SlideShare a Scribd company logo
1 of 74
Functions of
severable
variables
A function of several variables is a function where the domain is a
subset of 𝑅 𝑛 and range is 𝑅.
A real valued function of 𝑛–variables is a function
𝑓 ∢ 𝐷 β†’ R, where the domain D is a subset of 𝑅 𝑛.
So: for each (π‘₯1, π‘₯2, . . . , π‘₯ 𝑛) in D, the value of f is a real number
𝑓(π‘₯1, π‘₯2, . . . , π‘₯ 𝑛 ).
For example,
1.𝑓(π‘₯, 𝑦) = π‘₯ βˆ’ 𝑦
(a function of 2 variables defined for all (π‘₯, 𝑦) ∈ 𝑅2)
2. If 𝑓 is a function defined by
𝑓(π‘₯, 𝑦) = 9 βˆ’ cos(π‘₯) + sin(π‘₯2 + 𝑦2),
(a function of 2 variables defined for all (π‘₯, 𝑦) ∈ 𝑅2
)
2. 𝑓 π‘₯, 𝑦, 𝑧 =
1
π‘₯2+𝑦2+𝑧2
Then f is a function of 3 variables, defined whenever π‘₯2 + 𝑦2 + 𝑧2 β‰ 
0
This is all (π‘₯, 𝑦, 𝑧) ∈ 𝑅3 except for (π‘₯, 𝑦, 𝑧) = (0, 0, 0).
Partial Derivative
If 𝑓(π‘₯, 𝑦) is a function of two variables π‘₯ and 𝑦,
the partial derivative of 𝑓 with respect to π‘₯, is given by 𝑓π‘₯ π‘₯, 𝑦 =
lim
β„Žβ†’0
𝑓 π‘₯+β„Ž,𝑦 βˆ’π‘“ π‘₯,𝑦
β„Ž
The partial derivative of 𝑓 with respect to 𝑦, is given by 𝑓𝑦 π‘₯, 𝑦 =
lim
β„Žβ†’0
𝑓 π‘₯,𝑦+β„Ž βˆ’π‘“ π‘₯,𝑦
β„Ž
Note
β€’ If 𝑓(π‘₯, 𝑦) is a function of two variables π‘₯ and 𝑦, then
Partial derivative of 𝑓(π‘₯, 𝑦) with respect to π‘₯ is
πœ•π‘“
πœ•π‘₯
, it is
denoted by 𝑓π‘₯
β€’ Partial derivative of 𝑓(π‘₯, 𝑦) with respect to 𝑦 is
πœ•π‘“
πœ•π‘¦
, it is denoted by
𝑓𝑦
β€’ Partial second derivative of 𝑓(π‘₯, 𝑦) with respect to π‘₯ is
πœ•2 𝑓
πœ•π‘₯2 , it is
denoted by 𝑓π‘₯π‘₯
β€’ Partial second derivative of 𝑓(π‘₯, 𝑦) with respect to 𝑦 is
πœ•2 𝑓
πœ•π‘¦2 , it is
denoted by 𝑓𝑦𝑦
β€’ Partial derivative of
πœ•π‘“
πœ•π‘₯
with respect to 𝑦 is
πœ•2 𝑓
πœ•π‘¦πœ•π‘₯
, it is denoted by 𝑓π‘₯𝑦
and so on
Problem 1:
If 𝒇 𝒙, π’š = πŸ‘π’™π’š 𝟐 βˆ’ πŸπ’™ 𝟐 π’š,then find
𝒇 𝒙, 𝒇 π’š, 𝒇 𝒙𝒙, 𝒇 π’šπ’š, 𝒇 π’™π’š
Solution:
Given 𝑓 π‘₯, 𝑦 = 3π‘₯𝑦2 βˆ’ 2π‘₯2 𝑦 ---(1)
Diff. (1) partially w.r.to x,
𝑓π‘₯ = 3 1 𝑦2 βˆ’ 2 2π‘₯ 𝑦
𝑓π‘₯ = 3𝑦2
βˆ’ 4π‘₯𝑦 --------- (2)
Diff. (1) partially w.r.to y,
𝑓𝑦 = 3π‘₯ (2𝑦) βˆ’ 2π‘₯2
(1)
𝑓𝑦 = 6π‘₯𝑦 βˆ’ 2π‘₯2
-----------(3)
Diff. (2) p.w.r.to x,
𝑓π‘₯π‘₯ = 0 βˆ’ 4 1 𝑦
𝑓π‘₯π‘₯ = βˆ’4𝑦
Diff. (3) p.w.r.to y,
𝑓𝑦𝑦 = 6π‘₯ 1 βˆ’ 0
𝑓𝑦𝑦 = 6π‘₯
Diff. (2) p.w.r.to y,
𝑓π‘₯𝑦 = 3 2𝑦 βˆ’ 4π‘₯(1)
𝑓π‘₯𝑦 = 6𝑦 βˆ’ 4π‘₯
Note :
Diff.(3) p.w.r.to x,
𝑓𝑦π‘₯ = 6 1 𝑦 βˆ’ 2 2π‘₯ = 6𝑦 βˆ’ 4π‘₯
𝑓π‘₯𝑦 = 𝑓𝑦π‘₯
Problem 2:
Find
𝝏𝒖
𝝏𝒙
,
𝝏𝒖
ππ’š
, if 𝒖 = 𝒙𝒆 π’š
+ π’š 𝒆 𝒙
Solution:
Given 𝑒 = π‘₯𝑒 𝑦 + 𝑦 𝑒 π‘₯ -------(1)
Diff. (1) p.w.r.to x,
πœ•π‘’
πœ•π‘₯
= 1 𝑒 𝑦
+ 𝑦 𝑒 π‘₯
= 𝑒 𝑦
+ 𝑦 𝑒 π‘₯
Diff.(1) p.w.r.to y,
πœ•π‘’
πœ•π‘¦
= π‘₯ 𝑒 𝑦
+ 1 𝑒 π‘₯
= π‘₯𝑒 𝑦
+ 𝑒 π‘₯
Problem 3:
If 𝒖 = 𝒙 𝟐
+ π’š 𝟐
+ 𝒛 𝟐 βˆ’ 𝟏
𝟐
then find the value of
𝝏 𝟐 𝒖
𝝏𝒙 𝟐 +
𝝏 𝟐 𝒖
ππ’š 𝟐 +
𝝏 𝟐 𝒖
𝝏𝒛 𝟐
Solution:
Given 𝑒 = π‘₯2
+ 𝑦2
+ 𝑧2 βˆ’1
2 ------(1)
Diff. (1) p. w.r.to x,
πœ•π‘’
πœ•π‘₯
= βˆ’
1
2
π‘₯2 + 𝑦2 + 𝑧2 βˆ’
1
2
βˆ’1
2π‘₯ + 0 + 0
= βˆ’
1
2
π‘₯2
+ 𝑦2
+ 𝑧2 βˆ’
3
2(2π‘₯)
πœ•π‘’
πœ•π‘₯
= βˆ’π‘₯ π‘₯2 + 𝑦2 + 𝑧2 βˆ’
3
2 ------- (2)
Diff. (2) p. w.r.to x,
πœ•2 𝑒
πœ•π‘₯2 = βˆ’π‘₯ βˆ’
3
2
π‘₯2 + 𝑦2 + 𝑧2 βˆ’
3
2
βˆ’1
(2π‘₯) + π‘₯2 + 𝑦2 + 𝑧2 βˆ’
3
2(βˆ’1)
= 3π‘₯2 π‘₯2 + 𝑦2 + 𝑧2 βˆ’
3
2
βˆ’1
βˆ’ π‘₯2 + 𝑦2 + 𝑧2 βˆ’
3
2
= π‘₯2
+ 𝑦2
+ 𝑧2 βˆ’
3
2 3π‘₯2
π‘₯2
+ 𝑦2
+ 𝑧2 βˆ’1
βˆ’ 1
= π‘₯2
+ 𝑦2
+ 𝑧2 βˆ’
3
2
3π‘₯2
π‘₯2+𝑦2+𝑧2 1 βˆ’ 1
=
π‘₯2+𝑦2+𝑧2 βˆ’
3
2 3π‘₯2βˆ’ π‘₯2+𝑦2+𝑧2
π‘₯2+𝑦2+𝑧2
= π‘₯2
+ 𝑦2
+ 𝑧2 βˆ’
3
2 π‘₯2
+ 𝑦2
+ 𝑧2 βˆ’1
3π‘₯2
βˆ’ π‘₯2
βˆ’ 𝑦2
βˆ’ 𝑧2
= π‘₯2 + 𝑦2 + 𝑧2 βˆ’
3
2
βˆ’1
2π‘₯2 βˆ’ 𝑦2 βˆ’ 𝑧2
πœ•2 𝑒
πœ•π‘₯2 = π‘₯2 + 𝑦2 + 𝑧2 βˆ’
5
2 2π‘₯2 βˆ’ 𝑦2 βˆ’ 𝑧2 ------ (3)
Similarly,
πœ•2 𝑒
πœ•π‘¦2 = π‘₯2
+ 𝑦2
+ 𝑧2 βˆ’
5
2 2𝑦2
βˆ’ 𝑧2
βˆ’ π‘₯2
------- (4)
πœ•2 𝑒
πœ•π‘§2 = π‘₯2
+ 𝑦2
+ 𝑧2 βˆ’
5
2 2𝑧2
βˆ’ π‘₯2
βˆ’ 𝑦2
------ (5)
(3)+(4)+(5) β‡’
πœ•2 𝑒
πœ•π‘₯2+
πœ•2 𝑒
πœ•π‘¦2+
πœ•2 𝑒
πœ•π‘§2 = π‘₯2
+ 𝑦2
+ 𝑧2 βˆ’
5
2(2π‘₯2
βˆ’ 𝑦2
βˆ’ 𝑧2
+2𝑦2
βˆ’ 𝑧2
βˆ’ π‘₯2
+2𝑧2
βˆ’ π‘₯2
βˆ’ 𝑦2
)
= π‘₯2
+ 𝑦2
+ 𝑧2 βˆ’
5
2 2π‘₯2
+ 2𝑦2
+ 2𝑧2
βˆ’ 2π‘₯2
βˆ’ 2𝑦2
βˆ’ 2𝑧2
= 0
Problem 4
If 𝒖 = π’π’π’ˆ 𝒕𝒂𝒏𝒙 + π’•π’‚π’π’š + 𝒕𝒂𝒏𝒛 π’‡π’Šπ’π’… π’”π’Šπ’πŸπ’™.
𝝏𝒖
𝝏𝒙
.
Solution:
Given 𝑒 = log π‘‘π‘Žπ‘›π‘₯ + π‘‘π‘Žπ‘›π‘¦ + π‘‘π‘Žπ‘›π‘§ ------- (1)
Diff. (1) p.w.r.to x,
πœ•π‘’
πœ•π‘₯
=
1
π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§
(sec2 π‘₯)
=
1
cos2 π‘₯(π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§)
, (∡ sec2
π‘₯ =
1
cos2 π‘₯
)
Now 𝑠𝑖𝑛2π‘₯.
πœ•π‘’
πœ•π‘₯
= 𝑠𝑖𝑛2π‘₯
1
cos2 π‘₯(π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§)
=
2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯
cos2 π‘₯(π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§)
, (∡ 𝑠𝑖𝑛2π‘₯ = 2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯)
=
2𝑠𝑖𝑛π‘₯
cos π‘₯(π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§)
= 2
𝑠𝑖𝑛π‘₯
π‘π‘œπ‘ π‘₯
(
1
π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§
)
∴ 𝑠𝑖𝑛2π‘₯.
πœ•π‘’
πœ•π‘₯
= 2π‘‘π‘Žπ‘›π‘₯ (
1
π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§
)----(2)
Similarly,
𝑠𝑖𝑛2𝑦.
πœ•π‘’
πœ•π‘¦
= 2π‘‘π‘Žπ‘›π‘¦ (
1
π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§
)----- (3)
𝑠𝑖𝑛2𝑧.
πœ•π‘’
πœ•π‘§
= 2π‘‘π‘Žπ‘›π‘§ (
1
π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§
)------ (4)
(3)+(4)+(5)⟹
𝑠𝑖𝑛2π‘₯.
πœ•π‘’
πœ•π‘₯
+𝑠𝑖𝑛2𝑦.
πœ•π‘’
πœ•π‘¦
+𝑠𝑖𝑛2𝑧.
πœ•π‘’
πœ•π‘§
=2π‘‘π‘Žπ‘›π‘₯
1
π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§
+ 2π‘‘π‘Žπ‘›π‘¦
1
π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§
+2π‘‘π‘Žπ‘›π‘§
1
π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§
=2
1
π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§
π‘‘π‘Žπ‘›π‘₯ + π‘‘π‘Žπ‘›π‘¦ + π‘‘π‘Žπ‘›π‘§ = 2
Homogeneous Function:
A function 𝑓(π‘₯, 𝑦) is called a homogeneous function of the degree ′𝑛′ if
the following relationship is valid for all 𝑑 > 0: 𝑓 𝑑π‘₯, 𝑑𝑦 = 𝑑 𝑛
𝑓 π‘₯, 𝑦 .
Example:
Consider 𝑓 π‘₯, 𝑦 =
π‘₯2+𝑦2
π‘₯𝑦
𝑓 𝑑π‘₯, 𝑑𝑦 =
𝑑π‘₯ 2+ 𝑑𝑦 2
𝑑π‘₯ 𝑑𝑦
=
𝑑2 π‘₯2+𝑑2 𝑦2
𝑑2 π‘₯𝑦
=
𝑑2 π‘₯2+𝑦2
𝑑2 π‘₯𝑦
=
π‘₯2+𝑦2
π‘₯𝑦
= 𝑑0 𝑓(π‘₯, 𝑦)
Hence f(x, y ) is homogeneous of order zero
Euler’s Theorem:
If 𝑒 = 𝑓 π‘₯, 𝑦 is a homogeneous function of degree β€˜n’, then π‘₯
πœ•π‘’
πœ•π‘₯
+ 𝑦
πœ•π‘’
πœ•π‘¦
= 𝑛𝑒
(OR) π‘₯
πœ•π‘“
πœ•π‘₯
+ 𝑦
πœ•π‘“
πœ•π‘¦
= 𝑛𝑓
Problem 1:
If 𝒖 = 𝒇
𝒙
π’š
, prove that 𝒙
𝝏𝒖
𝝏𝒙
+ π’š
𝝏𝒖
ππ’š
= 𝟎
Solution:
Given 𝑒 π‘₯, 𝑦 = 𝑓
π‘₯
𝑦
For any 𝑑 > 0,
𝑒 𝑑π‘₯, 𝑑𝑦 = 𝑓
𝑑π‘₯
𝑑𝑦
= 𝑓
π‘₯
𝑦
= 𝑑0
𝑓
π‘₯
𝑦
= 𝑑0
𝑒(π‘₯, 𝑦)
Hence 𝑒 = 𝑓
π‘₯
𝑦
is a homogeneous function of order zero
𝑖. 𝑒 𝑛 = 0
By Euler’s Theorem , π‘₯
πœ•π‘’
πœ•π‘₯
+ 𝑦
πœ•π‘’
πœ•π‘¦
= 𝑛𝑒
⟹ π‘₯
πœ•π‘’
πœ•π‘₯
+ 𝑦
πœ•π‘’
πœ•π‘¦
= 0 u = 0
Hence proved.
.
Problem 2:
If 𝒖 = π¬π’π§βˆ’πŸ 𝒙
π’š
+ π­πšπ§βˆ’πŸ π’š
𝒙
, prove that 𝒙
𝝏𝒖
𝝏𝒙
+ π’š
𝝏𝒖
ππ’š
= 𝟎.
Solution:
Given 𝑒(π‘₯, 𝑦) = sinβˆ’1 π‘₯
𝑦
