𝑑𝑥 = 𝑥 + 𝑐
𝑔2(𝑥) =
1
2
𝑥2
, be obtained 𝑔2′(𝑥) = 𝑥
So,if 𝑔2′(𝑥) = 𝑥, then 𝑔2(𝑥) = ∫ 𝑔2
′ (𝑥) 𝑑𝑥 =
1
2
𝑥2
+ 𝑐
𝑔3(𝑥) =
1
3
𝑥3
, be obtained 𝑔3′(𝑥) = 𝑥
So,if 𝑔3′(𝑥) = 𝑥, then 𝑔3(𝑥) = ∫ 𝑔3 ′(𝑥) 𝑑𝑥 =
1
3
𝑥3
+ 𝑐
𝑔4(𝑥) =
1
6
𝑥6
,be obtained 𝑔4′(𝑥) = 𝑥5
So,if 𝑔4′(𝑥) = 𝑥5
, then 𝑔4(𝑥) = ∫ 𝑔4 ′(𝑥) 𝑑𝑥 =
1
6
𝑥6
+ 𝑐
Of this description, it appears that if 𝑔′(𝑥) = 𝑥 𝑛
, then 𝑔(𝑥) =
1
𝑛+1
𝑥 𝑛+1
+ 𝑐 or
can be written ∫ 𝑥 𝑛
𝑑𝑥 =
1
𝑛+1
𝑥 𝑛+1
+ 𝑐, 𝑛 ≠ −1.
For example, the derivative function 𝑓(𝑥) = 3𝑥3
+ 𝑐 is 𝑓′(𝑥) = 9𝑥2
.
This means, antiderivative of 𝑓′(𝑥) = 9𝑥2
is 𝑓(𝑥) = 3𝑥3
+ 𝑐 or written ∫ 𝑓′(𝑥)𝑑𝑥 = 3𝑥2
+ 𝑐.
This description illustrates the following relationship.
If 𝑓′(𝑥) = 𝑥 𝑛
,then 𝑓(𝑥) =
1
𝑛+1
𝑥 𝑛+1
+ 𝑐 , 𝑛 ≠ −1, with c is a constant.
Example:
1. Find the derivative of each of the following functions :
Answers:
2. Find the antiderivative x if known:
Answers:
B. Indefinite Integrals
In the previous part, you have known that the integral is an antiderivative. So, if there
is a function F(x) that can differential at intervals [𝑎, 𝑏] so that
𝑑(𝐹(𝑥))
𝑑𝑥
= 𝑓(𝑥),the
antiderivative of f (x) is F (x) + c.
Mathematically, written
∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝑐
where,∫ 𝑑𝑥 = symbol of stated integral antiderivative operation
f(x) = integrand functions, namely functions which sought antiderivative
c = constant
For example, you can write
Because,
So you can look at indefinite integral as representatives of the whole family of functions (one
antiderivative for each value constant c. The definition can be used to prove
the following theorems which will help in the execution of arithmetic
integrals.
Theorem 1
If n is a rational number and n ≠ −1,then ∫ 𝑥 𝑛
𝑑𝑥 =
1
𝑛+1
𝑥 𝑛+1
+ 𝑐 where
c is a constant.
Theorem 2
If f the integral function and k is a constant, then ∫ k f(x) dx = k ∫ f (x) dx
Theorem 3
If f and g is integral functions, then ∫ (𝑓(𝑥) + 𝑔(𝑥))𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥
Theorem 4
If f and g is integral functions, then ∫ (𝑓(𝑥) − 𝑔(𝑥))𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 − ∫ 𝑔(𝑥)𝑑𝑥
Theorem 5
Substitution Integrals Rule
If u is a function which can differential and r is a numbers which no zero, then
∫ (𝑢(𝑥))
𝑟
𝑢′(𝑥)𝑑𝑥 =
1
𝑛+1
(𝑢(𝑥))
𝑟+1
+ 𝑐, where c is a constant and r≠ −1
Theorem 6
Partial Integrals Rule
If u and v is a functions which can differential, then∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫𝑣 𝑑𝑢
Theorem 7
Trigonometri Integrals Rule
 ∫ 𝑠𝑖𝑛 𝑑𝑥 = −cos 𝑥 + 𝑐
 ∫ 𝑐𝑜𝑠 𝑑𝑥 = sin 𝑥 + 𝑐
 ∫
1
𝑐𝑜𝑠2 𝑥
𝑑𝑥 = tan 𝑥 + 𝑐
Where c is a constant
Prove Theorem 1
For prove theorem 1,we can differential 𝑥 𝑛+1
+ 𝑐 which be found at right space the
following ;
𝑑
𝑑𝑥
(𝑥 𝑛+1
+ 𝑐) = (𝑛 + 1)𝑥 𝑛
… . 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑡𝑤𝑜 𝑠𝑝𝑎𝑐𝑒 𝑤𝑖𝑡ℎ
1
𝑛 + 1
1
𝑛 + 1
.
𝑑
𝑑𝑥
(𝑥 𝑛+1
+ 𝑐) = (𝑛 + 1)𝑥 𝑛
.
