SlideShare a Scribd company logo
1 of 9
Download to read offline
1
Concepts and Applications of the
Fundamental Theorem of Line Integrals
Samson Axelrod, Jacob Braginsky, Pranav Dwarakanath, Param Thakkar
May 7, 2023
The Fundamental Theorem of Line Integrals
Section 1.1
Introduction to the Fundamental Theorem of Line Integrals
Background Information: Gradient Fields and Path Independence
Understanding gradient fields is essential in order to apply the Fundamental Theorem of Line Integrals.
Consider , a continuous vector field that satisfies = โˆ‡ . This scalar-valued function is known as the
๐น
โ†’
๐น
โ†’
๐‘“ ๐‘“
potential function of . This property classifies as a conservative vector field, or a gradient field. Any
๐น
โ†’
๐น
โ†’
gradient field defined on an open, connected domain will produce path-independent line integrals. This means
that
d = d
๐ถ1
โˆซ๐น
โ†’
ยท ๐‘ 
โ†’
๐ถ2
โˆซ๐น
โ†’
ยท ๐‘ 
โ†’
for any two piecewise-smooth curves C1 and C2 with the same start and end points. It is important that these
curves are defined on the domain of .
๐น
โ†’
Defining the Fundamental Theorem of Line Integrals
Let and = โˆ‡ , where is continuous on a connected, open region in . On any
๐‘“: โ„
๐‘›
โ†’ โ„ ๐น
โ†’
๐‘“ ๐น
โ†’
โ„
๐‘›
piecewise-smooth curve from A to B,
๐ถ
.
๐ถ
โˆซ ๐น
โ†’
ยท ๐‘‘๐‘ 
โ†’
= ๐‘“(๐ต
โ†’
) โˆ’ ๐‘“(๐ด
โ†’
)
3
Proving the Fundamental Theorem of Line Integrals
Now we will prove the Fundamental Theorem of Line Integrals. Let and . We can use the
๐ด = ๐‘ฅ
โ†’
(ฮฑ) ๐ต = ๐‘ฅ
โ†’
(ฮฒ)
chain rule to obtain,
๐ถ
โˆซ ๐น
โ†’
ยท ๐‘‘๐‘ 
โ†’
=
ฮฑ
ฮฒ
โˆซ โˆ‡๐‘“(๐‘ฅ
โ†’
(๐‘ก)) ยท ๐‘ฅ
โ†’
'(๐‘ก)๐‘‘๐‘ก
=
ฮฑ
ฮฒ
โˆซ
๐‘‘
๐‘‘๐‘ก
[๐‘“(๐‘ฅ
โ†’
(๐‘ก))]๐‘‘๐‘ก
= ๐‘“(๐‘ฅ
โ†’
(ฮฒ)) โˆ’ ๐‘“(๐‘ฅ
โ†’
(ฮฑ))
= ๐‘“(๐ต
โ†’
) โˆ’ ๐‘“(๐ด
โ†’
).
This shows that the line integral only depends on the endpoints, making it path-independent. Path independence
is a corollary of the FTLI.
Section 1.2
Finding the Potential Function
Option 1 - The โ€œSafe Methodโ€
We begin by using the โ€œSafe Method.โ€ Define = for some and . Our goal is
๐น
โ†’ โˆ‚๐‘“
โˆ‚๐‘ฅ
,
โˆ‚๐‘“
โˆ‚๐‘ฆ
( ) ๐น
โ†’
: โ„
2
โ†’ โ„
2
๐‘“: โ„
2
โ†’ โ„
to find the function such that โˆ‡ = . Take the antiderivative of with respect to .
๐‘“ ๐‘“ ๐น
โ†’ โˆ‚๐‘“
โˆ‚๐‘ฅ
๐‘ฅ
โˆซ
โˆ‚๐‘“
โˆ‚๐‘ฅ
๐‘‘๐‘ฅ = ๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘”(๐‘ฅ, ๐‘ฆ) + ๐ถ(๐‘ฆ)
4
In the equation above, is a function of and . This โ€œintegration functionโ€ is the most important
๐ถ ๐‘ฆ, ๐‘”: โ„
2
โ†’ โ„
part of this process and can not be overlooked. Seeing that this is a function of y, if we took the derivative of
+ with respect to , would disappear. Letโ€™s move on to the next step. Take the derivative of
๐‘” ๐ถ(๐‘ฆ) ๐‘ฅ ๐ถ(๐‘ฆ)
+ with respect to . We can cross reference it with the component from the vector field to obtain
๐‘” ๐ถ(๐‘ฆ) ๐‘ฆ
โˆ‚๐‘“
โˆ‚๐‘ฆ
= = .