+ tanβˆ’1 𝑦
π‘₯
For any 𝑑 > 0,
𝑒(𝑑π‘₯, 𝑑𝑦) = sinβˆ’1 𝑑π‘₯
𝑑𝑦
+ tanβˆ’1 𝑑𝑦
𝑑π‘₯
= sinβˆ’1 π‘₯
𝑦
+ tanβˆ’1 𝑦
π‘₯
= 𝑑0
( sinβˆ’1 π‘₯
𝑦
+ tanβˆ’1 𝑦
π‘₯
)
Hence 𝑒(π‘₯, 𝑦) is a homogeneous function of order zero
𝑖. 𝑒 𝑛 = 0
By Euler’s Theorem,
π‘₯
πœ•π‘’
πœ•π‘₯
+ 𝑦
πœ•π‘’
πœ•π‘¦
= 𝑛𝑒 = 0 𝑒 = 0
Total differential coefficient
If 𝑒 = 𝑓 π‘₯, 𝑦 , the total differential of 𝑒 is given by
𝑑𝑒 = 𝑒 π‘₯ 𝑑π‘₯ + 𝑒 𝑦 𝑑𝑦 (OR) 𝑑𝑓 = 𝑓π‘₯ 𝑑π‘₯ + 𝑓𝑦 𝑑𝑦
If 𝑒 = 𝑓 π‘₯, 𝑦 , and x = g(t) , y = h(t) , the total differential of 𝑒 is given
by
𝑑𝑒
𝑑𝑑
=
πœ•π‘’
πœ•π‘₯
𝑑π‘₯
𝑑𝑑
+
πœ•π‘’
πœ•π‘¦
𝑑𝑦
𝑑𝑑
= 𝑒 π‘₯
𝑑π‘₯
𝑑𝑑
+ 𝑒 𝑦
𝑑𝑦
𝑑𝑑
(OR)
𝑑𝑓
𝑑𝑑
=
πœ•π‘“
πœ•π‘₯
𝑑π‘₯
𝑑𝑑
+
πœ•π‘“
πœ•π‘¦
𝑑𝑦
𝑑𝑑
= 𝑓π‘₯
𝑑π‘₯
𝑑𝑑
+ 𝑓𝑦
𝑑𝑦
𝑑𝑑
Note : If 𝑒 = 𝑓 𝑝, π‘ž, π‘Ÿ and p = 𝑔 π‘₯, 𝑦, 𝑧 , π‘ž = β„Ž(π‘₯, 𝑦, 𝑧)
π‘Ÿ = π‘˜(π‘₯, 𝑦, 𝑧)
Total differential
𝑑𝑒
𝑑π‘₯
= 𝑒 𝑝
𝑑𝑝
𝑑π‘₯
+ 𝑒 π‘ž
π‘‘π‘ž
𝑑π‘₯
+ 𝑒 π‘Ÿ
π‘‘π‘Ÿ
𝑑π‘₯
𝑑𝑒
𝑑𝑦
= 𝑒 𝑝
𝑑𝑝
𝑑𝑦
+ 𝑒 π‘ž
π‘‘π‘ž
𝑑𝑦
+ 𝑒 π‘Ÿ
π‘‘π‘Ÿ
𝑑𝑦
𝑑𝑒
𝑑𝑧
= 𝑒 𝑝
𝑑𝑝
𝑑𝑧
+ 𝑒 π‘ž
π‘‘π‘ž
𝑑𝑧
+ 𝑒 π‘Ÿ
π‘‘π‘Ÿ
𝑑𝑧
Partial derivative:
If 𝑧 = 𝑓 𝑒, 𝑣 and 𝑒 = 𝑔 π‘₯, 𝑦 , 𝑣 = β„Ž(π‘₯, 𝑦) then
πœ•π‘§
πœ•π‘₯
=
πœ•π‘§
πœ•π‘’
πœ•π‘’
πœ•π‘₯
+
πœ•π‘§
πœ•π‘£
πœ•π‘£
πœ•π‘₯
= 𝑧 𝑒 𝑒 π‘₯ + 𝑧 𝑣 𝑣 π‘₯
πœ•π‘§
πœ•π‘¦
=
πœ•π‘§
πœ•π‘’
πœ•π‘’
πœ•π‘¦
+
πœ•π‘§
πœ•π‘£
πœ•π‘£
πœ•π‘¦
= 𝑧 𝑒 𝑒 𝑦 + 𝑧 𝑣 𝑣 𝑦
Note : If 𝑒 = 𝑓 𝑝, π‘ž, π‘Ÿ and p = 𝑔 π‘₯, 𝑦, 𝑧 , π‘ž = β„Ž(π‘₯, 𝑦, 𝑧)
π‘Ÿ = π‘˜(π‘₯, 𝑦, 𝑧)
Partial differential
πœ•π‘’
πœ•π‘₯
= 𝑒 𝑝 𝑝 π‘₯ + 𝑒 π‘ž π‘ž π‘₯ + 𝑒 π‘Ÿ π‘Ÿπ‘₯
πœ•π‘’
πœ•π‘¦
= 𝑒 𝑝 𝑝 𝑦 + 𝑒 π‘ž π‘ž 𝑦 + 𝑒 π‘Ÿ π‘Ÿπ‘¦
πœ•π‘’
πœ•π‘§
= 𝑒 𝑝 𝑝 𝑧 + 𝑒 π‘ž π‘ž 𝑧 + 𝑒 π‘Ÿ π‘Ÿπ‘§
Problem 1:
If π’˜ = 𝒇(π’š βˆ’ 𝒛, 𝒛 βˆ’ 𝒙, 𝒙 βˆ’ π’š) then show that
ππ’˜
𝝏𝒙
+
ππ’˜
ππ’š
+
ππ’˜
𝝏𝒛
= 𝟎
Solution:
Given 𝑀 = 𝑓(𝑦 βˆ’ 𝑧, 𝑧 βˆ’ π‘₯, π‘₯ βˆ’ 𝑦)
Take p = 𝑦 βˆ’ 𝑧, π‘ž = 𝑧 βˆ’ π‘₯, π‘Ÿ = π‘₯ βˆ’ 𝑦
β‡’ 𝑀 = 𝑓(𝑝, π‘ž, π‘Ÿ) and 𝑝 𝑦, 𝑧 , π‘ž 𝑧, π‘₯ , π‘Ÿ(π‘₯, 𝑦)
p = 𝑦 βˆ’ 𝑧, π‘ž = 𝑧 βˆ’ π‘₯, π‘Ÿ = π‘₯ βˆ’ 𝑦
𝑝 π‘₯ = 0 π‘ž π‘₯ = βˆ’1 π‘Ÿπ‘₯ = 1
𝑝 𝑦 = 1 π‘ž 𝑦 = 0 π‘Ÿπ‘¦ = βˆ’1
𝑝 𝑧 = βˆ’1 π‘ž 𝑧 = 1 π‘Ÿπ‘§ = 0
πœ•π‘€
πœ•π‘₯
= 𝑀 𝑝 𝑝 π‘₯ + 𝑀 π‘ž π‘ž π‘₯ + π‘€π‘Ÿ π‘Ÿπ‘₯ = 𝑀 𝑝 0 + 𝑀 π‘ž βˆ’1 + π‘€π‘Ÿ 1
πœ•π‘€
πœ•π‘₯
= βˆ’π‘€ π‘ž + π‘€π‘Ÿ ------ (1)
πœ•π‘€
πœ•π‘¦
= 𝑀 𝑝 𝑝 𝑦 + 𝑀 π‘ž π‘ž 𝑦 + π‘€π‘Ÿ π‘Ÿπ‘¦ = 𝑀 𝑝 1 + 𝑀 π‘ž 0 + π‘€π‘Ÿ βˆ’1
πœ•π‘€
πœ•π‘¦
= 𝑀 𝑝 βˆ’ π‘€π‘Ÿ ------ (2)
πœ•π‘€
πœ•π‘§
= 𝑀 𝑝 𝑝 𝑧 + 𝑀 π‘ž π‘ž 𝑧 + π‘€π‘Ÿ π‘Ÿπ‘§ = 𝑀 𝑝 βˆ’1 + 𝑀 π‘ž 1 + π‘€π‘Ÿ 0
πœ•π‘€
πœ•π‘§
= βˆ’π‘€ 𝑝 + 𝑀 π‘ž ------ (3)
(1)+(2)+(3) β‡’
πœ•π‘€
πœ•π‘₯
+
πœ•π‘€
πœ•π‘¦
+
πœ•π‘€
πœ•π‘§
= βˆ’π‘€ π‘ž + π‘€π‘Ÿ+𝑀 𝑝 βˆ’ π‘€π‘Ÿ βˆ’π‘€ 𝑝 +𝑀 π‘ž = 0
Problem2:
If 𝒖 = 𝒇(πŸπ’™ βˆ’ πŸ‘π’š, πŸ‘π’š βˆ’ πŸ’π’›, πŸ’π’› βˆ’ πŸπ’™) then find
𝟏
𝟐
𝝏𝒖
𝝏𝒙
+
𝟏
πŸ‘
𝝏𝒖
ππ’š
+
𝟏
πŸ’
𝝏𝒖
𝝏𝒛
Solution:
Given 𝑒 = 𝑓(2π‘₯ βˆ’ 3𝑦, 3𝑦 βˆ’ 4𝑧, 4𝑧 βˆ’ 2π‘₯)
Take p = 2π‘₯ βˆ’ 3𝑦, π‘ž = 3𝑦 βˆ’ 4𝑧, π‘Ÿ = 4𝑧 βˆ’ 2π‘₯
β‡’ 𝑒 = 𝑓(𝑝, π‘ž, π‘Ÿ) and 𝑝 π‘₯, 𝑦 , π‘ž 𝑦, 𝑧 , π‘Ÿ(𝑧, π‘₯)
p = 2π‘₯ βˆ’ 3𝑦, π‘ž = 3𝑦 βˆ’ 4𝑧, π‘Ÿ = 4𝑧 βˆ’ 2π‘₯
𝑝 π‘₯ = 2 π‘ž π‘₯ = 0 π‘Ÿπ‘₯ = βˆ’2
𝑝 𝑦 = βˆ’3 π‘ž 𝑦 = 3 π‘Ÿπ‘¦ = 0
𝑝 𝑧 = 0 π‘ž 𝑧 = βˆ’4 π‘Ÿπ‘§ = 4
πœ•π‘’
πœ•π‘₯
= 𝑒 𝑝 𝑝 π‘₯ + 𝑒 π‘ž π‘ž π‘₯ + 𝑒 π‘Ÿ π‘Ÿπ‘₯ = 𝑒 𝑝 2 + 𝑒 π‘ž 0 + 𝑒 π‘Ÿ βˆ’2
1
2
πœ•π‘’
πœ•π‘₯
=
1
2
2𝑒 𝑝 βˆ’ 2𝑒 π‘Ÿ =
1
2
(2 𝑒 𝑝 βˆ’ 𝑒 π‘Ÿ ) = 𝑒 𝑝 βˆ’ 𝑒 π‘Ÿ --------- (1)
πœ•π‘’
πœ•π‘¦
= 𝑒 𝑝 𝑝 𝑦 + 𝑒 π‘ž π‘ž 𝑦 + 𝑒 π‘Ÿ π‘Ÿπ‘¦ = 𝑒 𝑝 βˆ’3 + 𝑒 π‘ž 3 + 𝑒 π‘Ÿ 0
1
3
πœ•π‘’
πœ•π‘¦
=
1
3
(βˆ’3𝑒 𝑝+3𝑒 π‘ž) =
1
3
3 βˆ’up + uq = βˆ’π‘’ 𝑝 + 𝑒 π‘ž ---------(2)
πœ•π‘’
πœ•π‘§
= 𝑒 𝑝 𝑝 𝑧 + 𝑒 π‘ž π‘ž 𝑧 + 𝑒 π‘Ÿ π‘Ÿπ‘§ = 𝑒 𝑝 0 + 𝑒 π‘ž βˆ’4 + 𝑒 π‘Ÿ 4
1
4
πœ•π‘’
πœ•π‘§
=
1
4
βˆ’4𝑒 π‘ž + 4𝑒 π‘Ÿ =
1
4
4 βˆ’π‘’ π‘ž βˆ“ 𝑒 π‘Ÿ = βˆ’π‘’ π‘ž + 𝑒 π‘Ÿ ------- (3)
(1)+(2)+(3) β‡’
1
2
πœ•π‘’
πœ•π‘₯
+
1
3
πœ•π‘’
πœ•π‘¦
+
1
4
πœ•π‘’
πœ•π‘§
= 𝑒 𝑝 βˆ’ 𝑒 π‘Ÿ βˆ’ 𝑒 𝑝 + 𝑒 π‘ž βˆ’ 𝑒 π‘ž + 𝑒 π‘Ÿ = 0
Problem3:
If 𝒖 = 𝒇(
π’šβˆ’π’™
π’™π’š
,
π’›βˆ’π’™
𝒙𝒛
) then find 𝒙 𝟐 𝝏𝒖
𝝏𝒙
+ π’š 𝟐 𝝏𝒖
ππ’š
+ 𝒛 𝟐 𝝏𝒖
𝝏𝒛
Solution:
Given𝒖 = 𝒇(
π’šβˆ’π’™
π’™π’š
,
π’›βˆ’π’™
𝒙𝒛
)
Take p =
π’šβˆ’π’™
π’™π’š
, π‘ž =
π’›βˆ’π’™
𝒙𝒛
β‡’ 𝑒 = 𝑓(𝑝, π‘ž) and 𝑝 π‘₯, 𝑦 , π‘ž π‘₯, 𝑧
𝐩 =
𝐲 βˆ’ 𝐱
𝐱𝐲
πͺ =
𝐳 βˆ’ 𝐱
𝐱𝐳
𝐩 𝐱 =
𝐱𝐲 βˆ’πŸ βˆ’ π²βˆ’π± 𝐲
𝐱𝐲 𝟐
=
βˆ’π±π²βˆ’π² 𝟐+𝐱𝐲
𝐱 𝟐 𝐲 𝟐 = βˆ’
𝐲 𝟐
𝐱 𝟐 𝐲 𝟐 = βˆ’
𝟏
𝐱 𝟐
πͺ 𝐱 =
𝐱𝐳 βˆ’πŸ βˆ’ π³βˆ’π± 𝐳
𝐱𝐳 𝟐
=
βˆ’π±π³βˆ’π³ 𝟐+𝐱𝐳
𝐱 𝟐 𝐳 𝟐 = βˆ’
𝐳 𝟐
𝐱 𝟐 𝐳 𝟐 = βˆ’
𝟏
𝐱 𝟐
𝐩 𝐲 =
𝐱𝐲 𝟏 βˆ’ π²βˆ’π± 𝐱
𝐱𝐲 𝟐
=
π±π²βˆ’π±π²+𝐱 𝟐
𝐱 𝟐 𝐲 𝟐 =
𝐱 𝟐
𝐱 𝟐 𝐲 𝟐 =
𝟏
𝐲 𝟐
πͺ 𝐲 = 𝟎
𝐩 𝐳 = 𝟎
πͺ 𝐳 =
𝐱𝐳 𝟏 βˆ’ π³βˆ’π± 𝐱
𝐱𝐳 𝟐
=
π±π³βˆ’π³π±+𝐱 𝟐
𝐱 𝟐 𝐳 𝟐 =
𝐱 𝟐
𝐱 𝟐 𝐳 𝟐 =
𝟏
𝐳 𝟐
πœ•π‘’
πœ•π‘₯
= 𝑒 𝑝 𝑝 π‘₯ + 𝑒 π‘ž π‘ž π‘₯ = 𝑒 𝑝 βˆ’
1
π‘₯2 + 𝑒 π‘ž βˆ’
1
π‘₯2 = βˆ’
1
π‘₯2 (𝑒 𝑝 + 𝑒 π‘ž)
π‘₯2 πœ•π‘’
πœ•π‘₯
= π‘₯2
βˆ’
1
π‘₯2 𝑒 𝑝 + 𝑒 π‘ž = βˆ’π‘’ 𝑝 βˆ’ 𝑒 π‘ž --------- (1)
πœ•π‘’
πœ•π‘¦
= 𝑒 𝑝 𝑝 𝑦 + 𝑒 π‘ž π‘ž 𝑦 = 𝑒 𝑝
1
𝑦2 + 𝑒 π‘ž 0
𝑦2 πœ•π‘’
πœ•π‘¦
= 𝑦2
(
1
𝑦2 𝑒 𝑝) = 𝑒 𝑝 ---------(2)
πœ•π‘’
πœ•π‘§
= 𝑒 𝑝 𝑝 𝑧 + 𝑒 π‘ž π‘ž 𝑧 = 𝑒 𝑝 0 + 𝑒 π‘ž
1
𝑧2
𝑧2 πœ•π‘’
πœ•π‘§
= 𝑧2 1
𝑧2 (𝑒 π‘ž) = 𝑒 π‘ž ------- (3)
(1)+(2)+(3) β‡’ π‘₯2 πœ•π‘’
πœ•π‘₯
+ 𝑦2 πœ•π‘’
πœ•π‘¦
+ 𝑧2 πœ•π‘’
πœ•π‘§
= βˆ’π‘’ 𝑝 βˆ’ 𝑒 π‘ž + 𝑒 𝑝 + 𝑒 π‘ž = 0
β€’ If 𝑓(π‘₯, 𝑦) is a function of two variables x and y, then Taylor’s expansion of 𝑓(π‘₯, 𝑦)
about the point (π‘Ž, 𝑏) is given by
𝑓 π‘₯, 𝑦 = 𝑓 π‘Ž, 𝑏 + π‘₯ βˆ’ π‘Ž 𝑓π‘₯ π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 𝑓𝑦 π‘Ž, 𝑏 +
1
2!
π‘₯ βˆ’ π‘Ž 2 𝑓π‘₯π‘₯ π‘Ž, 𝑏 + 2 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 𝑓π‘₯𝑦 π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 2 𝑓𝑦𝑦 π‘Ž, 𝑏 +
1
3!
π‘₯ βˆ’ π‘Ž 3 𝑓π‘₯π‘₯π‘₯ π‘Ž, 𝑏 + 3 π‘₯ βˆ’ π‘Ž 2 𝑦 βˆ’ 𝑏 𝑓π‘₯π‘₯𝑦 + 3 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 2 𝑓π‘₯𝑦𝑦
+ 𝑦 βˆ’ 𝑏 3 𝑓𝑦𝑦𝑦 π‘Ž, 𝑏
+ β‹―
β€’ Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the origin or (0,0) is given by
𝑓 π‘₯, 𝑦 = 𝑓 0,0 + π‘₯𝑓π‘₯ 0,0 + 𝑦𝑓𝑦 0,0
+
1
2!
π‘₯2 𝑓π‘₯π‘₯ 0,0 + 2π‘₯𝑦𝑓π‘₯𝑦 0,0 + 𝑦2 𝑓𝑦𝑦 0,0 + β‹―
Taylor’s Theorem for functions of two variables
Problem 1:
Obtain the Taylor series of 𝒙 πŸ‘ + π’š πŸ‘ + π’™π’š 𝟐 in powers of 𝒙 βˆ’ 𝟏 𝒂𝒏𝒅 π’š βˆ’ 𝟐.
Solution:
W.kt, Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the point (π‘Ž, 𝑏) is given by
𝑓 π‘₯, 𝑦 = 𝑓 π‘Ž, 𝑏 + π‘₯ βˆ’ π‘Ž 𝑓π‘₯ π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 𝑓𝑦 π‘Ž, 𝑏 +
1
2!
π‘₯ βˆ’ π‘Ž 2 𝑓π‘₯π‘₯ π‘Ž, 𝑏 + 2 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 𝑓π‘₯𝑦 π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 2 𝑓𝑦𝑦 π‘Ž, 𝑏 +
1
3!
π‘₯ βˆ’ π‘Ž 3 𝑓π‘₯π‘₯π‘₯ π‘Ž, 𝑏 + 3 π‘₯ βˆ’ π‘Ž 2 𝑦 βˆ’ 𝑏 𝑓π‘₯π‘₯𝑦(π‘Ž, 𝑏) + 3 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 2 𝑓π‘₯𝑦𝑦(π‘Ž, 𝑏)
+ 𝑦 βˆ’ 𝑏 3 𝑓𝑦𝑦𝑦 π‘Ž, 𝑏
+ β‹―
Here 𝑓 π‘₯, 𝑦 = π‘₯3
+ 𝑦3
+ π‘₯𝑦2
,
the points are π‘Ž = 1, 𝑏 = 2 , (∡ π‘₯ βˆ’ 1 = 0 & 𝑦 βˆ’ 2 = 0 β‡’ π‘₯ = 1, 𝑦 = 2 )
𝑓 π‘₯, 𝑦 = π‘₯3
+ 𝑦3
+ π‘₯𝑦2
𝑓 1,2 = 13
+ 23
+ 1 22
= 1 + 8 + 4 = 13
𝑓π‘₯ = 3π‘₯2
+ 𝑦2
𝑓π‘₯ 1,2 = 3 1 2