1
𝑛 + 1
𝑑
𝑑𝑥
[
𝑥 𝑛+1
𝑛 + 1
+ 𝑐] = 𝑥 𝑛
So, ∫ 𝑥 𝑛
𝑑𝑥 =
1
𝑛+1
𝑥 𝑛+1
+ 𝑐
Prove Theorem 3 and 4
For prove theorem 4,we can differential ∫ 𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥which be found at right
space the following ;
𝑑
𝑑𝑥
∫ 𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥 =
𝑑
𝑑𝑥
[∫ 𝑓(𝑥)𝑑𝑥] ± [∫ 𝑔(𝑥)𝑑𝑥] = 𝑓(𝑥) ± 𝑔(𝑥)
𝑑
𝑑𝑥
∫ 𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥 = 𝑓(𝑥) ± 𝑔(𝑥)
So,
∫ (𝑓(𝑥) ± 𝑔(𝑥))𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥
1. Find integral from ∫ (3𝑥2
− 3𝑥 + 7)𝑑𝑥!
Answers:
∫ (3𝑥2
− 3𝑥 + 7)𝑑𝑥 = 3∫ 𝑥2
𝑑𝑥 − 3∫ 𝑥 𝑑𝑥 + ∫ 7 𝑑𝑥 theorema 2,3 and 4
=
3
2+1
𝑥2+1
−
3
1+1
𝑥1+1
+ 7𝑥 + 𝑐 theorem 1
= 𝑥3
−
3
2
𝑥2
+ 7𝑥 + 𝑐
So, ∫ (3𝑥2
− 3𝑥 + 7)𝑑𝑥 = 𝑥3
−
3
2
𝑥2
+ 7𝑥 + 𝑐
Prove Theorem 6
In the class XI, you have know derivative of two times product of functions 𝑓(𝑥) =
𝑢(𝑥). 𝑣(𝑥) is
𝑑
𝑑𝑥
[𝑢(𝑥). 𝑣(𝑥)] = 𝑢(𝑥). 𝑣′(𝑥) + 𝑣(𝑥). 𝑣′
(𝑥)
It will prove that partial integral rule with formula them. Method them is with differential
two equation it the following :
∫
𝑑
𝑑𝑥
[𝑢(𝑥). 𝑣(𝑥)] = ∫ 𝑢(𝑥). 𝑣′(𝑥) + ∫ 𝑣(𝑥). 𝑣′
(𝑥)𝑑𝑥
𝑢(𝑥). 𝑣(𝑥) = ∫ 𝑢(𝑥). 𝑣′(𝑥) + ∫ 𝑣(𝑥). 𝑣′
(𝑥)dx
∫ 𝑢(𝑥). 𝑣′(𝑥) = 𝑢(𝑥). 𝑣(𝑥) − ∫ 𝑣(𝑥). 𝑣′
(𝑥)dx
Because v’(x) dx= dv and u’(x)dx=du
So,the equation can be written ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫𝑣 𝑑𝑢
B.1 Substitution Integral Rule
Substitution Integral Rule is like which be written at Theorem 5. This rule was used
for to solve the problem in integration which not can to solve with base formulas what
already learn. For remainder it, example the following it
Example ;
1. Find the integral from
Answers;
a. Supposing that: u=9-x2
then du =-2x dx
So,
b. Supposing that u= √ 𝑥 =𝑥
1
2
with the result that
c. Supposing that u= 1- 2x2
and du = -4x dx
dx =
𝑑𝑢
−4𝑥
so the integral can be written the following
Substitution u= 1- 2x2
to equation 12u-3
+ c
So,
Prove theorem 7
In the class XI, you have learn derivative trigonometric function, is
𝑑
𝑑𝑥
(sin 𝑥) = cos 𝑥
𝑑
𝑑𝑥
(cos 𝑥) = −sin 𝑥 ,and
𝑑
𝑑𝑥
(tan 𝑥) = 𝑠𝑒𝑐2
𝑥
The following this we can prove trigonometric integral rule to use formulas. This method is
with integration two space the following;
From
𝑑
𝑑𝑥
(sin 𝑥) = cos 𝑥 be found∫ 𝑐𝑜𝑠 𝑑𝑥 = sin 𝑥 + 𝑐
From
𝑑
𝑑𝑥
(cos 𝑥) = −sin 𝑥 𝑏𝑒 𝑓𝑜𝑢𝑛𝑑 ∫ 𝑠𝑖𝑛 𝑑𝑥 = −cos 𝑥 + 𝑐
From
𝑑
𝑑𝑥
(tan 𝑥) = 𝑠𝑒𝑐2
𝑥 be found ∫ 𝑠𝑒𝑐2
𝑑𝑥 = tan 𝑥 + 𝑐
B.2 space integral with √𝒂 𝟐 − 𝒙 𝟐, √𝒂 𝟐 + 𝒙 𝟐 and √𝒙 𝟐 + 𝒂 𝟐
Integration spaces √𝑎2 − 𝑥2, √𝑎2 + 𝑥2 and √𝑥2 + 𝑎2 can be work with substitution with x =
a sin t, x= a tan t, x = a sec t. So can be found spaces the following it ;
Right angle for integral trigonometric substitution;
(𝑖)√𝑎2 − 𝑥2 = 𝑎 cos 𝑥, (𝑖𝑖)√𝑎2 + 𝑥2 = 𝑎 sec 𝑡, (𝑖𝑖𝑖)√𝑥2 − 𝑎2 =a tan x
1. Find each integral the following it:
Answers:
For to work this integral, you must change sin(3x+1)cos(3x+1) in the double angle
trigonometric formulas