โˆ‚
โˆ‚๐‘ฆ
(๐‘” + ๐ถ(๐‘ฆ)) โ‡’ ๐‘”๐‘ฆ
+ ๐ถ'(๐‘ฆ)
โˆ‚๐‘“
โˆ‚๐‘ฆ
โ‡’ ๐ถ'(๐‘ฆ)
โˆ‚๐‘“
โˆ‚๐‘ฆ
โˆ’ ๐‘”๐‘ฆ
Now, we take the antiderivative of with respect to , obtaining
๐ถ'(๐‘ฆ) ๐‘ฆ
.
โˆซ๐ถ'(๐‘ฆ) ๐‘‘๐‘ฆ = ๐ถ(๐‘ฆ)
Recall back to the beginning of our process when we took the antiderivative of with respect to and got
โˆ‚๐‘“
โˆ‚๐‘ฅ
๐‘ฅ
+ . We just discovered what is, so weโ€™ve filled in the missing piece. At this point, we have
๐‘” ๐ถ(๐‘ฆ) = ๐‘“ ๐ถ(๐‘ฆ)
fully assembled the potential function. Here is an example with a defined vector field .
๐น
โ†’
= =
๐น
โ†’ โˆ‚๐‘“
โˆ‚๐‘ฅ
,
โˆ‚๐‘“
โˆ‚๐‘ฆ
( ) ๐‘ฆ cos(๐‘ฅ) + 3๐‘ฅ
2
+ 1, sin(๐‘ฅ) + 4๐‘’
4๐‘ฆ
( )
Integrate with respect to .
โˆ‚๐‘“
โˆ‚๐‘ฅ
๐‘ฅ
=
โˆซ
โˆ‚๐‘“
โˆ‚๐‘ฅ
๐‘‘๐‘ฅ โˆซ(๐‘ฆ cos(๐‘ฅ) + 3๐‘ฅ
2
+ 1) ๐‘‘๐‘ฅ
= ๐‘ฆ sin(๐‘ฅ) + ๐‘ฅ
3
+ ๐‘ฅ + ๐ถ(๐‘ฆ)
= ๐‘”(๐‘ฅ, ๐‘ฆ)
Differentiate with respect to .
๐‘”(๐‘ฅ, ๐‘ฆ) ๐‘ฆ
=
โˆ‚
โˆ‚๐‘ฆ
(๐‘”(๐‘ฅ, ๐‘ฆ))
โˆ‚
โˆ‚๐‘ฆ
(๐‘ฆ sin(๐‘ฅ) + ๐‘ฅ
3
+ ๐‘ฅ + ๐ถ(๐‘ฆ))
5
= sin(๐‘ฅ) + ๐ถ'(๐‘ฆ)
Compare the result above to .
โˆ‚๐‘“
โˆ‚๐‘ฆ
=
sin(๐‘ฅ) + ๐ถ'(๐‘ฆ)
โˆ‚๐‘“
โˆ‚๐‘ฆ
= +
sin(๐‘ฅ) + ๐ถ'(๐‘ฆ) sin(๐‘ฅ) 4๐‘’
4๐‘ฆ
=
๐ถ'(๐‘ฆ) 4๐‘’
4๐‘ฆ
Integrate with respect to to find .
๐ถ'(๐‘ฆ) = 4๐‘’
4๐‘ฆ
๐‘ฆ ๐ถ(๐‘ฆ)
โˆซ4๐‘’
4๐‘ฆ
๐‘‘๐‘ฆ = ๐‘’
4๐‘ฆ
= ๐ถ(๐‘ฆ)
Put together the scalar potential function.
๐‘“ = ๐‘ฆ sin(๐‘ฅ) + ๐‘ฅ
3
+ ๐‘ฅ + ๐‘’
4๐‘ฆ
Option 2 - The โ€œDangerous Methodโ€
We can also use the โ€œDangerous Methodโ€ to find the potential function. Weโ€™ll explain this method using an
example vector field. Define .
๐น
โ†’
(๐‘ฅ, ๐‘ฆ) = 2 cos(2๐‘ฅ) cos(๐‘ฆ) โˆ’ 1 + ๐‘ฆ๐‘’
๐‘ฅ๐‘ฆ
, โˆ’ sin(2๐‘ฅ) sin(๐‘ฆ) + ๐‘ฅ๐‘’
๐‘ฅ๐‘ฆ
+ 3๐‘ฆ
2
( )
First, we take the antiderivative of with respect to and of with respect to .