+ 22
= 3 + 4 = 7
𝑓𝑦 = 3𝑦2
+ π‘₯ 2𝑦 = 3𝑦2
+ 2π‘₯𝑦 𝑓𝑦 1,2 = 3 2 2
+ 2 1 2 = 12 + 4 = 16
𝑓π‘₯π‘₯ = 6π‘₯ + 0 = 6π‘₯ 𝑓π‘₯π‘₯ 1,2 = 6 1 = 6
𝑓π‘₯𝑦 = 0 + 2𝑦 = 2𝑦 𝑓π‘₯𝑦 1,2 = 2 2 = 4
𝑓𝑦𝑦 = 3 2𝑦 + 2π‘₯ 1 = 6𝑦 + 2π‘₯ 𝑓𝑦𝑦 1,2 = 6 2 + 2 1 = 12 + 2 = 14
𝑓π‘₯π‘₯π‘₯ = 6 1 = 6 𝑓π‘₯π‘₯π‘₯ 1,2 = 6
𝑓π‘₯π‘₯𝑦 =0 𝑓π‘₯π‘₯𝑦(1,2) = 0
𝑓π‘₯𝑦𝑦 = 2 1 = 2 𝑓π‘₯𝑦𝑦(1,2) = 2
𝑓𝑦𝑦𝑦 = 6 1 + 0 = 6 𝑓𝑦𝑦𝑦(1,2) = 6
Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the point (1,2) is given by
𝑓 π‘₯, 𝑦 = 𝑓 1,2 + π‘₯ βˆ’ 1 𝑓π‘₯ 1,2 + 𝑦 βˆ’ 2 𝑓𝑦 1,2 +
1
2!
π‘₯ βˆ’ 1 2 𝑓π‘₯π‘₯ 1,2 + 2 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 𝑓π‘₯𝑦 1,2 + 𝑦 βˆ’ 2 2 𝑓𝑦𝑦 1,2 +
1
3!
π‘₯ βˆ’ 1 3
𝑓π‘₯π‘₯π‘₯ 1,2 + 3 π‘₯ βˆ’ 1 2
𝑦 βˆ’ 2 𝑓π‘₯π‘₯𝑦(1,2) + 3 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 2
𝑓π‘₯𝑦𝑦 (1,2)
+ 𝑦 βˆ’ 2 3 𝑓𝑦𝑦𝑦 1,2
+ β‹―
𝑓 π‘₯, 𝑦 = 13 + 7 π‘₯ βˆ’ 1 + 16 𝑦 βˆ’ 2
+
1
2!
[6 π‘₯ βˆ’ 1 2
+ 2 4 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 + 14 𝑦 βˆ’ 2 2
]
+
1
3!
6 π‘₯ βˆ’ 1 3 + 3 0 π‘₯ βˆ’ 1 2 𝑦 βˆ’ 2 + 3 2 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 2 + 6 𝑦 βˆ’ 2 3
+ β‹―
= 13 + 7 π‘₯ βˆ’ 1 + 16 𝑦 βˆ’ 2
+
1
2!
[6 π‘₯ βˆ’ 1 2
+ 8 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 + 14 𝑦 βˆ’ 2 2
]
+
1
3!
6 π‘₯ βˆ’ 1 3 + 0 + 6 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 2 + 6 𝑦 βˆ’ 2 3 + β‹―
= 13 + 7 π‘₯ βˆ’ 1 + 16 𝑦 βˆ’ 2 +
6
2
π‘₯ βˆ’ 1 2
+
8
2
π‘₯ βˆ’ 1 𝑦 βˆ’ 2 +
14
2
𝑦 βˆ’ 2 2
+
6
6
π‘₯ βˆ’ 1 3
+
6
6
π‘₯ βˆ’ 1 𝑦 βˆ’ 2 2
+
6
6
𝑦 βˆ’ 2 3
+… , (2! = 1.2 = 2, 3! = 1.2.3 = 6)
= 13 + 7 π‘₯ βˆ’ 1 + 16 𝑦 βˆ’ 2 +
6
2
π‘₯ βˆ’ 1 2
+
8
2
π‘₯ βˆ’ 1 𝑦 βˆ’ 2 +
14
2
𝑦 βˆ’ 2 2
+ π‘₯ βˆ’ 1 3 + π‘₯ βˆ’ 1 𝑦 βˆ’ 2 2 + 𝑦 βˆ’ 2 3 + β‹―
Problem 2
Expand 𝒆 𝒙
π’„π’π’”π’š at 𝟎,
𝝅
𝟐
upto the third term by using Taylor’s series.
Solution
W.kt, Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the point (π‘Ž, 𝑏) is given by
𝑓 π‘₯, 𝑦 = 𝑓 π‘Ž, 𝑏 + π‘₯ βˆ’ π‘Ž 𝑓π‘₯ π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 𝑓𝑦 π‘Ž, 𝑏 +
1
2!
π‘₯ βˆ’ π‘Ž 2 𝑓π‘₯π‘₯ π‘Ž, 𝑏 + 2 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 𝑓π‘₯𝑦 π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 2 𝑓𝑦𝑦 π‘Ž, 𝑏 +
1
3!
π‘₯ βˆ’ π‘Ž 3
𝑓π‘₯π‘₯π‘₯ π‘Ž, 𝑏 + 3 π‘₯ βˆ’ π‘Ž 2
𝑦 βˆ’ 𝑏 𝑓π‘₯π‘₯𝑦(π‘Ž, 𝑏) + 3 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 2
𝑓π‘₯𝑦𝑦(π‘Ž, 𝑏)
+ 𝑦 βˆ’ 𝑏 3
𝑓𝑦𝑦𝑦 π‘Ž, 𝑏
+ β‹―
Here 𝑓 π‘₯, 𝑦 = 𝑒 π‘₯
π‘π‘œπ‘ π‘¦
the points are π‘Ž = 0, 𝑏 =
πœ‹
2
,
𝑓 π‘₯, 𝑦 = 𝑒 π‘₯
π‘π‘œπ‘ π‘¦ 𝑓 0,
πœ‹
2
= 𝑒0
cos
πœ‹
2
= 1.0 = 0, (∡ 𝑒0
= 1, cos
πœ‹
2
= 0
)
𝑓π‘₯ = 𝑒 π‘₯
π‘π‘œπ‘ π‘¦ 𝑓π‘₯ 0,
πœ‹
2
= 𝑒0
cos
πœ‹
2
= 0
𝑓𝑦 = 𝑒 π‘₯
βˆ’π‘ π‘–π‘›π‘¦ = βˆ’π‘’ π‘₯
𝑠𝑖𝑛𝑦 𝑓𝑦 0,
πœ‹
2
= βˆ’π‘’0
sin
πœ‹
2
= βˆ’1.1 = βˆ’1 (∡ 𝑒0
=
1, sin
πœ‹
2
= 1)
𝑓π‘₯π‘₯ = 𝑒 π‘₯
π‘π‘œπ‘ π‘¦ 𝑓π‘₯π‘₯ 0,
πœ‹
2
= 𝑒0
cos
πœ‹
2
= 0
𝑓π‘₯𝑦 = βˆ’π‘’ π‘₯
𝑠𝑖𝑛𝑦 𝑓π‘₯𝑦 0,
πœ‹
2
= βˆ’1
𝑓𝑦𝑦 = βˆ’π‘’ π‘₯
(π‘π‘œπ‘ π‘¦) 𝑓𝑦𝑦 0,
πœ‹
2
= βˆ’π‘’0
cos
πœ‹
2
= 0
𝑓π‘₯π‘₯π‘₯ = 𝑒 π‘₯
π‘π‘œπ‘ π‘¦ 𝑓π‘₯π‘₯π‘₯ 0,
πœ‹
2
= 0
𝑓π‘₯π‘₯𝑦 = βˆ’π‘’ π‘₯
𝑠𝑖𝑛𝑦 𝑓π‘₯π‘₯𝑦 0,
πœ‹
2
= βˆ’1
𝑓π‘₯𝑦𝑦 = βˆ’π‘’ π‘₯
π‘π‘œπ‘ π‘¦ 𝑓π‘₯𝑦𝑦(0,
πœ‹
2
) = 0
𝑓𝑦𝑦𝑦 = βˆ’π‘’ π‘₯
βˆ’π‘ π‘–π‘›π‘¦ = 𝑒 π‘₯
𝑠𝑖𝑛𝑦 𝑓𝑦𝑦𝑦 0,
πœ‹
2
= 1.1 = 1
Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the point (0,
πœ‹
2
) is given by
𝑓 π‘₯, 𝑦 = 𝑓 0,
πœ‹
2
+ π‘₯ βˆ’ 0 𝑓π‘₯ 0,
πœ‹
2
+ 𝑦 βˆ’
πœ‹
2
𝑓𝑦 0,
πœ‹
2
+
1
2!
π‘₯ βˆ’ 0 2 𝑓π‘₯π‘₯ 0,
πœ‹
2
+ 2 π‘₯ βˆ’ 0 𝑦 βˆ’
πœ‹
2
𝑓π‘₯𝑦 0,
πœ‹
2
+ 𝑦 βˆ’
πœ‹
2
2
𝑓𝑦𝑦 0,
πœ‹
2
+
1
3!
π‘₯ βˆ’ 0 3 𝑓π‘₯π‘₯π‘₯ 0,
πœ‹
2
+ 3 π‘₯ βˆ’ 0 2 𝑦 βˆ’
πœ‹
2
𝑓π‘₯π‘₯𝑦(0,
πœ‹
2
) + 3 π‘₯ βˆ’ 0 𝑦 βˆ’
πœ‹
2
2
𝑓π‘₯𝑦𝑦(0,
πœ‹
2
)
+ 𝑦 βˆ’
πœ‹
2
3
𝑓𝑦𝑦𝑦 0,
πœ‹
2
+ β‹―
= 0 + π‘₯ 0 + 𝑦 βˆ’
πœ‹
2
βˆ’1 +
1
2!
π‘₯ 2 0 + 2 π‘₯ 𝑦 βˆ’
πœ‹
2
βˆ’1 + 𝑦 βˆ’
πœ‹
2
2
0 +
1
3!
π‘₯ 3
0 + 3 π‘₯ 2
𝑦 βˆ’
πœ‹
2
βˆ’1 + 3 π‘₯ 𝑦 βˆ’
πœ‹
2
2
(0)
+ 𝑦 βˆ’
πœ‹
2
3
(1)
+ β‹―
= βˆ’ 𝑦 βˆ’
πœ‹
2
+ βˆ’
2
2
π‘₯ 𝑦 βˆ’
πœ‹
2
+ βˆ’
3
6
π‘₯ 2
𝑦 βˆ’
πœ‹
2
+
1
6
𝑦 βˆ’
πœ‹
2
3
+ β‹―
(∡ 2! = 1.2 = 2, 3! = 1.2.3 = 6)
= βˆ’ 𝑦 βˆ’
πœ‹
2
βˆ’ π‘₯ 𝑦 βˆ’
πœ‹
2
βˆ’
1
2
π‘₯ 2 𝑦 βˆ’
πœ‹
2
+
1
6
𝑦 βˆ’
πœ‹
2
3
+ β‹―
Problem 3
Find the Taylor’s series expansion of 𝟏 + 𝒙 + π’š 𝟐 in powers of 𝒙 βˆ’ 𝟏 and π’š upto
second degree term.
Solution:
W.kt, Taylor’s expansion (upto second degree) of 𝑓(π‘₯, 𝑦) about the point (π‘Ž, 𝑏)
is given by
𝑓 π‘₯, 𝑦 = 𝑓 π‘Ž, 𝑏 + π‘₯ βˆ’ π‘Ž 𝑓π‘₯ π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 𝑓𝑦 π‘Ž, 𝑏 +
1
2!
π‘₯ βˆ’ π‘Ž 2
𝑓π‘₯π‘₯ π‘Ž, 𝑏 + 2 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 𝑓π‘₯𝑦 π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 2
𝑓𝑦𝑦 π‘Ž, 𝑏 + β‹―
Here 𝑓 π‘₯, 𝑦 = 1 + π‘₯ + 𝑦2
the points are π‘Ž = 1, 𝑏 = 0,
𝑓 π‘₯, 𝑦 = 1 + π‘₯ + 𝑦2 = 1 + π‘₯ + 𝑦2
1
2 𝑓 1,0 = 1 + 1 + 0 = 2
1
2
𝑓π‘₯ =
1
2
1 + π‘₯ + 𝑦2
1
2
βˆ’1
1 =
1
2
(1 + π‘₯ + 𝑓π‘₯ 1,0 =
1
2
1 + 1 + 0 βˆ’
1
2 =
1
2
2 βˆ’
1
2 =
2βˆ’
1
2
βˆ’1
= 2βˆ’
3
2
𝑓𝑦 =
1
2
1 + π‘₯ + 𝑦2
1
2
βˆ’1
2𝑦 =
𝑦 1 + π‘₯ + 𝑦2 βˆ’
1
2
𝑓𝑦 1,0 = 0
𝑓π‘₯π‘₯ =
1
2
βˆ’
1
2
1 + π‘₯ + 𝑦2 βˆ’
1
2
βˆ’1
1 =
βˆ’1
4
1 + π‘₯ + 𝑦2 βˆ’
3
2
𝑓π‘₯π‘₯ 1,0 = βˆ’
1
4
1 + 1 + 0 βˆ’
3
2 =
1
4
2 βˆ’
3
2 =
βˆ’
1
22 2 βˆ’
3
2 = βˆ’2βˆ’
3
2
βˆ’2
= βˆ’2βˆ’
7
2
𝑓π‘₯𝑦 =
1
2
βˆ’
1
2
1 + π‘₯ + 𝑦2 βˆ’
1
2
βˆ’1
2𝑦
=
βˆ’π‘¦
2
1 + π‘₯ + 𝑦2 βˆ’
3
2
𝑓π‘₯𝑦 1,0 = 0
𝑓𝑦𝑦 = 𝑦 βˆ’
1
2
1 + π‘₯ + 𝑦2 βˆ’
1
2
βˆ’1
2𝑦
+ 1 + π‘₯ + 𝑦2 βˆ’
1
2 1
= βˆ’π‘¦ 1 + π‘₯ + 𝑦2 βˆ’
3
2 +(1 + π‘₯ +
𝑓𝑦𝑦 1,0 = 0 + 1 + 1 + 0 βˆ’
1
2 = 2βˆ’
1
2
Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the point (1,0) is given by
𝑓 π‘₯, 𝑦 = 𝑓 1,0 + π‘₯ βˆ’ 1 𝑓π‘₯ 1,0 + 𝑦 𝑓𝑦 1,0 +
1
2!
π‘₯ βˆ’ 1 2 𝑓π‘₯π‘₯ 1,0 + 2 π‘₯ βˆ’ 1 𝑦 𝑓π‘₯𝑦 1,0 + 𝑦 2 𝑓𝑦𝑦 1,0 + β‹―
= 2
1
2 + π‘₯ βˆ’ 1 2βˆ’
3
2 + 𝑦 0 +
1
2
π‘₯ βˆ’ 1 2 βˆ’2 βˆ’
7
2 +
2
2
π‘₯ βˆ’ 1 𝑦 0 + 𝑦22βˆ’
1
2
= 2
1
2 + 2βˆ’
3
2 π‘₯ βˆ’ 1 βˆ’ βˆ’2 βˆ’
7
2
βˆ’1
π‘₯ βˆ’ 1 2
+ 2βˆ’
1
2 𝑦2
= 2
1
2 + 2βˆ’
3
2 π‘₯ βˆ’ 1 βˆ’ βˆ’2 βˆ’
9
2 π‘₯ βˆ’ 1 2
+ 2βˆ’
1
2 𝑦2
Maximum and Minimum
(Extreme Values)
of two variable function
Necessary Conditions
The necessary conditions for 𝑓(π‘₯, 𝑦) to have a maximum or minimum at a point
(π‘Ž, 𝑏) are that 𝑓π‘₯ π‘Ž, 𝑏 = 0 π‘Žπ‘›π‘‘ 𝑓𝑦(π‘Ž, 𝑏) = 0 π‘Žπ‘‘ (π‘Ž, 𝑏)
Sufficient Conditions
The sufficient conditions for 𝑓(π‘₯, 𝑦) to have a maximum or minimum at a point
(π‘Ž, 𝑏) are as follows
Let π‘Ÿ = 𝑓π‘₯π‘₯ π‘Ž, 𝑏 , 𝑠 = 𝑓π‘₯𝑦 π‘Ž, 𝑏 π‘Žπ‘›π‘‘ 𝑑 = 𝑓𝑦𝑦 π‘Ž, 𝑏
The function 𝑓(π‘₯, 𝑦) has maximum or minimum (extreme values) at ( a, b) if
1. 𝑓π‘₯ π‘Ž, 𝑏 = 0 π‘Žπ‘›π‘‘ 𝑓𝑦(π‘Ž, 𝑏) = 0
2. π‘Ÿπ‘‘ βˆ’ 𝑠2
> 0
3. 𝑓(π‘₯, 𝑦) has maximum or minimum at (π‘Ž, 𝑏) according as π‘Ÿ < 0 or π‘Ÿ > 0
Procedure to find maximum or minimum (extreme values):
Step 1. Find 𝑓π‘₯ π‘Žπ‘›π‘‘ 𝑓𝑦
Step 2. Put 𝑓π‘₯ = 0 π‘Žπ‘›π‘‘ 𝑓𝑦 = 0