More Related Content

What's hot

Sistem bilangan bulat (ma kul teori bilangan)
Sistem bilangan bulat (ma kul teori bilangan)Sistem bilangan bulat (ma kul teori bilangan)
Sistem bilangan bulat (ma kul teori bilangan)Ig Fandy Jayanto
 
PPT TEOREMA SISA DAN TEOREMA FAKTOR
PPT TEOREMA SISA DAN TEOREMA FAKTORPPT TEOREMA SISA DAN TEOREMA FAKTOR
PPT TEOREMA SISA DAN TEOREMA FAKTORtrisno direction
 
Matematika Diskrit - 05 rekursi dan relasi rekurens - 03
Matematika Diskrit - 05 rekursi dan relasi rekurens  - 03Matematika Diskrit - 05 rekursi dan relasi rekurens  - 03
Matematika Diskrit - 05 rekursi dan relasi rekurens - 03KuliahKita
 
Bilangan kompleks lengkap
Bilangan kompleks lengkapBilangan kompleks lengkap
Bilangan kompleks lengkapagus_budiarto
 
Penggunaan persamaan dan pertidaksamaan kuadrat
Penggunaan persamaan dan pertidaksamaan kuadratPenggunaan persamaan dan pertidaksamaan kuadrat
Penggunaan persamaan dan pertidaksamaan kuadratRossiana Fazri
 
Modul 2 keterbagian bilangan bulat
Modul 2   keterbagian bilangan bulatModul 2   keterbagian bilangan bulat
Modul 2 keterbagian bilangan bulatAcika Karunila
 
Vektor, Aljabar Linier
Vektor, Aljabar LinierVektor, Aljabar Linier
Vektor, Aljabar LinierSartiniNuha
 
PPT Persamaan garis singgung lingkaran
PPT Persamaan garis singgung lingkaranPPT Persamaan garis singgung lingkaran
PPT Persamaan garis singgung lingkarantrisno direction
 
Makalah Persamaan Deferensial NON EKSAK
Makalah Persamaan Deferensial NON EKSAKMakalah Persamaan Deferensial NON EKSAK
Makalah Persamaan Deferensial NON EKSAKRaden Ilyas
 