โˆ‚๐‘“
โˆ‚๐‘ฅ
๐‘ฅ
โˆ‚๐‘“
โˆ‚๐‘ฆ
๐‘ฆ
โˆซ(2 cos(2๐‘ฅ) cos(๐‘ฆ) โˆ’ 1 + ๐‘ฆ๐‘’
๐‘ฅ๐‘ฆ
) ๐‘‘๐‘ฅ = sin(2๐‘ฅ) cos(๐‘ฆ) โˆ’ ๐‘ฅ + ๐‘’
๐‘ฅ๐‘ฆ
+ ๐ถ(๐‘ฆ)
โˆซ(โˆ’ sin(2๐‘ฅ) sin(๐‘ฆ) + ๐‘ฅ๐‘’
๐‘ฅ๐‘ฆ
+ 3๐‘ฆ
2
)๐‘‘๐‘ฆ = sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’
๐‘ฅ๐‘ฆ
+ ๐‘ฆ
3
+ ๐ถ(๐‘ฅ)
Now, we compare the two antiderivatives to see what they have in common. We do this to synthesize a โ€œguessโ€
as to what the scalar potential function might be by writing down function components that both
๐‘“
antiderivatives exhibited, followed by each unique component seen in either antiderivative. In this case, both
6
antiderivatives had and with unique components being - and . Combing these gives
๐‘ ๐‘–๐‘›(2๐‘ฅ)๐‘๐‘œ๐‘ (๐‘ฆ) ๐‘’
๐‘ฅ๐‘ฆ
๐‘ฅ ๐‘ฆ
3
us
.
๐‘“ = sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’
๐‘ฅ๐‘ฆ
โˆ’ ๐‘ฅ + ๐‘ฆ
3
Next, we verify we got the correct function by confirming = .
๐‘“ โˆ‡๐‘“ ๐น
โ†’
โˆ‡ = , )
๐‘“ (
โˆ‚
โˆ‚๐‘ฅ
(sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’
๐‘ฅ๐‘ฆ
โˆ’ ๐‘ฅ + ๐‘ฆ
3
)
โˆ‚
โˆ‚๐‘ฆ
(sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’
๐‘ฅ๐‘ฆ
โˆ’ ๐‘ฅ + ๐‘ฆ
3
)
= ( )
2 cos(2๐‘ฅ) cos(๐‘ฆ) + ๐‘ฆ๐‘’
๐‘ฅ๐‘ฆ
โˆ’ 1, โˆ’ sin(2๐‘ฅ) sin(๐‘ฆ) + ๐‘ฅ๐‘’
๐‘ฅ๐‘ฆ
+ 3๐‘ฆ
2
= ๐น
โ†’
Section 1.3
FTLI Examples
A โ€œMundaneโ€ Example
Suppose we have the vector field = We wish to compute where C is any piecewise smooth
๐น
โ†’
(4๐‘ฅ
3
, 2).
๐ถ
โˆซ๐น
โ†’
ยท๐‘‘๐‘ 
โ†’
,
curve from the point (0,0) to (3,4). The first step for us is to integrate with respect to . We solve to obtain
4๐‘ฅ
3
๐‘ฅ
=
โˆซ4๐‘ฅ
3
๐‘‘๐‘ฅ ๐‘ฅ
4
+ ๐ถ(๐‘ฆ).
The next step is to integrate 2 with respect to so we then obtain
๐‘ฆ,
=
โˆซ 2 ๐‘‘๐‘ฆ 2๐‘ฆ + ๐ถ(๐‘ฅ).
7
Combining our two results, we see that We can double check our answer by computing the
๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘ฅ
4
+ 2๐‘ฆ.
gradient of .
๐‘“
โˆ‡๐‘“ = (
โˆ‚๐‘“
โˆ‚๐‘ฅ
,
โˆ‚๐‘“
โˆ‚๐‘ฆ
) = (4๐‘ฅ
3
, 2)
Now that we have checked our function we are ready to apply the Fundamental Theorem of Line Integrals
๐‘“,
and compute our integral.
๐ถ
โˆซ๐น
โ†’
ยท๐‘‘๐‘ 
โ†’
= ๐‘“(3, 4) โˆ’ ๐‘“(0, 0)
= 3
4
+ 2 ยท 4 โˆ’ 0
4
โˆ’ 0 ยท 8
= 81 + 8
= 89
For any paths from (0,0) to (3,4) to which the FTLI is applicable, for , the line integral will always be 89
๐น
โ†’
because of path-independence.
To further our understanding, let's compute an integral using the definition of line integral over a path to show
that the FTLI works and is indeed equal to what we computed. Let our first curve be where
๐‘ฅ(๐‘ก) = (3๐‘ก, 4๐‘ก),
Plugging everything in,
๐‘ก ฯต [0, 1].