Step 3. Solve the simultaneous equations in a and y, find the values of x and y
Say (π‘Ž, 𝑏), (𝑐, 𝑑) … . ( these points are called stationary / critical points)
Step 4.Find π‘Ÿ = 𝑓π‘₯π‘₯ , 𝑑 = 𝑓𝑦𝑦 π‘Žπ‘›π‘‘ 𝑠 = 𝑓π‘₯𝑦 (at each pair (π‘Ž, 𝑏) , (𝑐, 𝑑) … . )
Step 5. Find π‘Ÿπ‘‘ βˆ’ 𝑠2 (at each pair (π‘Ž, 𝑏) , (𝑐, 𝑑) … . )
Step 6.
(i) If r𝑑 βˆ’ 𝑠2
> 0 π‘Žπ‘›π‘‘ π‘Ÿ < 0 π‘Žπ‘‘ (π‘Ž, 𝑏) , then 𝑓(π‘₯, 𝑦) has maximum at (π‘Ž, 𝑏)
And the maximum value is 𝑓(π‘Ž, 𝑏)
(ii) If r𝑑 βˆ’ 𝑠2 > 0 π‘Žπ‘›π‘‘ π‘Ÿ > 0 π‘Žπ‘‘ (π‘Ž, 𝑏) , then 𝑓(π‘₯, 𝑦) has minimum at (π‘Ž, 𝑏)
And the minimum value is 𝑓(π‘Ž, 𝑏)
(iii) If r𝑑 βˆ’ 𝑠2 < 0 π‘Žπ‘‘ (π‘Ž, 𝑏) , then 𝑓(π‘₯, 𝑦) has neither maximum nor minimum at
(π‘Ž, 𝑏) (no extreme values at (π‘Ž, 𝑏)) and the point (π‘Ž, 𝑏) is called saddle point.
(iv) If π‘Ÿπ‘‘ βˆ’ 𝑠2
= 0 π‘Žπ‘‘ (π‘Ž, 𝑏), the case is doubtful and need further investigation.
Step 7. Step 6 to be repeated for other pair of values (c, d) … to examine extreme values
Problem 1:
Discuss the maxima and minima of the function 𝒇 𝒙, π’š = 𝒙 πŸ’ + π’š πŸ’ βˆ’ πŸπ’™ 𝟐 + πŸ’π’™π’š βˆ’ πŸπ’š 𝟐
Solution:
Given 𝑓 π‘₯, 𝑦 = π‘₯4
+ 𝑦4
βˆ’ 2π‘₯2
+ 4π‘₯𝑦 βˆ’ 2𝑦2
--------- (1)
To find the stationary point:
Put
𝝏𝒇
𝝏𝒙
= 𝑓π‘₯ = 0 &
𝝏𝒇
ππ’š
= 𝒇 π’š = 0
𝝏𝒇
𝝏𝒙
= 0 ⟹ 4π‘₯3 βˆ’ 4π‘₯ + 4𝑦 = 0 ⟹ 4(π‘₯3 βˆ’ π‘₯ + 𝑦) = 0
⟹ π‘₯3 βˆ’ π‘₯ + 𝑦 = 0 ---------(2)
𝝏𝒇
ππ’š
= 0 ⟹ 4𝑦3 + 4π‘₯ βˆ’ 4𝑦 = 0 ⟹ 4 𝑦3 + π‘₯ βˆ’ 𝑦 = 0
⟹ 𝑦3 + π‘₯ βˆ’ 𝑦 = 0 ------(3)
𝐩 =
π››πŸ
𝛛𝐱
= 𝒇 𝒙
= πŸ’π± πŸ‘
βˆ’ πŸ’π± + πŸ’π²
𝐫 =
𝛛 𝟐
𝐟
𝛛𝐱 𝟐
= 𝐟 𝐱𝐱 =
= 𝟏𝟐𝐱 𝟐
βˆ’ πŸ’
𝐬 =
𝛛 𝟐
𝐟
𝛛𝐱𝛛𝐲
= 𝒇 π’™π’š = πŸ’
πͺ =
π››πŸ
𝛛𝐲
= 𝐟 𝐲
= πŸ’π² πŸ‘
+ πŸ’π± βˆ’ πŸ’π²
𝐭 =
𝛛 𝟐𝐟
𝛛𝐲 𝟐
= 𝐟 𝐲𝐲
= 𝟏𝟐𝐲 𝟐
βˆ’ πŸ’
2 ⟹ π‘₯3
βˆ’ π‘₯ + 𝑦 = 0
3 ⟹ 𝑦3
+ π‘₯ βˆ’ 𝑦 = 0
Add ------------------------
π‘₯3 + 𝑦3 = 0
⟹ π‘₯ + 𝑦 π‘₯2
βˆ’ π‘₯𝑦 + 𝑦2
= 0 , (∡ π‘Ž3
+ 𝑏3
= (π‘Ž + 𝑏)(π‘Ž2
βˆ’ π‘Žπ‘ + 𝑏2
)
⟹ π‘₯ + 𝑦 = 0 π‘œπ‘Ÿ (π‘₯2 βˆ’ π‘₯𝑦 + 𝑦2) = 0
⟹ π‘₯ = βˆ’π‘¦ π‘œπ‘Ÿ π‘₯2
βˆ’ π‘₯𝑦 + 𝑦2
= 0
Put π‘₯ = βˆ’π‘¦ in (2)
⟹ βˆ’π‘¦ 3
βˆ’ βˆ’π‘¦ + 𝑦 = 0
⟹ βˆ’π‘¦3
+ 𝑦 + 𝑦 = 0
⟹ βˆ’π‘¦3
+ 2𝑦 = 0 ⟹ 𝑦(βˆ’π‘¦2
+ 2) = 0
⟹ 𝑦 = 0 π‘œπ‘Ÿ βˆ’ 𝑦2
+ 2 = 0
⟹ 𝑦 = 0 π‘œπ‘Ÿ 𝑦2
= 2
⟹ 𝑦 = 0 π‘œπ‘Ÿ 𝑦 = Β± 2
When 𝑦 = 0 , from (3) 0 + π‘₯ βˆ’ 0 = 0 ⟹ π‘₯ = 0
The point is ( π‘₯, 𝑦) = (0,0)
When 𝑦 = 2 , from (3) 2
3
+ π‘₯ βˆ’ 2 = 0
⟹ π‘₯ = βˆ’ 2
3
+ 2 ⟹ π‘₯ = 2 (βˆ’ 2
2
+ 1)
⟹ π‘₯ = 2 βˆ’2 + 1 = 2 βˆ’1 = βˆ’ 2
The point is ( π‘₯, 𝑦) = (βˆ’ 2, 2)
When 𝑦 = βˆ’ 2 , from (3), βˆ’ 2
3
+ π‘₯ βˆ’ (βˆ’ 2) = 0
⟹ βˆ’ 2
3
+ π‘₯ + 2 = 0
⟹ π‘₯ = 2
3
βˆ’ 2 = 2 2
2
βˆ’ 1 = 2 2 βˆ’ 1 = 2 1 = 2
The point is ( π‘₯, 𝑦) = ( 2, βˆ’ 2)
The stationary / critical points are (0,0), βˆ’ 2, 2 , ( 2, βˆ’ 2)
To find the point at which 𝒇(𝒙, π’š) has maximum/minimum:
π‘Ÿπ‘‘ βˆ’ 𝑠2 = 12π‘₯2 βˆ’ 4 12𝑦2 βˆ’ 4 βˆ’ 4 2
= 12π‘₯2 βˆ’ 4 12𝑦2 βˆ’ 4 βˆ’ 16
At the Point (0,0):
π‘Ÿπ‘‘ βˆ’ 𝑠2
π‘Žπ‘‘ 0,0 = 12 0 2
βˆ’ 4 12 0 2
βˆ’ 4 βˆ’ 16
= βˆ’4 βˆ’4 βˆ’ 16 = 16 βˆ’ 16 = 𝟎
Hence there is no maximum / minimum for 𝑓(π‘₯, 𝑦) at (0,0) (we can’t judge)
At the Point βˆ’ 𝟐, 𝟐 :
π‘Ÿπ‘‘ βˆ’ 𝑠2
π‘Žπ‘‘ βˆ’ 2, 2 = 12 βˆ’ 2
2
βˆ’ 4 12 2
2
βˆ’ 4 βˆ’ 16
= 12 2 βˆ’ 4 12 2 βˆ’ 4 βˆ’ 16 = 24 βˆ’ 4 24 βˆ’ 4 βˆ’ 16
= 20 20 βˆ’ 16 = 400 βˆ’ 16 = 394 > 𝟎
π‘Ÿ π‘Žπ‘‘ βˆ’ 2, 2 = 12 βˆ’ 2
2
βˆ’ 4 = 12 2 βˆ’ 4 = 24 βˆ’ 4 = 20 > 𝟎
Hence 𝑓(π‘₯, 𝑦) has minimum at βˆ’ 2, 2
To find the minimum value :
Put x, y = βˆ’ 2, 2 in (1)
The minimum value is 𝑓(βˆ’ 2, 2)
= βˆ’ 2
4
+ 2
4
βˆ’ 2 βˆ’ 2
2
+ 4 βˆ’ 2 2 βˆ’ 2 2
2
= 4 + 4 βˆ’ 4 βˆ’ 8 βˆ’ 4 = βˆ’8
Hence the minimum value is βˆ’8
At the Point 𝟐, βˆ’ 𝟐 :
π‘Ÿπ‘‘ βˆ’ 𝑠2
π‘Žπ‘‘ 2,βˆ’ 2 = 12 2
2
βˆ’ 4 12 βˆ’ 2
2
βˆ’ 4 βˆ’ 16
= 12 2 βˆ’ 4 12 2 βˆ’ 4 βˆ’ 16 = 24 βˆ’ 4 24 βˆ’ 4 βˆ’ 16
= 20 20 βˆ’ 16 = 400 βˆ’ 16 = 394 > 𝟎
π‘Ÿ π‘Žπ‘‘ βˆ’ 2, 2 = 12 βˆ’ 2
2
βˆ’ 4 = 12 2 βˆ’ 4 = 24 βˆ’ 4 = 20 > 𝟎
Again 𝑓(π‘₯, 𝑦) has minimum at 2, βˆ’ 2
Problem 2:
Find the maximum or minimum values of 𝒇 𝒙, π’š = πŸ‘π’™ 𝟐
βˆ’ π’š 𝟐
+ 𝒙 πŸ‘
Solution:
Given 𝑓 π‘₯, 𝑦 = 3π‘₯2 βˆ’ 𝑦2 + π‘₯3 ------- (1)
To find the stationary point:
Put
πœ•π‘“
πœ•π‘₯
= 𝑓π‘₯ = 0 &
πœ•π‘“
πœ•π‘¦
= 𝑓𝑦 = 0
πœ•π‘“
πœ•π‘₯
= 0 β‡’ 6π‘₯ + 3π‘₯2 = 0 ⟹ 3π‘₯ 2 + π‘₯ = 0
⟹ π‘₯ = 0, π‘₯ + 2 = 0 ⟹ π‘₯ = 0, π‘₯ = βˆ’2
πœ•π‘“
πœ•π‘¦
= 0 ⟹ βˆ’2𝑦 = 0 ⟹ 𝑦 = 0
The stationary points are 0,0 , (βˆ’2,0)
𝑝 = 𝐟 𝐱 =
πœ•π‘“
πœ•π‘₯
= 6π‘₯ + 3π‘₯2
π‘Ÿ = 𝐟 𝐱𝐱 =
πœ•2
𝑓
πœ•π‘₯2
= 6 + 6π‘₯
𝑠 = 𝐟 𝐱𝐲 =
πœ•2
𝑓
πœ•π‘₯πœ•π‘¦
= 0
π‘ž = 𝐟 𝐲 =
πœ•π‘“
πœ•π‘¦
= βˆ’2𝑦 𝑑 = 𝑓𝑦𝑦 =
πœ•2𝑓
πœ•π‘¦2
= βˆ’2
To find the point at which 𝒇(𝒙, π’š) has maximum/minimum:
π‘Ÿπ‘‘ βˆ’ 𝑠2 = 6 + 6π‘₯ βˆ’2 βˆ’ 0 = βˆ’12 βˆ’ 12π‘₯
At the Point (0,0):
π‘Ÿπ‘‘ βˆ’ 𝑠2
π‘Žπ‘‘ 0,0 = βˆ’12 βˆ’ 12 0 = βˆ’12 < 𝟎
Hence the point (0,0) is the saddle point of 𝑓(π‘₯, 𝑦)
At the Point (-2,0):
π‘Ÿπ‘‘ βˆ’ 𝑠2
π‘Žπ‘‘ βˆ’2,0 = βˆ’12 βˆ’ 12 βˆ’2 = βˆ’12 + 24 = 12 > 𝟎
π‘Ÿat βˆ’2,0 = 6 + 6 βˆ’2 = 6 βˆ’ 12 = βˆ’6 < 𝟎
Hence at the point βˆ’2,0 the function 𝑓 π‘₯, 𝑦 has maximum.
To find the maximum value:
Put π‘₯, 𝑦 = (βˆ’2,0) in (1), 𝑓 βˆ’2,0 = 3(βˆ’2)2 βˆ’ 0 2 + βˆ’2 3 = 12 βˆ’ 8 = 4
Constrained Maxima and Minima – Lagrangian Multiplier
If 𝑓(π‘₯, 𝑦, 𝑧) is a function of three variables π‘₯, 𝑦, 𝑧 , we will find the extreme values
(maximum or minimum) of 𝑓(π‘₯, 𝑦, 𝑧) with respect to a constraint βˆ… π‘₯, 𝑦, 𝑧 = 0
Procedure
Step 1. Identify the constraint equation βˆ… π‘₯, 𝑦, 𝑧 = 0
Step 2. Identify the main function for which we have to find the extreme value, let it be
𝑓(π‘₯, 𝑦, 𝑧)
Step 3. Form the equation 𝐹 = 𝑓 + πœ†βˆ…
Step 4. Find 𝐹π‘₯ , 𝐹𝑦, 𝐹𝑧
Step 5. Put 𝐹π‘₯ = 0 , 𝐹𝑦 = 0, 𝐹𝑧 = 0 and solve all the equations including βˆ… π‘₯, 𝑦, 𝑧 = 0
Step 6. Find the values of π‘₯, 𝑦, 𝑧 and πœ†
Step 7. The values of π‘₯, 𝑦, 𝑧 gives the extreme values of 𝑓(π‘₯, 𝑦, 𝑧)
Note :
Distance of a point π‘₯1, 𝑦1, 𝑧1 π‘“π‘Ÿπ‘œπ‘š π‘₯, 𝑦, 𝑧 is given by
𝑑 = π‘₯ βˆ’ π‘₯1
2 + 𝑦 βˆ’ 𝑦1
2 + 𝑧 βˆ’ 𝑧1
2
Square of the distance is 𝑑2
= π‘₯ βˆ’ π‘₯1
2
+ 𝑦 βˆ’ 𝑦1
2
+ 𝑧 βˆ’ 𝑧1
2
Problem 1:
Find the length of the shortest line form the point (𝟎, 𝟎,
πŸπŸ“
πŸ—
) to the surface
𝒛 = π’™π’š
Solution:
The square of the distance from the point (0,0,
25
9
) to (π‘₯, 𝑦, 𝑧) is (𝑑2)
𝑓 π‘₯, 𝑦, 𝑧 = π‘₯ βˆ’ 0 2 + 𝑦 βˆ’ 0 2 + 𝑧 βˆ’
25
9
2
𝑓 π‘₯, 𝑦, 𝑧 = π‘₯2 + 𝑦2 + 𝑧 βˆ’
25
9
2
------- (1)
Subject to ( to the surface) βˆ… π‘₯, 𝑦𝑧 = 𝑧 βˆ’ π‘₯𝑦 = 0 ------------(2)
(∡ 𝑧 = π‘₯𝑦 ⟹ 𝑧 βˆ’ π‘₯𝑦 = 0)
Consider the Lagrangian function F = 𝑓 π‘₯, 𝑦, 𝑧 + πœ†πœ™ π‘₯, 𝑦, 𝑧
𝐹 = π‘₯2
+ 𝑦2
+ 𝑧 βˆ’
25
9
2
+ πœ†(𝑧 βˆ’ π‘₯𝑦)
πœ•F
πœ•π±
= 2x βˆ’ Ξ»y
πœ•F
πœ•y
= 2y βˆ’ Ξ»x
πœ•F
πœ•z
= 2 z βˆ’
25
9
+ Ξ»
To find the stationary points:
Put
πœ•F
πœ•π‘₯
= 0,
πœ•F
πœ•π‘¦
= 0 &
πœ•F
πœ•π‘§
= 0
πœ•πΉ
πœ•π‘₯
= 0 ⟹ 2π‘₯ βˆ’ πœ†π‘¦ = 0 ⟹ πœ†π‘¦ = 2π‘₯ ⟹ πœ† =