Bab 9. Teknik Pengintegralan ( Kalkulus 1 )
Bab 9. Teknik Pengintegralan ( Kalkulus 1 )Bab 9. Teknik Pengintegralan ( Kalkulus 1 )
Bab 9. Teknik Pengintegralan ( Kalkulus 1 )Kelinci Coklat
 
Kalkulus 2 bab. Aplikasi Integral Rangkap Dua (Menghitung Pusat Massa)
Kalkulus 2 bab. Aplikasi Integral Rangkap Dua (Menghitung Pusat Massa)Kalkulus 2 bab. Aplikasi Integral Rangkap Dua (Menghitung Pusat Massa)
Kalkulus 2 bab. Aplikasi Integral Rangkap Dua (Menghitung Pusat Massa)Neria Yovita
 
Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...
Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...
Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...Onggo Wiryawan
 
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3Arvina Frida Karela
 

What's hot (20)

Sistem bilangan bulat (ma kul teori bilangan)
Sistem bilangan bulat (ma kul teori bilangan)Sistem bilangan bulat (ma kul teori bilangan)
Sistem bilangan bulat (ma kul teori bilangan)
 
Grup siklik
Grup siklikGrup siklik
Grup siklik
 
PPT TEOREMA SISA DAN TEOREMA FAKTOR
PPT TEOREMA SISA DAN TEOREMA FAKTORPPT TEOREMA SISA DAN TEOREMA FAKTOR
PPT TEOREMA SISA DAN TEOREMA FAKTOR
 
Matematika Diskrit - 05 rekursi dan relasi rekurens - 03
Matematika Diskrit - 05 rekursi dan relasi rekurens  - 03Matematika Diskrit - 05 rekursi dan relasi rekurens  - 03
Matematika Diskrit - 05 rekursi dan relasi rekurens - 03
 
1 Bilangan Kompleks
1 Bilangan Kompleks1 Bilangan Kompleks
1 Bilangan Kompleks
 
Aturan rantai 2 variable
Aturan rantai 2 variableAturan rantai 2 variable
Aturan rantai 2 variable
 
Fungsi Pembangkit
Fungsi PembangkitFungsi Pembangkit
Fungsi Pembangkit
 
Bilangan kompleks lengkap
Bilangan kompleks lengkapBilangan kompleks lengkap
Bilangan kompleks lengkap
 
Calculus 2 pertemuan 1
Calculus 2 pertemuan 1Calculus 2 pertemuan 1
Calculus 2 pertemuan 1
 
Penggunaan persamaan dan pertidaksamaan kuadrat
Penggunaan persamaan dan pertidaksamaan kuadratPenggunaan persamaan dan pertidaksamaan kuadrat
Penggunaan persamaan dan pertidaksamaan kuadrat
 
Modul 2 keterbagian bilangan bulat
Modul 2   keterbagian bilangan bulatModul 2   keterbagian bilangan bulat
Modul 2 keterbagian bilangan bulat
 
Grup permutasi
Grup permutasiGrup permutasi
Grup permutasi
 
Vektor, Aljabar Linier
Vektor, Aljabar LinierVektor, Aljabar Linier
Vektor, Aljabar Linier
 
PPT Persamaan garis singgung lingkaran
PPT Persamaan garis singgung lingkaranPPT Persamaan garis singgung lingkaran
PPT Persamaan garis singgung lingkaran
 
Makalah Persamaan Deferensial NON EKSAK
Makalah Persamaan Deferensial NON EKSAKMakalah Persamaan Deferensial NON EKSAK
Makalah Persamaan Deferensial NON EKSAK
 
Bab 9. Teknik Pengintegralan ( Kalkulus 1 )
Bab 9. Teknik Pengintegralan ( Kalkulus 1 )Bab 9. Teknik Pengintegralan ( Kalkulus 1 )
Bab 9. Teknik Pengintegralan ( Kalkulus 1 )
 
Kalkulus 2 bab. Aplikasi Integral Rangkap Dua (Menghitung Pusat Massa)
Kalkulus 2 bab. Aplikasi Integral Rangkap Dua (Menghitung Pusat Massa)Kalkulus 2 bab. Aplikasi Integral Rangkap Dua (Menghitung Pusat Massa)
Kalkulus 2 bab. Aplikasi Integral Rangkap Dua (Menghitung Pusat Massa)
 
Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...
Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...
Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...
 