0
1
โˆซ (4 ยท (3๐‘ก)
3
, 2) ยท (3, 4) ๐‘‘๐‘ก =
0
1
โˆซ 324๐‘ก
3
+ 8 ๐‘‘๐‘ก
= 81 (1)
3
+ 8 โˆ’ 81 (0)
3
+ 8 ยท 0
= 81 + 8
.
= 89
8
Thus, the Fundamental of Line Integrals indeed works as both of our computations were equal, showing that we
may use this shortcut.
Solving the Circulation Integral with FTLI
Define a gradient field on an open, connected space in , with a scalar-valued potential function . Consider
๐น
โ†’
โ„
๐‘›
๐‘“
C, a closed curve with a counterclockwise parameterization defined on the same space. Using the Fundamental
Theorem of Line Integrals, we can prove that d = 0. Points A and B lie on curve C, dividing it into two
๐ถ
โˆฎ๐น
โ†’
ยท ๐‘ 
โ†’
open curves. We label the curve traveling from A to B as C1, and the curve traveling from B to A as C2, as shown
in Fig. 1.
Since both C1 and C2 are open paths with initial and terminal points, we can apply the Fundamental Theorem of
Line Integrals to calculate the following line integrals:
9
d = (B) - (A)
๐ถ1
โˆซ ๐น
โ†’
ยท ๐‘ 
โ†’
๐‘“ ๐‘“
d = (A) - (B)
๐ถ2
โˆซ ๐น
โ†’
ยท ๐‘ 
โ†’
๐‘“ ๐‘“
Our objective is to calculate the circulation integral over C. Seeing that C1 and C2 combined form C, we
accomplish our objective by finding the sum of the line integrals over C1 and C2. Thus, we obtain
d = d + d
๐ถ
โˆฎ ๐น
โ†’
ยท ๐‘ 
โ†’
๐ถ1
โˆซ๐น
โ†’
ยท ๐‘ 
โ†’
๐ถ2
โˆซ๐น
โ†’
ยท ๐‘ 
โ†’
= (B) - (A) + (A) - (B)
๐‘“ ๐‘“ ๐‘“ ๐‘“
= 0.
The relationship between the circulation integral and the FTLI can be conceptualized using path independence.
Since we know that the line integral over a single point is zero, we can deduce that the line integral over a curve
with the same initial and terminal point is also zero, regardless of the curveโ€™s length. Thus, d = 0 for any
๐ถ
โˆฎ๐น
โ†’
ยท ๐‘ 
โ†’
closed curve C.

More Related Content

Similar to Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf

A05330107
A05330107A05330107
A05330107IOSR-JEN
ย 
Change variablethm
Change variablethmChange variablethm
Change variablethmJasonleav
ย 
Unidad i limites y continuidad
Unidad i    limites y continuidadUnidad i    limites y continuidad
Unidad i limites y continuidadJavierZerpaPerez
ย 
4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptxHappy Ladher
ย 
Slope of the Tangent Line.pptx
Slope of the Tangent Line.pptxSlope of the Tangent Line.pptx
Slope of the Tangent Line.pptxRoquiMabugayGonzaga
ย 
Differential calculus
Differential calculus  Differential calculus
Differential calculus Santhanam Krishnan
ย 
Taller grupal parcial ii nrc 3246 sebastian fueltala_kevin sรกnchez
Taller grupal parcial ii nrc 3246  sebastian fueltala_kevin sรกnchezTaller grupal parcial ii nrc 3246  sebastian fueltala_kevin sรกnchez
Taller grupal parcial ii nrc 3246 sebastian fueltala_kevin sรกnchezkevinct2001
ย 
Integrales definidas y mรฉtodo de integraciรณn por partes
Integrales definidas y mรฉtodo de integraciรณn por partesIntegrales definidas y mรฉtodo de integraciรณn por partes
Integrales definidas y mรฉtodo de integraciรณn por partescrysmari mujica
ย 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
ย 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)foxtrot jp R
ย 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbfoxtrot jp R
ย 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolftfoxtrot jp R
ย 
Basic%20Cal%20Final.docx.docx
Basic%20Cal%20Final.docx.docxBasic%20Cal%20Final.docx.docx
Basic%20Cal%20Final.docx.docxSalwaAbdulkarim1
ย 
Bc4301300308
Bc4301300308Bc4301300308
Bc4301300308IJERA Editor
ย 