2π‘₯
𝑦
------- (3)
πœ•F
πœ•π‘¦
= 0 ⟹ 2𝑦 βˆ’ πœ†x = 0 ⟹ πœ†π‘₯ = 2𝑦 ⟹ πœ† =
2𝑦
π‘₯
------ (4)
πœ•F
πœ•π‘§
= 0 ⟹ 2 z βˆ’
25
9
+ Ξ» = 0 ⟹ Ξ» = βˆ’2 z βˆ’
25
9
----- (5)
From (3), (4), (5),
2π‘₯
𝑦
=
2𝑦
π‘₯
= βˆ’2 z βˆ’
25
9
⟹
π‘₯
𝑦
=
𝑦
π‘₯
= βˆ’z +
25
9
Consider
π‘₯
𝑦
=
𝑦
π‘₯
⟹ π‘₯2
= 𝑦2
⟹ π‘₯ = ±𝑦
Consider
𝑦
π‘₯
= βˆ’z +
25
9
,
If π‘₯ = 𝑦
βˆ’π‘§ +
25
9
=
𝑦
𝑦
= 1 ⟹ 𝑧 =
25
9
βˆ’ 1 =
25βˆ’9
9
=
16
9
Given 𝑧 = π‘₯𝑦 = 𝑦. 𝑦 = 𝑦2
(∡ π‘₯ = 𝑦)
⟹ 𝑦2
=
16
9
∡ 𝑧 =
16
9
⟹ 𝑦 = Β±
16
9
= Β±
4
3
If π‘₯ = βˆ’π‘¦
βˆ’π‘§ +
25
9
=
𝑦
βˆ’π‘¦
= βˆ’1 ⟹ 𝑧 =
25
9
+ 1 =
25+9
9
=
34
9
Given 𝑧 = π‘₯𝑦 = βˆ’π‘¦. 𝑦 = βˆ’π‘¦2 (∡ π‘₯ = βˆ’π‘¦)
⟹ βˆ’π‘¦2
=
34
9
⟹ 𝑦2
= βˆ’
34
9
∡ 𝑧 =
34
9
⟹ 𝑦 = Β±
βˆ’34
9
(Imaginary , this is not possible)
Hence π‘₯ = βˆ’π‘¦ is ruled out.
Hence π‘₯ = 𝑦 = Β±
4
3
& 𝑧 = π‘₯𝑦 = 𝑦2 =
4
3
2
=
16
9
From (1) square distance is 𝑑2 = π‘₯2 + 𝑦2 + 𝑧 βˆ’
25
9
2
=
4
3
2
+
4
3
2
+
16
9
βˆ’
25
9
2
=
16
9
+
16
9
+ βˆ’
9
9
2
= 2
16
9
+ βˆ’1 2
=
32
9
+ 1 =
32+9
9
=
41
9
The required minimum distance is (d) =
41
9
=
41
3
units
Problem 2:
A rectangular box open at the top is to have a volume of 32 cc .Find the dimensions of the
box that requires the least material for its construction
Solution:
Given a rectangular open box with volume 32cc
Let us take the length, width and height of the box be x, y and z respectively.
Hence the volume of the box is π‘₯𝑦𝑧 = 32 , which is the given constrain
(condition).
Let βˆ… π‘₯, 𝑦, 𝑧 = π‘₯𝑦𝑧 βˆ’ 32 ------ (1)
Requirement of least material to construct the open top box is the total least surface
area of the box.
Total surface area of the open rectangular box is π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧
Let 𝑓 π‘₯, 𝑦, 𝑧 = π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 ------ (2)
Note:
Hence the total surface area of a open rectangular box is π’™π’š + πŸπ’™π’› + πŸπ’šπ’›
Consider the Lagrangian function 𝐹 = 𝑓 + πœ†πœ™
𝐹 = π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 + πœ† π‘₯𝑦𝑧 βˆ’ 32 ( by using (1) & (2))
To find the stationary points:
Put
πœ•F
πœ•π‘₯
= 0,
πœ•F
πœ•π‘¦
= 0 &
πœ•F
πœ•π‘§
= 0
πœ•πΉ
πœ•π‘₯
= 0 ⟹ y + 2z + πœ†π‘¦π‘§ = 0 ⟹ πœ†π‘¦π‘§ = βˆ’ 𝑦 + 2𝑧 ⟹ πœ† =
βˆ’(𝑦+2𝑧)
𝑦𝑧
------ (3)
πœ•F
πœ•π‘¦
= 0 ⟹ π‘₯ + 2𝑧 + πœ†xz = 0 ⟹ πœ†π‘₯𝑧 = βˆ’(π‘₯ + 2𝑧) ⟹ πœ† =
βˆ’(π‘₯+2𝑧)
π‘₯𝑧
------ (4)
πœ•F
πœ•π‘§
= 0 ⟹ 2x + 2y + Ξ»xy = 0 ⟹ Ξ»xy = βˆ’2x βˆ’ 2y = βˆ’2 x + y
πœ† =
βˆ’2 π‘₯+𝑦
π‘₯𝑦
----- (5)
πœ•πΉ
πœ•π‘₯
= 𝑦 + 2𝑧 + πœ†π‘¦π‘§
πœ•πΉ
πœ•π‘¦
= π‘₯ + 2𝑧 + πœ†π‘₯𝑧
πœ•πΉ
πœ•π‘§
= 2π‘₯ + 2𝑦 + πœ†π‘₯𝑦
From (3), (4), (5),
βˆ’(𝑦+2𝑧)
𝑦𝑧
=
βˆ’(π‘₯+2𝑧)
π‘₯𝑧
=
βˆ’2 π‘₯+𝑦
π‘₯𝑦
Consider
βˆ’(𝑦+2𝑧)
𝑦𝑧
=
βˆ’(π‘₯+2𝑧)
π‘₯𝑧
β‡’
βˆ’π‘₯(𝑦+2𝑧)
π‘₯𝑦𝑧
=
βˆ’π‘¦(π‘₯+2𝑧)
𝑦π‘₯𝑧
β‡’ π‘₯𝑦 + 2𝑧π‘₯ = (𝑦π‘₯ + 2𝑧𝑦)
β‡’ 2𝑧π‘₯ = 2𝑧𝑦
β‡’ π‘₯ = 𝑦 ------ (6)
Consider
βˆ’(π‘₯+2𝑧)
π‘₯𝑧
=
βˆ’2 π‘₯+𝑦
π‘₯𝑦
β‡’
π‘₯+2𝑧
π‘₯𝑧
=
2 π‘₯+𝑦
π‘₯𝑦
Using (6),
π‘₯+2𝑧
π‘₯𝑧
=
2 π‘₯+π‘₯
π‘₯π‘₯
β‡’
π‘₯+2𝑧
π‘₯𝑧
=
4π‘₯
π‘₯2
β‡’
π‘₯+2𝑧
π‘₯𝑧
=
4
π‘₯
β‡’
π‘₯+2𝑧
𝑧
= 4
β‡’ π‘₯ + 2𝑧 = 4𝑧
β‡’ 4𝑧 βˆ’ 2𝑧 = π‘₯
β‡’ 2𝑧 = π‘₯
β‡’ 𝑧 =
π‘₯
2
-------- (7)
Given volume π‘₯𝑦𝑧 = 32
From (6) & (7)
π‘₯ . π‘₯ .
π‘₯
2
= 32 , (∡ 𝑦 = π‘₯ & 𝑧 =
π‘₯
2
)
π‘₯3
= 2 32 = 64
π‘₯ = 64
1
3
π‘₯ = 43
1
3 = 4
3
3 = 4
Hence π‘₯ = 4 , 𝑦 = π‘₯ = 4 and 𝑧 =
π‘₯
2
=
4
2
= 2
The required dimension is π‘₯ = 4, 𝑦 = 4 π‘Žπ‘›π‘‘ 𝑧 = 2
Problem 3:
Find the dimensions of the rectangular box, open at the top, of maximum capacity
whose surface area is 432 square meter.
Solution:
Given a rectangular open box with surface area 432 sq.m
Let us take the length, width and height of the box be x, y and z respectively.
Hence the surface area π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 = 432, which is the given constrain(condition)
Let βˆ… π‘₯, 𝑦, 𝑧 = π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 βˆ’ 432 ------ (1)
Requirement of a open rectangular box with maximum capacity (volume)
Total volume of the open rectangular box is π‘₯𝑦𝑧
Let 𝑓 π‘₯, 𝑦, 𝑧 = π‘₯𝑦𝑧 ------ (2)
Consider the Lagrangian function 𝐹 = 𝑓 + πœ†πœ™
𝐹 = π‘₯𝑦𝑧 + πœ† π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 βˆ’ 432 ( by using (1) & (2))
To find the stationary points:
Put
πœ•F
πœ•π‘₯
= 0,
πœ•F
πœ•π‘¦
= 0 &
πœ•F
πœ•π‘§
= 0
πœ•πΉ
πœ•π‘₯
= 0 ⟹ yz + πœ† 𝑦 + 2z = 0 ⟹ πœ† 𝑦 + 2𝑧 = βˆ’π‘¦π‘§ ⟹ πœ† =
βˆ’π‘¦π‘§
𝑦+2𝑧
------ (3)
πœ•F
πœ•π‘¦
= 0 ⟹ π‘₯𝑧 + πœ†(x + 2z) = 0 ⟹ πœ†(π‘₯ + 2𝑧) = βˆ’π‘₯𝑧 ⟹ πœ† =
βˆ’π‘₯𝑧
π‘₯+2𝑧
------ (4)
πœ•F
πœ•π‘§
= 0 ⟹ xy + Ξ» 2x + 2y = 0 ⟹ Ξ» 2x + 2y = βˆ’xy β‡’ πœ† =
βˆ’π‘₯𝑦
2π‘₯+2𝑦
----- (5)
πœ•πΉ
πœ•π‘₯
= 𝑦𝑧 + πœ†(𝑦 + 2𝑧)
πœ•πΉ
πœ•π‘¦
= π‘₯𝑧 + πœ†(π‘₯ + 2𝑧)
πœ•πΉ
πœ•π‘§
= π‘₯𝑦 + πœ†(2π‘₯ + 2𝑦)
From (3), (4), (5),
βˆ’π‘¦π‘§
𝑦+2𝑧
=
βˆ’π‘₯𝑧
π‘₯+2𝑧
=
βˆ’π‘₯𝑦
2π‘₯+2𝑦
Consider
βˆ’π‘¦π‘§
𝑦+2𝑧
=
βˆ’π‘₯𝑧
π‘₯+2𝑧
β‡’
𝑦𝑧
𝑦+2𝑧
=
π‘₯𝑧
π‘₯+2𝑧
β‡’
𝑦
𝑦+2𝑧
=
π‘₯
π‘₯+2𝑧
β‡’ 𝑦 π‘₯ + 2𝑧 = π‘₯(𝑦 + 2𝑧)
β‡’ π‘₯𝑦 + 2𝑧𝑦 = π‘₯𝑦 + 2𝑧π‘₯
β‡’ 2𝑧𝑦 = 2𝑧π‘₯
β‡’ 𝑦 = π‘₯ -------- (6)
Consider
βˆ’π‘₯𝑧
π‘₯+2𝑧
=
βˆ’π‘₯𝑦
2π‘₯+2𝑦
β‡’
𝑧
π‘₯+2𝑧
=
𝑦
2 π‘₯+𝑦
β‡’
𝑧
π‘₯+2𝑧
=
π‘₯
2 π‘₯+π‘₯
(by using (6))
β‡’
𝑧
π‘₯+2𝑧
=
π‘₯
2 2π‘₯
β‡’
𝑧
π‘₯+2𝑧
=
1
4
β‡’
𝑧
π‘₯+2𝑧
=
1
4
β‡’ 4𝑧 = π‘₯ + 2𝑧
β‡’ 4𝑧 βˆ’ 2𝑧 = π‘₯
β‡’ 2𝑧 = π‘₯
β‡’ 𝑧 =
π‘₯
2
------- (7)
Given surface area π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 = 432
Using (6) & (7),
π‘₯. π‘₯ + 2π‘₯.
π‘₯
2
+ 2π‘₯.
π‘₯
2
= 432
β‡’ π‘₯2
+ π‘₯2
+ π‘₯2
= 432
β‡’ 3π‘₯2
= 432
β‡’ π‘₯2
=
432
3
β‡’ π‘₯2
= 144
β‡’ π‘₯ = Β± 144
β‡’ π‘₯ = Β±12
(since π‘₯ is the length , π‘₯ = βˆ’12 is not possible )
Hence π‘₯ = 12 , 𝑦 = π‘₯ = 12 , & 𝑧 =
π‘₯
2
=
12
2
= 6
The required dimension for maximum capacity is π‘₯ = 12 , 𝑦 = 12 & 𝑧 = 6
Problem 4:
Find the minimum distance from the point (𝟏, 𝟐, 𝟎) to the cone 𝒛 𝟐 = 𝒙 𝟐 + π’š 𝟐
Solution:
Wkt, the square of the distance (𝑑2
) from the point (1, 2, 0) to (π‘₯, 𝑦, 𝑧) is
π‘₯ βˆ’ 1 2 + 𝑦 βˆ’ 2 2 + 𝑧 βˆ’ 0 2 = π‘₯ βˆ’ 1 2 + 𝑦 βˆ’ 2 2 + 𝑧2
Let 𝑓 π‘₯, 𝑦, 𝑧 = π‘₯ βˆ’ 1 2 + 𝑦 βˆ’ 2 2 + 𝑧2 --------- (1)
Subject to 𝑧2
= π‘₯2
+ 𝑦2
β‡’ 𝑧2
βˆ’ π‘₯2
βˆ’ 𝑦2
= 0
Let βˆ… π‘₯, 𝑦, 𝑧 = 𝑧2
βˆ’ π‘₯2
βˆ’ 𝑦2
---------- (2)
Consider the Lagrangian function 𝐹 = 𝑓 + πœ†πœ™
𝐹 = π‘₯ βˆ’ 1 2 + 𝑦 βˆ’ 2 2 + 𝑧2 + πœ†(𝑧2 βˆ’ π‘₯2 βˆ’ 𝑦2)
πœ•F
πœ•x
= 2 x βˆ’ 1 βˆ’ Ξ»(2x)
πœ•F
πœ•y
= 2 y βˆ’ 2 βˆ’ Ξ»(2y)
πœ•F
πœ•z
= 2z + Ξ» 2z
= 2z(1 + Ξ»)
To find the stationary points:
Put
πœ•F
πœ•π‘₯
= 0,
πœ•F
πœ•π‘¦
= 0 &
πœ•F
πœ•π‘§
= 0
πœ•πΉ
πœ•π‘₯
= 0 ⟹ 2 π‘₯ βˆ’ 1 βˆ’ πœ† 2π‘₯ = 0 ⟹ 2πœ†π‘₯ = 2 π‘₯ βˆ’ 1
⟹ πœ† =
(π‘₯βˆ’1)
π‘₯
------ (3)
πœ•F
πœ•π‘¦
= 0 ⟹ 2 𝑦 βˆ’ 2 βˆ’ πœ† 2𝑦 = 0 ⟹ 2πœ†π‘¦ = 2 𝑦 βˆ’ 2
⟹ πœ† =
(π‘¦βˆ’2)
𝑦
------ (4)
πœ•F
πœ•π‘§
= 0 ⟹ 2𝑧(1 + πœ†) = 0 ----- (5)