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.3
 
Prinsip Inklusi dan Eksklusi
Prinsip Inklusi dan EksklusiPrinsip Inklusi dan Eksklusi
Prinsip Inklusi dan Eksklusi
 

Viewers also liked

Strategi Belajar Mengajar Matematika
Strategi Belajar Mengajar MatematikaStrategi Belajar Mengajar Matematika
Strategi Belajar Mengajar MatematikaMasdariaS
 
15205061 (klp 3)
15205061 (klp 3)15205061 (klp 3)
15205061 (klp 3)mamogi
 
strategi pembelajaran matematika
strategi pembelajaran matematikastrategi pembelajaran matematika
strategi pembelajaran matematikamely melyrismawati
 
Kuliah5 strategi pengajaran & pembelajaran
Kuliah5 strategi pengajaran & pembelajaranKuliah5 strategi pengajaran & pembelajaran
Kuliah5 strategi pengajaran & pembelajaranKamarudin Jaafar
 

Viewers also liked (7)

ppt
pptppt
ppt
 
Strategi Belajar Mengajar Matematika
Strategi Belajar Mengajar MatematikaStrategi Belajar Mengajar Matematika
Strategi Belajar Mengajar Matematika
 
15205061 (klp 3)
15205061 (klp 3)15205061 (klp 3)
15205061 (klp 3)
 
Penerapan Model Kooperatif Tipe TPS dalam Pembelajaran Matematika Pokok Bahas...
Penerapan Model Kooperatif Tipe TPS dalam Pembelajaran Matematika Pokok Bahas...Penerapan Model Kooperatif Tipe TPS dalam Pembelajaran Matematika Pokok Bahas...
Penerapan Model Kooperatif Tipe TPS dalam Pembelajaran Matematika Pokok Bahas...
 
strategi pembelajaran matematika
strategi pembelajaran matematikastrategi pembelajaran matematika
strategi pembelajaran matematika
 
Kuliah5 strategi pengajaran & pembelajaran
Kuliah5 strategi pengajaran & pembelajaranKuliah5 strategi pengajaran & pembelajaran
Kuliah5 strategi pengajaran & pembelajaran
 
MODEL-MODEL PENGAJARAN
MODEL-MODEL PENGAJARANMODEL-MODEL PENGAJARAN
MODEL-MODEL PENGAJARAN
 

Similar to Understanding Integration Through Derivatives

BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesIOSR Journals
 
Solutions of AHSEC Mathematics Paper 2015
Solutions of AHSEC Mathematics Paper 2015Solutions of AHSEC Mathematics Paper 2015
Solutions of AHSEC Mathematics Paper 2015Nayanmani Sarma
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
 
01. integral fungsi aljabar
01. integral fungsi aljabar01. integral fungsi aljabar
01. integral fungsi aljabarHirwanto Iwan
 
Basic mathematics integration
Basic mathematics integrationBasic mathematics integration
Basic mathematics integrationMuhammad Luthfan
 
Moudule9 the fundamental theorem of calculus
Moudule9 the fundamental theorem of calculusMoudule9 the fundamental theorem of calculus
Moudule9 the fundamental theorem of calculusREYEMMANUELILUMBA
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Март
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxjyotidighole2
 
Interpolation In Numerical Methods.
 Interpolation In Numerical Methods. Interpolation In Numerical Methods.
Interpolation In Numerical Methods.Abu Kaisar
 
Differentiation (Part 1).pptx
Differentiation (Part 1).pptxDifferentiation (Part 1).pptx
Differentiation (Part 1).pptxSakibAhmed402053
 
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdfConcepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdfJacobBraginsky
 

Similar to Understanding Integration Through Derivatives (20)

BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
Integration
IntegrationIntegration
Integration
 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
 
Solutions of AHSEC Mathematics Paper 2015
Solutions of AHSEC Mathematics Paper 2015Solutions of AHSEC Mathematics Paper 2015
Solutions of AHSEC Mathematics Paper 2015
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
01. integral fungsi aljabar
01. integral fungsi aljabar01. integral fungsi aljabar
01. integral fungsi aljabar
 
Basic mathematics integration
Basic mathematics integrationBasic mathematics integration
Basic mathematics integration
 
Moudule9 the fundamental theorem of calculus
Moudule9 the fundamental theorem of calculusMoudule9 the fundamental theorem of calculus
Moudule9 the fundamental theorem of calculus
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
 
Interpolation In Numerical Methods.
 Interpolation In Numerical Methods. Interpolation In Numerical Methods.
Interpolation In Numerical Methods.
 