Strong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodStrong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodSEMINARGROOT
ย 
Calculus academic journal (sample)
Calculus academic journal (sample)Calculus academic journal (sample)
Calculus academic journal (sample)Vincentius Soesanto
ย 

Similar to Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf (20)

A05330107
A05330107A05330107
A05330107
ย 
Change variablethm
Change variablethmChange variablethm
Change variablethm
ย 
Unidad i limites y continuidad
Unidad i    limites y continuidadUnidad i    limites y continuidad
Unidad i limites y continuidad
ย 
4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx
ย 
Slope of the Tangent Line.pptx
Slope of the Tangent Line.pptxSlope of the Tangent Line.pptx
Slope of the Tangent Line.pptx
ย 
Differential calculus
Differential calculus  Differential calculus
Differential calculus
ย 
Taller grupal parcial ii nrc 3246 sebastian fueltala_kevin sรกnchez
Taller grupal parcial ii nrc 3246  sebastian fueltala_kevin sรกnchezTaller grupal parcial ii nrc 3246  sebastian fueltala_kevin sรกnchez
Taller grupal parcial ii nrc 3246 sebastian fueltala_kevin sรกnchez
ย 
Differentiation
DifferentiationDifferentiation
Differentiation
ย 
Integrales definidas y mรฉtodo de integraciรณn por partes
Integrales definidas y mรฉtodo de integraciรณn por partesIntegrales definidas y mรฉtodo de integraciรณn por partes
Integrales definidas y mรฉtodo de integraciรณn por partes
ย 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
ย 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
ย 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdb
ย 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolft
ย 
Basic%20Cal%20Final.docx.docx
Basic%20Cal%20Final.docx.docxBasic%20Cal%20Final.docx.docx
Basic%20Cal%20Final.docx.docx
ย 
Bc4301300308
Bc4301300308Bc4301300308
Bc4301300308
ย 
Strong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodStrong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's method
ย 
Calculus academic journal (sample)
Calculus academic journal (sample)Calculus academic journal (sample)
Calculus academic journal (sample)
ย 
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
ย 
E04 06 3943
E04 06 3943E04 06 3943
E04 06 3943
ย 
doc
docdoc
doc
ย 

Recently uploaded

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
ย 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
ย 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
ย 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
ย 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
ย 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
ย 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
ย 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
ย 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
ย 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
ย 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
ย 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
ย 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
ย 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
ย 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
ย 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
ย 

Recently uploaded (20)

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
ย 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
ย 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
ย 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
ย 
Cรณdigo Creativo y Arte de Software | Unidad 1
Cรณdigo Creativo y Arte de Software | Unidad 1Cรณdigo Creativo y Arte de Software | Unidad 1