5 ⟹ 𝑧 = 0 π‘œπ‘Ÿ 1 + πœ† = 0
⟹ 𝑧 = 0 π‘œπ‘Ÿ πœ† = βˆ’1
Suppose 𝑧 = 0, Since π‘₯2
+ 𝑦2
= 𝑧2
β‡’ π‘₯2
+ 𝑦2
= 0
β‡’ π‘₯ = 0 & 𝑦 = 0 , this is not possible.
Hence πœ† = βˆ’1
From (3) , -1=
(π‘₯βˆ’1)
π‘₯
β‡’ βˆ’π‘₯ = π‘₯ βˆ’ 1 β‡’ βˆ’π‘₯ βˆ’ π‘₯ = βˆ’1 β‡’ βˆ’2π‘₯ = βˆ’1
β‡’ 2π‘₯ = 1 β‡’ π‘₯ =
1
2
From(4), βˆ’1 =
π‘¦βˆ’2
𝑦
β‡’ βˆ’π‘¦ = 𝑦 βˆ’ 2 β‡’ βˆ’π‘¦ βˆ’ 𝑦 = βˆ’2 β‡’ βˆ’2𝑦 = βˆ’2
β‡’ 𝑦 = 1
Since π‘₯2 + 𝑦2 = 𝑧2
Substitute π‘₯ =
1
2
, 𝑦 = 1
𝑧2 =
1
2
2
+ 1 2 =
1
4
+ 1 =
1+4
4
=
5
4
β‡’ 𝑧 = Β±
5
4
= Β±
5
2
Hence , π‘₯ =
1
2
, 𝑦 = 1 , 𝑧 = Β±
5
2
The square distance (𝑑2) is π‘₯ βˆ’ 1 2 + 𝑦 βˆ’ 2 2 + 𝑧2
=
1
2
βˆ’ 1
2
+ 1 βˆ’ 2 2
+
5
2
2
= βˆ’
1
2
2
+ βˆ’1 2
+
5
4
=
1
4
+ 1 +
5
4
=
1+4+5
4
=
10
4
=
5
2
The minimum distance (𝑑) =
5
2
Jacobian
β€’ If 𝑒 = 𝑓(π‘₯, 𝑦) and 𝑣 = 𝑔(π‘₯, 𝑦) are two continuous functions of two
independent variables x and y then the functional determinant
𝐽 =
πœ•π‘’
πœ•π‘₯
πœ•π‘’
πœ•π‘¦
πœ•π‘£
πœ•π‘₯
πœ•π‘£
πœ•π‘¦
=
𝑒 π‘₯ 𝑒 𝑦
𝑣 π‘₯ 𝑣 𝑦
is called Jacobian of 𝑒 , 𝑣 with respect to π‘₯, 𝑦 and it is
denoted by
πœ• 𝑒,𝑣
πœ• π‘₯,𝑦
β€’ If u , v, w are functions of x ,y , z then jacobian of u , v , w with respect to x , y , z
is given by
πœ• 𝑒,𝑣,𝑀
πœ• π‘₯,𝑦,𝑧
=
πœ•π‘’
πœ•π‘₯
πœ•π‘’
πœ•π‘¦
πœ•π‘’
πœ•π‘§
πœ•π‘£
πœ•π‘₯
πœ•π‘£
πœ•π‘¦
πœ•π‘£
πœ•π‘§
πœ•π‘€
πœ•π‘₯
πœ•π‘€
πœ•π‘¦
πœ•π‘€
πœ•π‘§
=
𝑒 π‘₯ 𝑒 𝑦 𝑒 𝑧
𝑣 π‘₯ 𝑣 𝑦 𝑣𝑧
𝑀 π‘₯ 𝑀 𝑦 𝑀𝑧
Two important Properties of Jacobian
1. If 𝑒, 𝑣 are functions of π‘₯, 𝑦 and π‘₯, 𝑦 are the function of π‘Ÿ, 𝑠 then
πœ• 𝑒,𝑣
πœ• π‘Ÿ,𝑠
=
πœ• 𝑒,𝑣
πœ• π‘₯,𝑦
πœ• π‘₯,𝑦
πœ• π‘Ÿ,𝑠
2. If 𝑒, 𝑣 are the functions of π‘₯, 𝑦 then
πœ• π‘₯,𝑦
πœ• 𝑒,𝑣
=
1
πœ• 𝑒,𝑣
πœ• π‘₯,𝑦
Note :
Two functions 𝑒(π‘₯, 𝑦) & 𝑣(π‘₯, 𝑦) are functionally depended if
πœ• 𝑒,𝑣
πœ• π‘₯,𝑦
=0
Problem 1:
If 𝒖 =
π’šπ’›
𝒙
, 𝒗 =
𝒛𝒙
π’š
, π’˜ =
π’™π’š
𝒛
find
𝝏 𝒖,𝒗,π’˜
𝝏 𝒙,π’š,𝒛
Solution:
Wkt, the jacobian of 𝑒, 𝑣, 𝑀 with respect to π‘₯, 𝑦, 𝑧 is given by
πœ• 𝑒,𝑣,𝑀
πœ• π‘₯,𝑦,𝑧
=
𝑒 π‘₯ 𝑒 𝑦 𝑒 𝑧
𝑣 π‘₯ 𝑣 𝑦 𝑣𝑧
𝑀 π‘₯ 𝑀 𝑦 𝑀𝑧
Given
𝑒 =
𝑦𝑧
π‘₯
, 𝑣 =
𝑧π‘₯
𝑦
, 𝑀 =
π‘₯𝑦
𝑧
πœ• 𝑒,𝑣,𝑀
πœ• π‘₯,𝑦,𝑧
=
𝑒 π‘₯ 𝑒 𝑦 𝑒 𝑧
𝑣 π‘₯ 𝑣 𝑦 𝑣𝑧
𝑀 π‘₯ 𝑀 𝑦 𝑀𝑧
=
βˆ’
𝑦𝑧
π‘₯2
𝑧
π‘₯
𝑦
π‘₯
𝑧
𝑦
βˆ’
𝑧π‘₯
𝑦2
π‘₯
𝑦
𝑦
𝑧
π‘₯
𝑧
βˆ’
π‘₯𝑦
𝑧2
=
1
π‘₯
1
𝑦
1
𝑧
βˆ’
𝑦𝑧
π‘₯
𝑧 𝑦
𝑧 βˆ’
𝑧π‘₯
𝑦
π‘₯
𝑦 π‘₯ βˆ’
π‘₯𝑦
𝑧
=
1
π‘₯𝑦𝑧
βˆ’
𝑦𝑧
π‘₯
βˆ’
𝑧π‘₯
𝑦
βˆ’
π‘₯𝑦
𝑧
βˆ’ π‘₯2 βˆ’ 𝑧 𝑧 βˆ’
π‘₯𝑦
𝑧
βˆ’ 𝑦π‘₯ + 𝑦 𝑧π‘₯ βˆ’ βˆ’
𝑧π‘₯
𝑦
𝑦
=
1
π‘₯𝑦𝑧
[ βˆ’
𝑦𝑧
π‘₯
π‘₯2 βˆ’ π‘₯2 βˆ’ 𝑧 βˆ’π‘₯𝑦 βˆ’ π‘₯𝑦 + 𝑦 𝑧π‘₯ + 𝑧π‘₯ ]
=
1
π‘₯𝑦𝑧
βˆ’
𝑦𝑧
π‘₯
0 βˆ’ 𝑧 βˆ’2π‘₯𝑦 + 𝑦 2𝑧π‘₯ =
1
π‘₯𝑦𝑧
2π‘₯𝑦𝑧 + 2π‘₯𝑦𝑧 =
4π‘₯𝑦𝑧
π‘₯𝑦𝑧
= 4
Problem 2:
If 𝒙 = 𝒖 𝟐 – 𝒗 𝟐 , π’š = πŸπ’–π’— find the Jacobian of 𝒙, π’š with respect to 𝒖 𝒂𝒏𝒅 𝒗
Solution:
Given π‘₯ = 𝑒2 – 𝑣2 , 𝑦 = 2𝑒𝑣
To find the jacobian of π‘₯, 𝑦 w . r. to 𝑒 & 𝑣
To find
πœ• π‘₯,𝑦
πœ• 𝑒,𝑣
=
π‘₯ 𝑒 π‘₯ 𝑣
𝑦 𝑒 𝑦𝑣
π‘₯ = 𝑒2 – 𝑣2 𝑦 = 2𝑒𝑣
π‘₯ 𝑒 = 2𝑒 𝑦𝑒 = 2𝑣
π‘₯ 𝑣 = βˆ’2𝑣 𝑦𝑣 = 2𝑒
πœ• π‘₯,𝑦
πœ• 𝑒,𝑣
=
π‘₯ 𝑒 π‘₯ 𝑣
𝑦 𝑒 𝑦𝑣
=
2𝑒 βˆ’2𝑣
βˆ’2𝑣 2𝑒
= 4𝑒2
βˆ’ 4𝑣2
= 4 𝑒2
βˆ’ 𝑣2
Problem 3:
If 𝒙 = 𝒖𝒗 𝒂𝒏𝒅 π’š =
𝒖
𝒗
, then find
𝝏 𝒙,π’š
𝝏 𝒖,𝒗
Solution:
Given
π‘₯ = 𝑒𝑣 π‘Žπ‘›π‘‘ 𝑦 =
𝑒
𝑣
π‘₯ = 𝑒𝑣
𝑦 =
𝑒
𝑣
π‘₯ 𝑒 = 𝑣
𝑦𝑒 =
1
𝑣
π‘₯ 𝑣 = 𝑒
𝑦𝑣 = βˆ’
𝑒
𝑣2
πœ• π‘₯,𝑦
πœ• 𝑒,𝑣
=
π‘₯ 𝑒 π‘₯ 𝑣
𝑦 𝑒 𝑦𝑣
=
𝑣 𝑒
1
𝑣
βˆ’
𝑒
𝑣2
= 𝑣
𝑒
𝑣2 βˆ’
1
𝑣
𝑒 =
𝑒
𝑣
βˆ’
𝑒
𝑣
= 0
Problem 4:
If 𝒙 = 𝒓 𝐜𝐨𝐬 𝜽 and π’š = 𝒓 𝐬𝐒𝐧 𝜽 then find
𝝏𝒓
𝝏𝒙
Solution:
Given π‘₯ = π‘Ÿ cos πœƒ and 𝑦 = π‘Ÿ sin πœƒ
π‘₯2 + 𝑦2 = π‘Ÿ2 cos2 πœƒ + π‘Ÿ2 sin2 πœƒ = π‘Ÿ2(cos2 πœƒ + sin2 πœƒ) = π‘Ÿ2
∴ π‘Ÿ2 = π‘₯2 + 𝑦2
2π‘Ÿ
πœ•π‘Ÿ
πœ•π‘₯
= 2π‘₯ ⟹
πœ•π‘Ÿ
πœ•π‘₯
=
2π‘₯
2π‘Ÿ
=
π‘₯
π‘Ÿ
=
π‘₯
π‘₯2+𝑦2
, ∡ π‘Ÿ = π‘₯2 + 𝑦2
Problem 5:
If 𝒙 = 𝒖 (𝟏 – 𝒗) and π’š = 𝒖𝒗, find
𝝏 𝒖,𝒗
𝝏 𝒙,π’š
Solution:
Given π‘₯ = 𝑒 (1 – 𝑣) and 𝑦 = 𝑒𝑣
𝑖. 𝑒 π‘₯ = 𝑒 βˆ’ 𝑒𝑣 and 𝑦 = 𝑒𝑣
Wkt
πœ• 𝑒,𝑣
πœ• π‘₯,𝑦
=
1
πœ• π‘₯,𝑦
πœ• 𝑒,𝑣
Now
πœ• π‘₯,𝑦
πœ• 𝑒,𝑣
=
π‘₯ 𝑒 π‘₯ 𝑣
𝑦 𝑒 𝑦𝑣
π‘₯ = 𝑒 βˆ’ 𝑒𝑣 𝑦 = 𝑒𝑣
π‘₯ 𝑒 = 1 βˆ’ 𝑣 𝑦𝑒 = 𝑣
π‘₯ 𝑣 = βˆ’π‘’ 𝑦𝑣 = 𝑒
πœ• π‘₯,𝑦
πœ• 𝑒,𝑣
=
π‘₯ 𝑒 π‘₯ 𝑣
𝑦 𝑒 𝑦𝑣
=
1 βˆ’ 𝑣 βˆ’π‘’
𝑣 𝑒
= 1 βˆ’ 𝑣 𝑒 + 𝑒𝑣 = 𝑒 βˆ’ 𝑒𝑣 + 𝑒𝑣 = 𝑒
Hence
πœ• 𝑒,𝑣
πœ• π‘₯,𝑦
=
1
πœ• π‘₯,𝑦
πœ• 𝑒,𝑣
=
1
𝑒
Problem 6:
If 𝒙 = 𝒓 π’„π’π’”πœ½ π’š = 𝒓 𝐬𝐒𝐧 𝜽 then find
𝝏 𝒓,𝜽
𝝏 𝒙,π’š
Solution:
Given π‘₯ = π‘Ÿ π‘π‘œπ‘ πœƒ 𝑦 = π‘Ÿ sin πœƒ
Wkt,
πœ• π‘₯,𝑦
πœ• π‘Ÿ,πœƒ
=
π‘₯ π‘Ÿ π‘₯ πœƒ
π‘¦π‘Ÿ 𝑦 πœƒ
π‘₯ = π‘Ÿ π‘π‘œπ‘ πœƒ 𝑦 = π‘Ÿ π‘ π‘–π‘›πœƒ
π‘₯ π‘Ÿ = π‘π‘œπ‘ πœƒ π‘¦π‘Ÿ = π‘ π‘–π‘›πœƒ
π‘₯ πœƒ = βˆ’π‘Ÿπ‘ π‘–π‘›πœƒ 𝑦 πœƒ = π‘Ÿ π‘π‘œπ‘ πœƒ
πœ• π‘₯,𝑦
πœ• π‘Ÿ,πœƒ
=
π‘₯ π‘Ÿ π‘₯ πœƒ
π‘¦π‘Ÿ 𝑦 πœƒ
=
π‘π‘œπ‘ πœƒ βˆ’π‘Ÿπ‘ π‘–π‘›πœƒ
π‘ π‘–π‘›πœƒ π‘Ÿ π‘π‘œπ‘ πœƒ
= π‘Ÿ cos2 πœƒ + π‘Ÿπ‘ π‘–π‘›2 πœƒ = π‘Ÿ (cos2 πœƒ + sin2 πœƒ) = π‘Ÿ
πœ• π‘Ÿ,πœƒ
πœ• π‘₯,𝑦
=
1
πœ• π‘₯,𝑦
πœ• π‘Ÿ,πœƒ
=
1
π‘Ÿ
Problem 7
If 𝒖 = 𝒙 + π’š & π’š = 𝒖𝒗, then find the jacobian
𝝏 𝒙,π’š
𝝏 𝒖,𝒗
Solution:
Given 𝑒 = π‘₯ + 𝑦 & 𝑦 = 𝑒𝑣
⟹ 𝑒 = π‘₯ + 𝑒𝑣 ∡ 𝑦 = 𝑒𝑣
⟹ π‘₯ = 𝑒 βˆ’ 𝑒𝑣 & 𝑦 = 𝑒𝑣
Wkt,
πœ• π‘₯,𝑦
πœ• 𝑒,𝑣
=
π‘₯ 𝑒 π‘₯ 𝑣
𝑦 𝑒 𝑦𝑣
π‘₯ = 𝑒 βˆ’ 𝑒𝑣 𝑦 = 𝑒𝑣
π‘₯ 𝑒 = 1 βˆ’ 𝑣 𝑦𝑒 = 𝑣
π‘₯ 𝑣 = βˆ’π‘’ 𝑦𝑣 = 𝑒
πœ• π‘₯,𝑦
πœ• 𝑒,𝑣
=
π‘₯ 𝑒 π‘₯ 𝑣
𝑦𝑒 𝑦𝑣
=
1 βˆ’ 𝑣 βˆ’π‘’
𝑣 𝑒
= 1 βˆ’ 𝑣 𝑒 + 𝑒𝑣 = 𝑒 βˆ’ 𝑒𝑣 + 𝑒𝑣 = 𝑒
Note :
Implicit vs Explicit
Explicit: "y = some function of x". When we know x we can calculate y directly.
An explicit function is one which is given in terms of the independent variable.
Example , consider 𝑦 = π‘₯2 + 3π‘₯ – 8
here y is the dependent variable and is given in terms of the independent variable x.
More Examples : 𝑦 = π‘₯ + 3 , 𝑦 = π‘₯2
βˆ’ π‘Ÿ2
𝑒𝑑𝑐.,
Implicit: "some function of y and x equals something else".
Implicit functions, on the other hand, are usually given in terms of both dependent and
independent variables.
Example, consider 𝑦 + π‘₯2 βˆ’ 3π‘₯ + 8 = 0
More Examples: π‘₯2
+ 𝑦2
= π‘Ž2
, π‘₯3
+ π‘₯𝑦2
+ 4π‘₯ = 5, 𝑒𝑑𝑐. ,
Differentiation of implicit functions
If 𝑓(π‘₯, 𝑦 ) is the given implicit function , then
𝑑𝑦
𝑑π‘₯
= βˆ’
πœ•π‘“
πœ•π‘₯
πœ•π‘“
πœ•π‘¦
Producer to find the differentiation:
(i) Take 𝑓(π‘₯, 𝑦)
(ii) Find
πœ•π‘“
πœ•π‘₯
&
πœ•π‘“
πœ•π‘¦
(iii) Find
𝑑𝑦
𝑑π‘₯
= βˆ’
πœ•π‘“
πœ•π‘₯
πœ•π‘“
πœ•π‘¦
Problem 1:
If 𝒙 π’š
+ π’š 𝒙
= 𝒄, then find
π’…π’š
𝒅𝒙
Solution:
Given π‘₯ 𝑦
+ 𝑦 π‘₯
= 𝑐
⟹ π‘₯ 𝑦
+ 𝑦 π‘₯
βˆ’ 𝑐 = 0
Take 𝑓 π‘₯, 𝑦 = π‘₯ 𝑦
+ 𝑦 π‘₯
βˆ’ 𝑐
Now
πœ•π‘“
πœ•π‘₯
=
πœ•
πœ•π‘₯
π‘₯ 𝑦 + 𝑦 π‘₯ βˆ’ 𝑐 =
πœ•
πœ•π‘₯
π‘₯ 𝑦 +
πœ•
πœ•π‘₯
𝑦 π‘₯ βˆ’
πœ•
πœ•π‘₯
(𝑐)
= 𝑦π‘₯ π‘¦βˆ’1
+ 𝑦 π‘₯
log 𝑦 βˆ’ 0 , (∡
𝑑
𝑑π‘₯
π‘₯ 𝑛
= 𝑛π‘₯ π‘›βˆ’1
&
𝑑
𝑑π‘₯
π‘Ž π‘₯
= π‘Ž π‘₯
log π‘Ž )
πœ•π‘“
πœ•π‘₯
= 𝑦π‘₯ π‘¦βˆ’1
+ 𝑦 π‘₯
log 𝑦
Now
πœ•π‘“
πœ•π‘¦
=
πœ•
πœ•π‘¦
π‘₯ 𝑦 + 𝑦 π‘₯ βˆ’ 𝑐 =
πœ•
πœ•π‘¦
π‘₯ 𝑦 +
πœ•
πœ•π‘¦
𝑦 π‘₯ βˆ’
πœ•
πœ•π‘¦
(𝑐)
= π‘₯ 𝑦
log π‘₯ + π‘₯ 𝑦 π‘₯βˆ’1
βˆ’ 0
πœ•π‘“
πœ•π‘¦
= π‘₯ 𝑦
log π‘₯ + π‘₯ 𝑦 π‘₯βˆ’1
Wkt
𝑑𝑦
𝑑π‘₯
= βˆ’
πœ•π‘“
πœ•π‘₯
πœ•π‘“
πœ•π‘¦
= βˆ’
𝑦π‘₯ π‘¦βˆ’1 +𝑦 π‘₯ log 𝑦
π‘₯ 𝑦 log π‘₯+π‘₯ 𝑦 π‘₯βˆ’1