MT102 Лекц 4
MT102 Лекц 4MT102 Лекц 4
MT102 Лекц 4
 
Differentiation (Part 1).pptx
Differentiation (Part 1).pptxDifferentiation (Part 1).pptx
Differentiation (Part 1).pptx
 
C0560913
C0560913C0560913
C0560913
 
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdfConcepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf
 

Recently uploaded

Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 

Recently uploaded (20)

Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 

Understanding Integration Through Derivatives

  • 1. A. Definition of Integration In Class XI, you have learned the concept of derivative. Comprehension on the derivative concept you can use to understand integration concept. For that, try to determine the following derivative functions:  𝑓1(𝑥) = 3𝑥3 + 3  𝑓2(𝑥) = 3𝑥3 + 7  𝑓3(𝑥) = 3𝑥3 − 1  𝑓4(𝑥) = 3𝑥3 − 10  𝑓5(𝑥) = 3𝑥3 − 99 Note that these functions have the general form , 𝑓(𝑥) = 3𝑥3 + 𝑐 with c is constant. Each function has a derivative 𝑓′(𝑥) = 9𝑥2 . Thus, the derivative function 𝑓(𝑥) = 3𝑥3 + 𝑐 is 𝑓′(𝑥) = 9𝑥2 . Now,what if you have to define the function 𝑓(𝑥) of 𝑓′(𝑥) is known?Determine the function 𝑓(𝑥) from 𝑓′(𝑥), means determining antiderivative of 𝑓′(𝑥). Thus, the integration is the antiderivative (Antidiferensial) or the inverse operation of the differential. If 𝐹(𝑥) is general function y that is common 𝐹′ (𝑥) = 𝑓(𝑥), then 𝐹(𝑥) is antiderivative or integral of 𝑓(𝑥). Integration function 𝑓(𝑥) with respect to 𝑥 is denoted as follows: ∫ 𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑥) + 𝑐 With : ∫ = integration 𝑓(𝑥) = function integration 𝐹(𝑥) = integration common function 𝑐 = constanta Now, consider the derivative of the following functions ; 𝑔1(𝑥) = 𝑥, be obtained 𝑔1′(𝑥) = 1 So, if 𝑔1′(𝑥) = 1,then 𝑔1(𝑥) = ∫ 𝑔1 ′ (𝑥) 𝑑𝑥 = 𝑥 + 𝑐 𝑔2(𝑥) = 1 2 𝑥2 , be obtained 𝑔2′(𝑥) = 𝑥 So,if 𝑔2′(𝑥) = 𝑥, then 𝑔2(𝑥) = ∫ 𝑔2 ′ (𝑥) 𝑑𝑥 = 1 2 𝑥2 + 𝑐 𝑔3(𝑥) = 1 3 𝑥3 , be obtained 𝑔3′(𝑥) = 𝑥 So,if 𝑔3′(𝑥) = 𝑥, then 𝑔3(𝑥) = ∫ 𝑔3 ′(𝑥) 𝑑𝑥 = 1 3 𝑥3 + 𝑐
  • 2. 𝑔4(𝑥) = 1 6 𝑥6 ,be obtained 𝑔4′(𝑥) = 𝑥5 So,if 𝑔4′(𝑥) = 𝑥5 , then 𝑔4(𝑥) = ∫ 𝑔4 ′(𝑥) 𝑑𝑥 = 1 6 𝑥6 + 𝑐 Of this description, it appears that if 𝑔′(𝑥) = 𝑥 𝑛 , then 𝑔(𝑥) = 1 𝑛+1 𝑥 𝑛+1 + 𝑐 or can be written ∫ 𝑥 𝑛 𝑑𝑥 = 1 𝑛+1 𝑥 𝑛+1 + 𝑐, 𝑛 ≠ −1. For example, the derivative function 𝑓(𝑥) = 3𝑥3 + 𝑐 is 𝑓′(𝑥) = 9𝑥2 . This means, antiderivative of 𝑓′(𝑥) = 9𝑥2 is 𝑓(𝑥) = 3𝑥3 + 𝑐 or written ∫ 𝑓′(𝑥)𝑑𝑥 = 3𝑥2 + 𝑐. This description illustrates the following relationship. If 𝑓′(𝑥) = 𝑥 𝑛 ,then 𝑓(𝑥) = 1 𝑛+1 𝑥 𝑛+1 + 𝑐 , 𝑛 ≠ −1, with c is a constant. Example: 1. Find the derivative of each of the following functions : Answers: 2. Find the antiderivative x if known: Answers:
  • 3. B. Indefinite Integrals In the previous part, you have known that the integral is an antiderivative. So, if there is a function F(x) that can differential at intervals [𝑎, 𝑏] so that 𝑑(𝐹(𝑥)) 𝑑𝑥 = 𝑓(𝑥),the antiderivative of f (x) is F (x) + c. Mathematically, written ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝑐 where,∫ 𝑑𝑥 = symbol of stated integral antiderivative operation f(x) = integrand functions, namely functions which sought antiderivative c = constant For example, you can write Because, So you can look at indefinite integral as representatives of the whole family of functions (one antiderivative for each value constant c. The definition can be used to prove the following theorems which will help in the execution of arithmetic integrals. Theorem 1 If n is a rational number and n ≠ −1,then ∫ 𝑥 𝑛 𝑑𝑥 = 1 𝑛+1 𝑥 𝑛+1 + 𝑐 where c is a constant. Theorem 2 If f the integral function and k is a constant, then ∫ k f(x) dx = k ∫ f (x) dx Theorem 3 If f and g is integral functions, then ∫ (𝑓(𝑥) + 𝑔(𝑥))𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 Theorem 4 If f and g is integral functions, then ∫ (𝑓(𝑥) − 𝑔(𝑥))𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 − ∫ 𝑔(𝑥)𝑑𝑥 Theorem 5 Substitution Integrals Rule If u is a function which can differential and r is a numbers which no zero, then ∫ (𝑢(𝑥)) 𝑟 𝑢′(𝑥)𝑑𝑥 = 1 𝑛+1 (𝑢(𝑥)) 𝑟+1 + 𝑐, where c is a constant and r≠ −1
  • 4. Theorem 6 Partial Integrals Rule If u and v is a functions which can differential, then∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫𝑣 𝑑𝑢 Theorem 7 Trigonometri Integrals Rule  ∫ 𝑠𝑖𝑛 𝑑𝑥 = −cos 𝑥 + 𝑐  ∫ 𝑐𝑜𝑠 𝑑𝑥 = sin 𝑥 + 𝑐  ∫ 1 𝑐𝑜𝑠2 𝑥 𝑑𝑥 = tan 𝑥 + 𝑐 Where c is a constant Prove Theorem 1 For prove theorem 1,we can differential 𝑥 𝑛+1 + 𝑐 which be found at right space the following ; 𝑑 𝑑𝑥 (𝑥 𝑛+1 + 𝑐) = (𝑛 + 1)𝑥 𝑛 … . 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑡𝑤𝑜 𝑠𝑝𝑎𝑐𝑒 𝑤𝑖𝑡ℎ 1 𝑛 + 1 1 𝑛 + 1 . 𝑑 𝑑𝑥 (𝑥 𝑛+1 + 𝑐) = (𝑛 + 1)𝑥 𝑛 . 1 𝑛 + 1 𝑑 𝑑𝑥 [ 𝑥 𝑛+1 𝑛 + 1 + 𝑐] = 𝑥 𝑛 So, ∫ 𝑥 𝑛 𝑑𝑥 = 1 𝑛+1 𝑥 𝑛+1 + 𝑐 Prove Theorem 3 and 4 For prove theorem 4,we can differential ∫ 𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥which be found at right space the following ; 𝑑 𝑑𝑥 ∫ 𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥 = 𝑑 𝑑𝑥 [∫ 𝑓(𝑥)𝑑𝑥] ± [∫ 𝑔(𝑥)𝑑𝑥] = 𝑓(𝑥) ± 𝑔(𝑥) 𝑑 𝑑𝑥 ∫ 𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥 = 𝑓(𝑥) ± 𝑔(𝑥) So, ∫ (𝑓(𝑥) ± 𝑔(𝑥))𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥 1. Find integral from ∫ (3𝑥2 − 3𝑥 + 7)𝑑𝑥! Answers: ∫ (3𝑥2 − 3𝑥 + 7)𝑑𝑥 = 3∫ 𝑥2 𝑑𝑥 − 3∫ 𝑥 𝑑𝑥 + ∫ 7 𝑑𝑥 theorema 2,3 and 4 = 3 2+1 𝑥2+1 − 3 1+1 𝑥1+1 + 7𝑥 + 𝑐 theorem 1