Cรณdigo Creativo y Arte de Software | Unidad 1
ย 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
ย 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
ย 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ย 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
ย 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
ย 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
ย 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
ย 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
ย 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
ย 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
ย 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
ย 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
ย 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
ย 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
ย 

Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf

  • 1. 1 Concepts and Applications of the Fundamental Theorem of Line Integrals Samson Axelrod, Jacob Braginsky, Pranav Dwarakanath, Param Thakkar May 7, 2023
  • 2. The Fundamental Theorem of Line Integrals Section 1.1 Introduction to the Fundamental Theorem of Line Integrals Background Information: Gradient Fields and Path Independence Understanding gradient fields is essential in order to apply the Fundamental Theorem of Line Integrals. Consider , a continuous vector field that satisfies = โˆ‡ . This scalar-valued function is known as the ๐น โ†’ ๐น โ†’ ๐‘“ ๐‘“ potential function of . This property classifies as a conservative vector field, or a gradient field. Any ๐น โ†’ ๐น โ†’ gradient field defined on an open, connected domain will produce path-independent line integrals. This means that d = d ๐ถ1 โˆซ๐น โ†’ ยท ๐‘  โ†’ ๐ถ2 โˆซ๐น โ†’ ยท ๐‘  โ†’ for any two piecewise-smooth curves C1 and C2 with the same start and end points. It is important that these curves are defined on the domain of . ๐น โ†’ Defining the Fundamental Theorem of Line Integrals Let and = โˆ‡ , where is continuous on a connected, open region in . On any ๐‘“: โ„ ๐‘› โ†’ โ„ ๐น โ†’ ๐‘“ ๐น โ†’ โ„ ๐‘› piecewise-smooth curve from A to B, ๐ถ . ๐ถ โˆซ ๐น โ†’ ยท ๐‘‘๐‘  โ†’ = ๐‘“(๐ต โ†’ ) โˆ’ ๐‘“(๐ด โ†’ )
  • 3. 3 Proving the Fundamental Theorem of Line Integrals Now we will prove the Fundamental Theorem of Line Integrals. Let and . We can use the ๐ด = ๐‘ฅ โ†’ (ฮฑ) ๐ต = ๐‘ฅ โ†’ (ฮฒ) chain rule to obtain, ๐ถ โˆซ ๐น โ†’ ยท ๐‘‘๐‘  โ†’ = ฮฑ ฮฒ โˆซ โˆ‡๐‘“(๐‘ฅ โ†’ (๐‘ก)) ยท ๐‘ฅ โ†’ '(๐‘ก)๐‘‘๐‘ก = ฮฑ ฮฒ โˆซ ๐‘‘ ๐‘‘๐‘ก [๐‘“(๐‘ฅ โ†’ (๐‘ก))]๐‘‘๐‘ก = ๐‘“(๐‘ฅ โ†’ (ฮฒ)) โˆ’ ๐‘“(๐‘ฅ โ†’ (ฮฑ)) = ๐‘“(๐ต โ†’ ) โˆ’ ๐‘“(๐ด โ†’ ). This shows that the line integral only depends on the endpoints, making it path-independent. Path independence is a corollary of the FTLI. Section 1.2 Finding the Potential Function Option 1 - The โ€œSafe Methodโ€ We begin by using the โ€œSafe Method.โ€ Define = for some and . Our goal is ๐น โ†’ โˆ‚๐‘“ โˆ‚๐‘ฅ , โˆ‚๐‘“ โˆ‚๐‘ฆ ( ) ๐น โ†’ : โ„ 2 โ†’ โ„ 2 ๐‘“: โ„ 2 โ†’ โ„ to find the function such that โˆ‡ = . Take the antiderivative of with respect to . ๐‘“ ๐‘“ ๐น โ†’ โˆ‚๐‘“ โˆ‚๐‘ฅ ๐‘ฅ โˆซ โˆ‚๐‘“ โˆ‚๐‘ฅ ๐‘‘๐‘ฅ = ๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘”(๐‘ฅ, ๐‘ฆ) + ๐ถ(๐‘ฆ)