More Related Content

What's hot

Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability Seyid Kadher
Β 
Lesson 1 derivative of trigonometric functions
Lesson 1 derivative of trigonometric functionsLesson 1 derivative of trigonometric functions
Lesson 1 derivative of trigonometric functionsLawrence De Vera
Β 
Complex analysis
Complex analysisComplex analysis
Complex analysissujathavvv
Β 
Complex function
Complex functionComplex function
Complex functionDr. Nirav Vyas
Β 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And DerivativeAshams kurian
Β 
LINEAR DIFFERENTIAL EQUATION AND BERNOULLIS EQUATIONS
LINEAR DIFFERENTIAL EQUATION AND BERNOULLIS EQUATIONSLINEAR DIFFERENTIAL EQUATION AND BERNOULLIS EQUATIONS
LINEAR DIFFERENTIAL EQUATION AND BERNOULLIS EQUATIONSParthivpal17
Β 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
Β 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equationsriyadutta1996
Β 
Continuous functions
Continuous functionsContinuous functions
Continuous functionssumanmathews
Β 
Vector calculus
Vector calculusVector calculus
Vector calculusraghu ram
Β 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equationDnyaneshwarPardeshi1
Β 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
Β 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its ApplicationChandra Kundu
Β 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficientSanjay Singh
Β 
Complex varible
Complex varibleComplex varible
Complex varibleNaveen Sihag
Β 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations8laddu8
Β 

What's hot (20)

Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
Β 
Lesson 1 derivative of trigonometric functions
Lesson 1 derivative of trigonometric functionsLesson 1 derivative of trigonometric functions
Lesson 1 derivative of trigonometric functions
Β 
Complex analysis
Complex analysisComplex analysis
Complex analysis
Β 
Complex function
Complex functionComplex function
Complex function
Β 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
Β 
LINEAR DIFFERENTIAL EQUATION AND BERNOULLIS EQUATIONS
LINEAR DIFFERENTIAL EQUATION AND BERNOULLIS EQUATIONSLINEAR DIFFERENTIAL EQUATION AND BERNOULLIS EQUATIONS
LINEAR DIFFERENTIAL EQUATION AND BERNOULLIS EQUATIONS
Β 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
Β 
Power series
Power series Power series
Power series
Β 
Complex numbers and quadratic equations
Complex numbers and quadratic equationsComplex numbers and quadratic equations
Complex numbers and quadratic equations
Β 
Continuous functions
Continuous functionsContinuous functions
Continuous functions
Β 
Vector calculus
Vector calculusVector calculus
Vector calculus
Β 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
Β 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
Β 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
Β 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
Β 
Complex varible
Complex varibleComplex varible
Complex varible
Β 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations
Β 
Vector algebra
Vector algebra Vector algebra
Vector algebra
Β 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Β 
Complex integration
Complex integrationComplex integration
Complex integration
Β 

Similar to Functions of severable variables

КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2ΠœΠ°Ρ€Ρ‚
Β 
Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones linealesJHANDRYALCIVARGUAJAL
Β 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
Β 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method AMINULISLAM439
Β 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
Β 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSRai University
Β 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptxSoyaMathew1
Β 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
Β 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORsumanmathews
Β 
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...IOSRJM
Β 
derivatives part 1.pptx
derivatives part 1.pptxderivatives part 1.pptx
derivatives part 1.pptxKulsumPaleja1
Β 
Semana 24 funciones iv Γ‘lgebra uni ccesa007
Semana 24 funciones iv Γ‘lgebra uni ccesa007Semana 24 funciones iv Γ‘lgebra uni ccesa007
Semana 24 funciones iv Γ‘lgebra uni ccesa007Demetrio Ccesa Rayme
Β 
Functions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsFunctions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsgcutbill
Β 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4MAY NURHAYATI
Β 
Lecture-1-Mech.pptx . .
Lecture-1-Mech.pptx                   . .Lecture-1-Mech.pptx                   . .
Lecture-1-Mech.pptx . .happycocoman
Β 
graphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxgraphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxMeryAnnMAlday
Β 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxjyotidighole2
Β 

Similar to Functions of severable variables (20)

КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
Β 
Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones lineales
Β 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
Β 
Interpolation
InterpolationInterpolation
Interpolation
Β 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
Β 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
Β 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
Β 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
Β 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
Β 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Β 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATOR
Β 
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Mod...
Β 
derivatives part 1.pptx
derivatives part 1.pptxderivatives part 1.pptx
derivatives part 1.pptx
Β 
Semana 24 funciones iv Γ‘lgebra uni ccesa007
Semana 24 funciones iv Γ‘lgebra uni ccesa007Semana 24 funciones iv Γ‘lgebra uni ccesa007
Semana 24 funciones iv Γ‘lgebra uni ccesa007
Β 
Functions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsFunctions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questions
Β 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
Β 
Lecture-1-Mech.pptx . .
Lecture-1-Mech.pptx                   . .Lecture-1-Mech.pptx                   . .
Lecture-1-Mech.pptx . .
Β 
graphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxgraphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptx
Β 
Euler's and picard's
Euler's and picard'sEuler's and picard's
Euler's and picard's
Β 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
Β 

More from Santhanam Krishnan

More from Santhanam Krishnan (18)

Matrices
MatricesMatrices
Matrices
Β 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Β 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
Β 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
Β 
Differential calculus
Differential calculus  Differential calculus
Differential calculus
Β 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
Β 
Fourier series
Fourier series Fourier series
Fourier series
Β 
Solution to second order pde
Solution to second order pdeSolution to second order pde
Solution to second order pde
Β 
Solution to pde
Solution to pdeSolution to pde
Solution to pde
Β 
Pde lagrangian
Pde lagrangianPde lagrangian
Pde lagrangian
Β 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
Β 
Differential equations
Differential equationsDifferential equations
Differential equations
Β 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Β 
Vector calculus
Vector calculusVector calculus
Vector calculus
Β 
Design of experiments
Design of experimentsDesign of experiments
Design of experiments
Β 
Numerical solution of ordinary differential equations
Numerical solution of ordinary differential equationsNumerical solution of ordinary differential equations
Numerical solution of ordinary differential equations
Β 
Solution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSolution of equations and eigenvalue problems
Solution of equations and eigenvalue problems
Β 
Testing of hypothesis
Testing of hypothesisTesting of hypothesis
Testing of hypothesis
Β 

Recently uploaded

Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
Β 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
Β 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
Β 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
Β 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
Β 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
Β 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
Β 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
Β 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
Β 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
Β 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
Β 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
Β 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
Β 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
Β 

Recently uploaded (20)

Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
Β 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
Β 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
Β 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
Β 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
Β 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
Β 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
Β 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
Β 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
Β 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
Β 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
Β 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
Β 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
Β 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
Β 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
Β 
Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
Β 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
Β 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
Β 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
Β 