  • 5. = 𝑥3 − 3 2 𝑥2 + 7𝑥 + 𝑐 So, ∫ (3𝑥2 − 3𝑥 + 7)𝑑𝑥 = 𝑥3 − 3 2 𝑥2 + 7𝑥 + 𝑐 Prove Theorem 6 In the class XI, you have know derivative of two times product of functions 𝑓(𝑥) = 𝑢(𝑥). 𝑣(𝑥) is 𝑑 𝑑𝑥 [𝑢(𝑥). 𝑣(𝑥)] = 𝑢(𝑥). 𝑣′(𝑥) + 𝑣(𝑥). 𝑣′ (𝑥) It will prove that partial integral rule with formula them. Method them is with differential two equation it the following : ∫ 𝑑 𝑑𝑥 [𝑢(𝑥). 𝑣(𝑥)] = ∫ 𝑢(𝑥). 𝑣′(𝑥) + ∫ 𝑣(𝑥). 𝑣′ (𝑥)𝑑𝑥 𝑢(𝑥). 𝑣(𝑥) = ∫ 𝑢(𝑥). 𝑣′(𝑥) + ∫ 𝑣(𝑥). 𝑣′ (𝑥)dx ∫ 𝑢(𝑥). 𝑣′(𝑥) = 𝑢(𝑥). 𝑣(𝑥) − ∫ 𝑣(𝑥). 𝑣′ (𝑥)dx Because v’(x) dx= dv and u’(x)dx=du So,the equation can be written ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫𝑣 𝑑𝑢 B.1 Substitution Integral Rule Substitution Integral Rule is like which be written at Theorem 5. This rule was used for to solve the problem in integration which not can to solve with base formulas what already learn. For remainder it, example the following it Example ; 1. Find the integral from Answers; a. Supposing that: u=9-x2 then du =-2x dx
  • 6. So, b. Supposing that u= √ 𝑥 =𝑥 1 2 with the result that c. Supposing that u= 1- 2x2 and du = -4x dx dx = 𝑑𝑢 −4𝑥 so the integral can be written the following Substitution u= 1- 2x2 to equation 12u-3 + c
  • 7. So, Prove theorem 7 In the class XI, you have learn derivative trigonometric function, is 𝑑 𝑑𝑥 (sin 𝑥) = cos 𝑥 𝑑 𝑑𝑥 (cos 𝑥) = −sin 𝑥 ,and 𝑑 𝑑𝑥 (tan 𝑥) = 𝑠𝑒𝑐2 𝑥 The following this we can prove trigonometric integral rule to use formulas. This method is with integration two space the following; From 𝑑 𝑑𝑥 (sin 𝑥) = cos 𝑥 be found∫ 𝑐𝑜𝑠 𝑑𝑥 = sin 𝑥 + 𝑐 From 𝑑 𝑑𝑥 (cos 𝑥) = −sin 𝑥 𝑏𝑒 𝑓𝑜𝑢𝑛𝑑 ∫ 𝑠𝑖𝑛 𝑑𝑥 = −cos 𝑥 + 𝑐 From 𝑑 𝑑𝑥 (tan 𝑥) = 𝑠𝑒𝑐2 𝑥 be found ∫ 𝑠𝑒𝑐2 𝑑𝑥 = tan 𝑥 + 𝑐 B.2 space integral with √𝒂 𝟐 − 𝒙 𝟐, √𝒂 𝟐 + 𝒙 𝟐 and √𝒙 𝟐 + 𝒂 𝟐 Integration spaces √𝑎2 − 𝑥2, √𝑎2 + 𝑥2 and √𝑥2 + 𝑎2 can be work with substitution with x = a sin t, x= a tan t, x = a sec t. So can be found spaces the following it ;
  • 8. Right angle for integral trigonometric substitution; (𝑖)√𝑎2 − 𝑥2 = 𝑎 cos 𝑥, (𝑖𝑖)√𝑎2 + 𝑥2 = 𝑎 sec 𝑡, (𝑖𝑖𝑖)√𝑥2 − 𝑎2 =a tan x 1. Find each integral the following it: Answers: For to work this integral, you must change sin(3x+1)cos(3x+1) in the double angle trigonometric formulas