  • 4. 4 In the equation above, is a function of and . This โ€œintegration functionโ€ is the most important ๐ถ ๐‘ฆ, ๐‘”: โ„ 2 โ†’ โ„ part of this process and can not be overlooked. Seeing that this is a function of y, if we took the derivative of + with respect to , would disappear. Letโ€™s move on to the next step. Take the derivative of ๐‘” ๐ถ(๐‘ฆ) ๐‘ฅ ๐ถ(๐‘ฆ) + with respect to . We can cross reference it with the component from the vector field to obtain ๐‘” ๐ถ(๐‘ฆ) ๐‘ฆ โˆ‚๐‘“ โˆ‚๐‘ฆ = = . โˆ‚ โˆ‚๐‘ฆ (๐‘” + ๐ถ(๐‘ฆ)) โ‡’ ๐‘”๐‘ฆ + ๐ถ'(๐‘ฆ) โˆ‚๐‘“ โˆ‚๐‘ฆ โ‡’ ๐ถ'(๐‘ฆ) โˆ‚๐‘“ โˆ‚๐‘ฆ โˆ’ ๐‘”๐‘ฆ Now, we take the antiderivative of with respect to , obtaining ๐ถ'(๐‘ฆ) ๐‘ฆ . โˆซ๐ถ'(๐‘ฆ) ๐‘‘๐‘ฆ = ๐ถ(๐‘ฆ) Recall back to the beginning of our process when we took the antiderivative of with respect to and got โˆ‚๐‘“ โˆ‚๐‘ฅ ๐‘ฅ + . We just discovered what is, so weโ€™ve filled in the missing piece. At this point, we have ๐‘” ๐ถ(๐‘ฆ) = ๐‘“ ๐ถ(๐‘ฆ) fully assembled the potential function. Here is an example with a defined vector field . ๐น โ†’ = = ๐น โ†’ โˆ‚๐‘“ โˆ‚๐‘ฅ , โˆ‚๐‘“ โˆ‚๐‘ฆ ( ) ๐‘ฆ cos(๐‘ฅ) + 3๐‘ฅ 2 + 1, sin(๐‘ฅ) + 4๐‘’ 4๐‘ฆ ( ) Integrate with respect to . โˆ‚๐‘“ โˆ‚๐‘ฅ ๐‘ฅ = โˆซ โˆ‚๐‘“ โˆ‚๐‘ฅ ๐‘‘๐‘ฅ โˆซ(๐‘ฆ cos(๐‘ฅ) + 3๐‘ฅ 2 + 1) ๐‘‘๐‘ฅ = ๐‘ฆ sin(๐‘ฅ) + ๐‘ฅ 3 + ๐‘ฅ + ๐ถ(๐‘ฆ) = ๐‘”(๐‘ฅ, ๐‘ฆ) Differentiate with respect to . ๐‘”(๐‘ฅ, ๐‘ฆ) ๐‘ฆ = โˆ‚ โˆ‚๐‘ฆ (๐‘”(๐‘ฅ, ๐‘ฆ)) โˆ‚ โˆ‚๐‘ฆ (๐‘ฆ sin(๐‘ฅ) + ๐‘ฅ 3 + ๐‘ฅ + ๐ถ(๐‘ฆ))
  • 5. 5 = sin(๐‘ฅ) + ๐ถ'(๐‘ฆ) Compare the result above to . โˆ‚๐‘“ โˆ‚๐‘ฆ = sin(๐‘ฅ) + ๐ถ'(๐‘ฆ) โˆ‚๐‘“ โˆ‚๐‘ฆ = + sin(๐‘ฅ) + ๐ถ'(๐‘ฆ) sin(๐‘ฅ) 4๐‘’ 4๐‘ฆ = ๐ถ'(๐‘ฆ) 4๐‘’ 4๐‘ฆ Integrate with respect to to find . ๐ถ'(๐‘ฆ) = 4๐‘’ 4๐‘ฆ ๐‘ฆ ๐ถ(๐‘ฆ) โˆซ4๐‘’ 4๐‘ฆ ๐‘‘๐‘ฆ = ๐‘’ 4๐‘ฆ = ๐ถ(๐‘ฆ) Put together the scalar potential function. ๐‘“ = ๐‘ฆ sin(๐‘ฅ) + ๐‘ฅ 3 + ๐‘ฅ + ๐‘’ 4๐‘ฆ Option 2 - The โ€œDangerous Methodโ€ We can also use the โ€œDangerous Methodโ€ to find the potential function. Weโ€™ll explain this method using an example vector field. Define . ๐น โ†’ (๐‘ฅ, ๐‘ฆ) = 2 cos(2๐‘ฅ) cos(๐‘ฆ) โˆ’ 1 + ๐‘ฆ๐‘’ ๐‘ฅ๐‘ฆ , โˆ’ sin(2๐‘ฅ) sin(๐‘ฆ) + ๐‘ฅ๐‘’ ๐‘ฅ๐‘ฆ + 3๐‘ฆ 2 ( ) First, we take the antiderivative of with respect to and of with respect to . โˆ‚๐‘“ โˆ‚๐‘ฅ ๐‘ฅ โˆ‚๐‘“ โˆ‚๐‘ฆ ๐‘ฆ โˆซ(2 cos(2๐‘ฅ) cos(๐‘ฆ) โˆ’ 1 + ๐‘ฆ๐‘’ ๐‘ฅ๐‘ฆ ) ๐‘‘๐‘ฅ = sin(2๐‘ฅ) cos(๐‘ฆ) โˆ’ ๐‘ฅ + ๐‘’ ๐‘ฅ๐‘ฆ + ๐ถ(๐‘ฆ) โˆซ(โˆ’ sin(2๐‘ฅ) sin(๐‘ฆ) + ๐‘ฅ๐‘’ ๐‘ฅ๐‘ฆ + 3๐‘ฆ 2 )๐‘‘๐‘ฆ = sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’ ๐‘ฅ๐‘ฆ + ๐‘ฆ 3 + ๐ถ(๐‘ฅ) Now, we compare the two antiderivatives to see what they have in common. We do this to synthesize a โ€œguessโ€ as to what the scalar potential function might be by writing down function components that both ๐‘“ antiderivatives exhibited, followed by each unique component seen in either antiderivative. In this case, both
  • 6. 6 antiderivatives had and with unique components being - and . Combing these gives ๐‘ ๐‘–๐‘›(2๐‘ฅ)๐‘๐‘œ๐‘ (๐‘ฆ) ๐‘’ ๐‘ฅ๐‘ฆ ๐‘ฅ ๐‘ฆ 3 us . ๐‘“ = sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’ ๐‘ฅ๐‘ฆ โˆ’ ๐‘ฅ + ๐‘ฆ 3 Next, we verify we got the correct function by confirming = . ๐‘“ โˆ‡๐‘“ ๐น โ†’ โˆ‡ = , ) ๐‘“ ( โˆ‚ โˆ‚๐‘ฅ (sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’ ๐‘ฅ๐‘ฆ โˆ’ ๐‘ฅ + ๐‘ฆ 3 ) โˆ‚ โˆ‚๐‘ฆ (sin(2๐‘ฅ) cos(๐‘ฆ) + ๐‘’ ๐‘ฅ๐‘ฆ โˆ’ ๐‘ฅ + ๐‘ฆ 3 ) = ( ) 2 cos(2๐‘ฅ) cos(๐‘ฆ) + ๐‘ฆ๐‘’ ๐‘ฅ๐‘ฆ โˆ’ 1, โˆ’ sin(2๐‘ฅ) sin(๐‘ฆ) + ๐‘ฅ๐‘’ ๐‘ฅ๐‘ฆ + 3๐‘ฆ 2 = ๐น โ†’ Section 1.3 FTLI Examples A โ€œMundaneโ€ Example Suppose we have the vector field = We wish to compute where C is any piecewise smooth ๐น โ†’ (4๐‘ฅ 3 , 2). ๐ถ โˆซ๐น โ†’ ยท๐‘‘๐‘  โ†’ , curve from the point (0,0) to (3,4). The first step for us is to integrate with respect to . We solve to obtain 4๐‘ฅ 3 ๐‘ฅ = โˆซ4๐‘ฅ 3 ๐‘‘๐‘ฅ ๐‘ฅ 4 + ๐ถ(๐‘ฆ). The next step is to integrate 2 with respect to so we then obtain ๐‘ฆ, = โˆซ 2 ๐‘‘๐‘ฆ 2๐‘ฆ + ๐ถ(๐‘ฅ).
  • 7. 7 Combining our two results, we see that We can double check our answer by computing the ๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘ฅ 4 + 2๐‘ฆ. gradient of . ๐‘“ โˆ‡๐‘“ = ( โˆ‚๐‘“ โˆ‚๐‘ฅ , โˆ‚๐‘“ โˆ‚๐‘ฆ ) = (4๐‘ฅ 3 , 2) Now that we have checked our function we are ready to apply the Fundamental Theorem of Line Integrals ๐‘“, and compute our integral. ๐ถ โˆซ๐น โ†’ ยท๐‘‘๐‘  โ†’ = ๐‘“(3, 4) โˆ’ ๐‘“(0, 0) = 3 4 + 2 ยท 4 โˆ’ 0 4 โˆ’ 0 ยท 8 = 81 + 8 = 89 For any paths from (0,0) to (3,4) to which the FTLI is applicable, for , the line integral will always be 89 ๐น โ†’ because of path-independence. To further our understanding, let's compute an integral using the definition of line integral over a path to show that the FTLI works and is indeed equal to what we computed. Let our first curve be where ๐‘ฅ(๐‘ก) = (3๐‘ก, 4๐‘ก), Plugging everything in, ๐‘ก ฯต [0, 1]. 0 1 โˆซ (4 ยท (3๐‘ก) 3 , 2) ยท (3, 4) ๐‘‘๐‘ก = 0 1 โˆซ 324๐‘ก 3 + 8 ๐‘‘๐‘ก = 81 (1) 3 + 8 โˆ’ 81 (0) 3 + 8 ยท 0 = 81 + 8 . = 89
  • 8. 8 Thus, the Fundamental of Line Integrals indeed works as both of our computations were equal, showing that we may use this shortcut. Solving the Circulation Integral with FTLI Define a gradient field on an open, connected space in , with a scalar-valued potential function . Consider ๐น โ†’ โ„ ๐‘› ๐‘“ C, a closed curve with a counterclockwise parameterization defined on the same space. Using the Fundamental Theorem of Line Integrals, we can prove that d = 0. Points A and B lie on curve C, dividing it into two ๐ถ โˆฎ๐น โ†’ ยท ๐‘  โ†’ open curves. We label the curve traveling from A to B as C1, and the curve traveling from B to A as C2, as shown in Fig. 1. Since both C1 and C2 are open paths with initial and terminal points, we can apply the Fundamental Theorem of Line Integrals to calculate the following line integrals:
  • 9. 9 d = (B) - (A) ๐ถ1 โˆซ ๐น โ†’ ยท ๐‘  โ†’ ๐‘“ ๐‘“ d = (A) - (B) ๐ถ2 โˆซ ๐น โ†’ ยท ๐‘  โ†’ ๐‘“ ๐‘“ Our objective is to calculate the circulation integral over C. Seeing that C1 and C2 combined form C, we accomplish our objective by finding the sum of the line integrals over C1 and C2. Thus, we obtain d = d + d ๐ถ โˆฎ ๐น โ†’ ยท ๐‘  โ†’ ๐ถ1 โˆซ๐น โ†’ ยท ๐‘  โ†’ ๐ถ2 โˆซ๐น โ†’ ยท ๐‘  โ†’ = (B) - (A) + (A) - (B) ๐‘“ ๐‘“ ๐‘“ ๐‘“ = 0. The relationship between the circulation integral and the FTLI can be conceptualized using path independence. Since we know that the line integral over a single point is zero, we can deduce that the line integral over a curve with the same initial and terminal point is also zero, regardless of the curveโ€™s length. Thus, d = 0 for any ๐ถ โˆฎ๐น โ†’ ยท ๐‘  โ†’ closed curve C.