Functions of severable variables

  • 2. A function of several variables is a function where the domain is a subset of 𝑅 𝑛 and range is 𝑅. A real valued function of 𝑛–variables is a function 𝑓 ∢ 𝐷 β†’ R, where the domain D is a subset of 𝑅 𝑛. So: for each (π‘₯1, π‘₯2, . . . , π‘₯ 𝑛) in D, the value of f is a real number 𝑓(π‘₯1, π‘₯2, . . . , π‘₯ 𝑛 ). For example, 1.𝑓(π‘₯, 𝑦) = π‘₯ βˆ’ 𝑦 (a function of 2 variables defined for all (π‘₯, 𝑦) ∈ 𝑅2) 2. If 𝑓 is a function defined by 𝑓(π‘₯, 𝑦) = 9 βˆ’ cos(π‘₯) + sin(π‘₯2 + 𝑦2), (a function of 2 variables defined for all (π‘₯, 𝑦) ∈ 𝑅2 )
  • 3. 2. 𝑓 π‘₯, 𝑦, 𝑧 = 1 π‘₯2+𝑦2+𝑧2 Then f is a function of 3 variables, defined whenever π‘₯2 + 𝑦2 + 𝑧2 β‰  0 This is all (π‘₯, 𝑦, 𝑧) ∈ 𝑅3 except for (π‘₯, 𝑦, 𝑧) = (0, 0, 0).
  • 4. Partial Derivative If 𝑓(π‘₯, 𝑦) is a function of two variables π‘₯ and 𝑦, the partial derivative of 𝑓 with respect to π‘₯, is given by 𝑓π‘₯ π‘₯, 𝑦 = lim β„Žβ†’0 𝑓 π‘₯+β„Ž,𝑦 βˆ’π‘“ π‘₯,𝑦 β„Ž The partial derivative of 𝑓 with respect to 𝑦, is given by 𝑓𝑦 π‘₯, 𝑦 = lim β„Žβ†’0 𝑓 π‘₯,𝑦+β„Ž βˆ’π‘“ π‘₯,𝑦 β„Ž
  • 5. Note β€’ If 𝑓(π‘₯, 𝑦) is a function of two variables π‘₯ and 𝑦, then Partial derivative of 𝑓(π‘₯, 𝑦) with respect to π‘₯ is πœ•π‘“ πœ•π‘₯ , it is denoted by 𝑓π‘₯ β€’ Partial derivative of 𝑓(π‘₯, 𝑦) with respect to 𝑦 is πœ•π‘“ πœ•π‘¦ , it is denoted by 𝑓𝑦 β€’ Partial second derivative of 𝑓(π‘₯, 𝑦) with respect to π‘₯ is πœ•2 𝑓 πœ•π‘₯2 , it is denoted by 𝑓π‘₯π‘₯ β€’ Partial second derivative of 𝑓(π‘₯, 𝑦) with respect to 𝑦 is πœ•2 𝑓 πœ•π‘¦2 , it is denoted by 𝑓𝑦𝑦 β€’ Partial derivative of πœ•π‘“ πœ•π‘₯ with respect to 𝑦 is πœ•2 𝑓 πœ•π‘¦πœ•π‘₯ , it is denoted by 𝑓π‘₯𝑦 and so on
  • 6. Problem 1: If 𝒇 𝒙, π’š = πŸ‘π’™π’š 𝟐 βˆ’ πŸπ’™ 𝟐 π’š,then find 𝒇 𝒙, 𝒇 π’š, 𝒇 𝒙𝒙, 𝒇 π’šπ’š, 𝒇 π’™π’š Solution: Given 𝑓 π‘₯, 𝑦 = 3π‘₯𝑦2 βˆ’ 2π‘₯2 𝑦 ---(1) Diff. (1) partially w.r.to x, 𝑓π‘₯ = 3 1 𝑦2 βˆ’ 2 2π‘₯ 𝑦 𝑓π‘₯ = 3𝑦2 βˆ’ 4π‘₯𝑦 --------- (2) Diff. (1) partially w.r.to y, 𝑓𝑦 = 3π‘₯ (2𝑦) βˆ’ 2π‘₯2 (1) 𝑓𝑦 = 6π‘₯𝑦 βˆ’ 2π‘₯2 -----------(3) Diff. (2) p.w.r.to x, 𝑓π‘₯π‘₯ = 0 βˆ’ 4 1 𝑦 𝑓π‘₯π‘₯ = βˆ’4𝑦 Diff. (3) p.w.r.to y, 𝑓𝑦𝑦 = 6π‘₯ 1 βˆ’ 0 𝑓𝑦𝑦 = 6π‘₯ Diff. (2) p.w.r.to y, 𝑓π‘₯𝑦 = 3 2𝑦 βˆ’ 4π‘₯(1) 𝑓π‘₯𝑦 = 6𝑦 βˆ’ 4π‘₯ Note : Diff.(3) p.w.r.to x, 𝑓𝑦π‘₯ = 6 1 𝑦 βˆ’ 2 2π‘₯ = 6𝑦 βˆ’ 4π‘₯ 𝑓π‘₯𝑦 = 𝑓𝑦π‘₯
  • 7. Problem 2: Find 𝝏𝒖 𝝏𝒙 , 𝝏𝒖 ππ’š , if 𝒖 = 𝒙𝒆 π’š + π’š 𝒆 𝒙 Solution: Given 𝑒 = π‘₯𝑒 𝑦 + 𝑦 𝑒 π‘₯ -------(1) Diff. (1) p.w.r.to x, πœ•π‘’ πœ•π‘₯ = 1 𝑒 𝑦 + 𝑦 𝑒 π‘₯ = 𝑒 𝑦 + 𝑦 𝑒 π‘₯ Diff.(1) p.w.r.to y, πœ•π‘’ πœ•π‘¦ = π‘₯ 𝑒 𝑦 + 1 𝑒 π‘₯ = π‘₯𝑒 𝑦 + 𝑒 π‘₯
  • 8. Problem 3: If 𝒖 = 𝒙 𝟐 + π’š 𝟐 + 𝒛 𝟐 βˆ’ 𝟏 𝟐 then find the value of 𝝏 𝟐 𝒖 𝝏𝒙 𝟐 + 𝝏 𝟐 𝒖 ππ’š 𝟐 + 𝝏 𝟐 𝒖 𝝏𝒛 𝟐 Solution: Given 𝑒 = π‘₯2 + 𝑦2 + 𝑧2 βˆ’1 2 ------(1) Diff. (1) p. w.r.to x, πœ•π‘’ πœ•π‘₯ = βˆ’ 1 2 π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 1 2 βˆ’1 2π‘₯ + 0 + 0 = βˆ’ 1 2 π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 3 2(2π‘₯) πœ•π‘’ πœ•π‘₯ = βˆ’π‘₯ π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 3 2 ------- (2) Diff. (2) p. w.r.to x, πœ•2 𝑒 πœ•π‘₯2 = βˆ’π‘₯ βˆ’ 3 2 π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 3 2 βˆ’1 (2π‘₯) + π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 3 2(βˆ’1) = 3π‘₯2 π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 3 2 βˆ’1 βˆ’ π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 3 2 = π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 3 2 3π‘₯2 π‘₯2 + 𝑦2 + 𝑧2 βˆ’1 βˆ’ 1
  • 9. = π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 3 2 3π‘₯2 π‘₯2+𝑦2+𝑧2 1 βˆ’ 1 = π‘₯2+𝑦2+𝑧2 βˆ’ 3 2 3π‘₯2βˆ’ π‘₯2+𝑦2+𝑧2 π‘₯2+𝑦2+𝑧2 = π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 3 2 π‘₯2 + 𝑦2 + 𝑧2 βˆ’1 3π‘₯2 βˆ’ π‘₯2 βˆ’ 𝑦2 βˆ’ 𝑧2 = π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 3 2 βˆ’1 2π‘₯2 βˆ’ 𝑦2 βˆ’ 𝑧2 πœ•2 𝑒 πœ•π‘₯2 = π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 5 2 2π‘₯2 βˆ’ 𝑦2 βˆ’ 𝑧2 ------ (3) Similarly, πœ•2 𝑒 πœ•π‘¦2 = π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 5 2 2𝑦2 βˆ’ 𝑧2 βˆ’ π‘₯2 ------- (4) πœ•2 𝑒 πœ•π‘§2 = π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 5 2 2𝑧2 βˆ’ π‘₯2 βˆ’ 𝑦2 ------ (5) (3)+(4)+(5) β‡’ πœ•2 𝑒 πœ•π‘₯2+ πœ•2 𝑒 πœ•π‘¦2+ πœ•2 𝑒 πœ•π‘§2 = π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 5 2(2π‘₯2 βˆ’ 𝑦2 βˆ’ 𝑧2 +2𝑦2 βˆ’ 𝑧2 βˆ’ π‘₯2 +2𝑧2 βˆ’ π‘₯2 βˆ’ 𝑦2 ) = π‘₯2 + 𝑦2 + 𝑧2 βˆ’ 5 2 2π‘₯2 + 2𝑦2 + 2𝑧2 βˆ’ 2π‘₯2 βˆ’ 2𝑦2 βˆ’ 2𝑧2 = 0
  • 10. Problem 4 If 𝒖 = π’π’π’ˆ 𝒕𝒂𝒏𝒙 + π’•π’‚π’π’š + 𝒕𝒂𝒏𝒛 π’‡π’Šπ’π’… π’”π’Šπ’πŸπ’™. 𝝏𝒖 𝝏𝒙 . Solution: Given 𝑒 = log π‘‘π‘Žπ‘›π‘₯ + π‘‘π‘Žπ‘›π‘¦ + π‘‘π‘Žπ‘›π‘§ ------- (1) Diff. (1) p.w.r.to x, πœ•π‘’ πœ•π‘₯ = 1 π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§ (sec2 π‘₯) = 1 cos2 π‘₯(π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§) , (∡ sec2 π‘₯ = 1 cos2 π‘₯ ) Now 𝑠𝑖𝑛2π‘₯. πœ•π‘’ πœ•π‘₯ = 𝑠𝑖𝑛2π‘₯ 1 cos2 π‘₯(π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§) = 2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯ cos2 π‘₯(π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§) , (∡ 𝑠𝑖𝑛2π‘₯ = 2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯) = 2𝑠𝑖𝑛π‘₯ cos π‘₯(π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§) = 2 𝑠𝑖𝑛π‘₯ π‘π‘œπ‘ π‘₯ ( 1 π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§ )
  • 11. ∴ 𝑠𝑖𝑛2π‘₯. πœ•π‘’ πœ•π‘₯ = 2π‘‘π‘Žπ‘›π‘₯ ( 1 π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§ )----(2) Similarly, 𝑠𝑖𝑛2𝑦. πœ•π‘’ πœ•π‘¦ = 2π‘‘π‘Žπ‘›π‘¦ ( 1 π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§ )----- (3) 𝑠𝑖𝑛2𝑧. πœ•π‘’ πœ•π‘§ = 2π‘‘π‘Žπ‘›π‘§ ( 1 π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§ )------ (4) (3)+(4)+(5)⟹ 𝑠𝑖𝑛2π‘₯. πœ•π‘’ πœ•π‘₯ +𝑠𝑖𝑛2𝑦. πœ•π‘’ πœ•π‘¦ +𝑠𝑖𝑛2𝑧. πœ•π‘’ πœ•π‘§ =2π‘‘π‘Žπ‘›π‘₯ 1 π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§ + 2π‘‘π‘Žπ‘›π‘¦ 1 π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§ +2π‘‘π‘Žπ‘›π‘§ 1 π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§ =2 1 π‘‘π‘Žπ‘›π‘₯+π‘‘π‘Žπ‘›π‘¦+π‘‘π‘Žπ‘›π‘§ π‘‘π‘Žπ‘›π‘₯ + π‘‘π‘Žπ‘›π‘¦ + π‘‘π‘Žπ‘›π‘§ = 2
  • 12. Homogeneous Function: A function 𝑓(π‘₯, 𝑦) is called a homogeneous function of the degree ′𝑛′ if the following relationship is valid for all 𝑑 > 0: 𝑓 𝑑π‘₯, 𝑑𝑦 = 𝑑 𝑛 𝑓 π‘₯, 𝑦 . Example: Consider 𝑓 π‘₯, 𝑦 = π‘₯2+𝑦2 π‘₯𝑦 𝑓 𝑑π‘₯, 𝑑𝑦 = 𝑑π‘₯ 2+ 𝑑𝑦 2 𝑑π‘₯ 𝑑𝑦 = 𝑑2 π‘₯2+𝑑2 𝑦2 𝑑2 π‘₯𝑦 = 𝑑2 π‘₯2+𝑦2 𝑑2 π‘₯𝑦 = π‘₯2+𝑦2 π‘₯𝑦 = 𝑑0 𝑓(π‘₯, 𝑦) Hence f(x, y ) is homogeneous of order zero
  • 13. Euler’s Theorem: If 𝑒 = 𝑓 π‘₯, 𝑦 is a homogeneous function of degree β€˜n’, then π‘₯ πœ•π‘’ πœ•π‘₯ + 𝑦 πœ•π‘’ πœ•π‘¦ = 𝑛𝑒 (OR) π‘₯ πœ•π‘“ πœ•π‘₯ + 𝑦 πœ•π‘“ πœ•π‘¦ = 𝑛𝑓 Problem 1: If 𝒖 = 𝒇 𝒙 π’š , prove that 𝒙 𝝏𝒖 𝝏𝒙 + π’š 𝝏𝒖 ππ’š = 𝟎 Solution: Given 𝑒 π‘₯, 𝑦 = 𝑓 π‘₯ 𝑦 For any 𝑑 > 0, 𝑒 𝑑π‘₯, 𝑑𝑦 = 𝑓 𝑑π‘₯ 𝑑𝑦 = 𝑓 π‘₯ 𝑦 = 𝑑0 𝑓 π‘₯ 𝑦 = 𝑑0 𝑒(π‘₯, 𝑦) Hence 𝑒 = 𝑓 π‘₯ 𝑦 is a homogeneous function of order zero 𝑖. 𝑒 𝑛 = 0 By Euler’s Theorem , π‘₯ πœ•π‘’ πœ•π‘₯ + 𝑦 πœ•π‘’ πœ•π‘¦ = 𝑛𝑒 ⟹ π‘₯ πœ•π‘’ πœ•π‘₯ + 𝑦 πœ•π‘’ πœ•π‘¦ = 0 u = 0 Hence proved. .
  • 14. Problem 2: If 𝒖 = π¬π’π§βˆ’πŸ 𝒙 π’š + π­πšπ§βˆ’πŸ π’š 𝒙 , prove that 𝒙 𝝏𝒖 𝝏𝒙 + π’š 𝝏𝒖 ππ’š = 𝟎. Solution: Given 𝑒(π‘₯, 𝑦) = sinβˆ’1 π‘₯ 𝑦 + tanβˆ’1 𝑦 π‘₯ For any 𝑑 > 0, 𝑒(𝑑π‘₯, 𝑑𝑦) = sinβˆ’1 𝑑π‘₯ 𝑑𝑦 + tanβˆ’1 𝑑𝑦 𝑑π‘₯ = sinβˆ’1 π‘₯ 𝑦 + tanβˆ’1 𝑦 π‘₯ = 𝑑0 ( sinβˆ’1 π‘₯ 𝑦 + tanβˆ’1 𝑦 π‘₯ ) Hence 𝑒(π‘₯, 𝑦) is a homogeneous function of order zero 𝑖. 𝑒 𝑛 = 0 By Euler’s Theorem, π‘₯ πœ•π‘’ πœ•π‘₯ + 𝑦 πœ•π‘’ πœ•π‘¦ = 𝑛𝑒 = 0 𝑒 = 0
  • 15. Total differential coefficient If 𝑒 = 𝑓 π‘₯, 𝑦 , the total differential of 𝑒 is given by 𝑑𝑒 = 𝑒 π‘₯ 𝑑π‘₯ + 𝑒 𝑦 𝑑𝑦 (OR) 𝑑𝑓 = 𝑓π‘₯ 𝑑π‘₯ + 𝑓𝑦 𝑑𝑦 If 𝑒 = 𝑓 π‘₯, 𝑦 , and x = g(t) , y = h(t) , the total differential of 𝑒 is given by 𝑑𝑒 𝑑𝑑 = πœ•π‘’ πœ•π‘₯ 𝑑π‘₯ 𝑑𝑑 + πœ•π‘’ πœ•π‘¦ 𝑑𝑦 𝑑𝑑 = 𝑒 π‘₯ 𝑑π‘₯ 𝑑𝑑 + 𝑒 𝑦 𝑑𝑦 𝑑𝑑 (OR) 𝑑𝑓 𝑑𝑑 = πœ•π‘“ πœ•π‘₯ 𝑑π‘₯ 𝑑𝑑 + πœ•π‘“ πœ•π‘¦ 𝑑𝑦 𝑑𝑑 = 𝑓π‘₯ 𝑑π‘₯ 𝑑𝑑 + 𝑓𝑦 𝑑𝑦 𝑑𝑑
  • 16. Note : If 𝑒 = 𝑓 𝑝, π‘ž, π‘Ÿ and p = 𝑔 π‘₯, 𝑦, 𝑧 , π‘ž = β„Ž(π‘₯, 𝑦, 𝑧) π‘Ÿ = π‘˜(π‘₯, 𝑦, 𝑧) Total differential 𝑑𝑒 𝑑π‘₯ = 𝑒 𝑝 𝑑𝑝 𝑑π‘₯ + 𝑒 π‘ž π‘‘π‘ž 𝑑π‘₯ + 𝑒 π‘Ÿ π‘‘π‘Ÿ 𝑑π‘₯ 𝑑𝑒 𝑑𝑦 = 𝑒 𝑝 𝑑𝑝 𝑑𝑦 + 𝑒 π‘ž π‘‘π‘ž 𝑑𝑦 + 𝑒 π‘Ÿ π‘‘π‘Ÿ 𝑑𝑦 𝑑𝑒 𝑑𝑧 = 𝑒 𝑝 𝑑𝑝 𝑑𝑧 + 𝑒 π‘ž π‘‘π‘ž 𝑑𝑧 + 𝑒 π‘Ÿ π‘‘π‘Ÿ 𝑑𝑧
  • 17. Partial derivative: If 𝑧 = 𝑓 𝑒, 𝑣 and 𝑒 = 𝑔 π‘₯, 𝑦 , 𝑣 = β„Ž(π‘₯, 𝑦) then πœ•π‘§ πœ•π‘₯ = πœ•π‘§ πœ•π‘’ πœ•π‘’ πœ•π‘₯ + πœ•π‘§ πœ•π‘£ πœ•π‘£ πœ•π‘₯ = 𝑧 𝑒 𝑒 π‘₯ + 𝑧 𝑣 𝑣 π‘₯ πœ•π‘§ πœ•π‘¦ = πœ•π‘§ πœ•π‘’ πœ•π‘’ πœ•π‘¦ + πœ•π‘§ πœ•π‘£ πœ•π‘£ πœ•π‘¦ = 𝑧 𝑒 𝑒 𝑦 + 𝑧 𝑣 𝑣 𝑦 Note : If 𝑒 = 𝑓 𝑝, π‘ž, π‘Ÿ and p = 𝑔 π‘₯, 𝑦, 𝑧 , π‘ž = β„Ž(π‘₯, 𝑦, 𝑧) π‘Ÿ = π‘˜(π‘₯, 𝑦, 𝑧) Partial differential πœ•π‘’ πœ•π‘₯ = 𝑒 𝑝 𝑝 π‘₯ + 𝑒 π‘ž π‘ž π‘₯ + 𝑒 π‘Ÿ π‘Ÿπ‘₯ πœ•π‘’ πœ•π‘¦ = 𝑒 𝑝 𝑝 𝑦 + 𝑒 π‘ž π‘ž 𝑦 + 𝑒 π‘Ÿ π‘Ÿπ‘¦ πœ•π‘’ πœ•π‘§ = 𝑒 𝑝 𝑝 𝑧 + 𝑒 π‘ž π‘ž 𝑧 + 𝑒 π‘Ÿ π‘Ÿπ‘§
  • 18. Problem 1: If π’˜ = 𝒇(π’š βˆ’ 𝒛, 𝒛 βˆ’ 𝒙, 𝒙 βˆ’ π’š) then show that ππ’˜ 𝝏𝒙 + ππ’˜ ππ’š + ππ’˜ 𝝏𝒛 = 𝟎 Solution: Given 𝑀 = 𝑓(𝑦 βˆ’ 𝑧, 𝑧 βˆ’ π‘₯, π‘₯ βˆ’ 𝑦) Take p = 𝑦 βˆ’ 𝑧, π‘ž = 𝑧 βˆ’ π‘₯, π‘Ÿ = π‘₯ βˆ’ 𝑦 β‡’ 𝑀 = 𝑓(𝑝, π‘ž, π‘Ÿ) and 𝑝 𝑦, 𝑧 , π‘ž 𝑧, π‘₯ , π‘Ÿ(π‘₯, 𝑦) p = 𝑦 βˆ’ 𝑧, π‘ž = 𝑧 βˆ’ π‘₯, π‘Ÿ = π‘₯ βˆ’ 𝑦 𝑝 π‘₯ = 0 π‘ž π‘₯ = βˆ’1 π‘Ÿπ‘₯ = 1 𝑝 𝑦 = 1 π‘ž 𝑦 = 0 π‘Ÿπ‘¦ = βˆ’1 𝑝 𝑧 = βˆ’1 π‘ž 𝑧 = 1 π‘Ÿπ‘§ = 0 πœ•π‘€ πœ•π‘₯ = 𝑀 𝑝 𝑝 π‘₯ + 𝑀 π‘ž π‘ž π‘₯ + π‘€π‘Ÿ π‘Ÿπ‘₯ = 𝑀 𝑝 0 + 𝑀 π‘ž βˆ’1 + π‘€π‘Ÿ 1 πœ•π‘€ πœ•π‘₯ = βˆ’π‘€ π‘ž + π‘€π‘Ÿ ------ (1) πœ•π‘€ πœ•π‘¦ = 𝑀 𝑝 𝑝 𝑦 + 𝑀 π‘ž π‘ž 𝑦 + π‘€π‘Ÿ π‘Ÿπ‘¦ = 𝑀 𝑝 1 + 𝑀 π‘ž 0 + π‘€π‘Ÿ βˆ’1 πœ•π‘€ πœ•π‘¦ = 𝑀 𝑝 βˆ’ π‘€π‘Ÿ ------ (2) πœ•π‘€ πœ•π‘§ = 𝑀 𝑝 𝑝 𝑧 + 𝑀 π‘ž π‘ž 𝑧 + π‘€π‘Ÿ π‘Ÿπ‘§ = 𝑀 𝑝 βˆ’1 + 𝑀 π‘ž 1 + π‘€π‘Ÿ 0 πœ•π‘€ πœ•π‘§ = βˆ’π‘€ 𝑝 + 𝑀 π‘ž ------ (3) (1)+(2)+(3) β‡’ πœ•π‘€ πœ•π‘₯ + πœ•π‘€ πœ•π‘¦ + πœ•π‘€ πœ•π‘§ = βˆ’π‘€ π‘ž + π‘€π‘Ÿ+𝑀 𝑝 βˆ’ π‘€π‘Ÿ βˆ’π‘€ 𝑝 +𝑀 π‘ž = 0
  • 19. Problem2: If 𝒖 = 𝒇(πŸπ’™ βˆ’ πŸ‘π’š, πŸ‘π’š βˆ’ πŸ’π’›, πŸ’π’› βˆ’ πŸπ’™) then find 𝟏 𝟐 𝝏𝒖 𝝏𝒙 + 𝟏 πŸ‘ 𝝏𝒖 ππ’š + 𝟏 πŸ’ 𝝏𝒖 𝝏𝒛 Solution: Given 𝑒 = 𝑓(2π‘₯ βˆ’ 3𝑦, 3𝑦 βˆ’ 4𝑧, 4𝑧 βˆ’ 2π‘₯) Take p = 2π‘₯ βˆ’ 3𝑦, π‘ž = 3𝑦 βˆ’ 4𝑧, π‘Ÿ = 4𝑧 βˆ’ 2π‘₯ β‡’ 𝑒 = 𝑓(𝑝, π‘ž, π‘Ÿ) and 𝑝 π‘₯, 𝑦 , π‘ž 𝑦, 𝑧 , π‘Ÿ(𝑧, π‘₯) p = 2π‘₯ βˆ’ 3𝑦, π‘ž = 3𝑦 βˆ’ 4𝑧, π‘Ÿ = 4𝑧 βˆ’ 2π‘₯ 𝑝 π‘₯ = 2 π‘ž π‘₯ = 0 π‘Ÿπ‘₯ = βˆ’2 𝑝 𝑦 = βˆ’3 π‘ž 𝑦 = 3 π‘Ÿπ‘¦ = 0 𝑝 𝑧 = 0 π‘ž 𝑧 = βˆ’4 π‘Ÿπ‘§ = 4 πœ•π‘’ πœ•π‘₯ = 𝑒 𝑝 𝑝 π‘₯ + 𝑒 π‘ž π‘ž π‘₯ + 𝑒 π‘Ÿ π‘Ÿπ‘₯ = 𝑒 𝑝 2 + 𝑒 π‘ž 0 + 𝑒 π‘Ÿ βˆ’2 1 2 πœ•π‘’ πœ•π‘₯ = 1 2 2𝑒 𝑝 βˆ’ 2𝑒 π‘Ÿ = 1 2 (2 𝑒 𝑝 βˆ’ 𝑒 π‘Ÿ ) = 𝑒 𝑝 βˆ’ 𝑒 π‘Ÿ --------- (1) πœ•π‘’ πœ•π‘¦ = 𝑒 𝑝 𝑝 𝑦 + 𝑒 π‘ž π‘ž 𝑦 + 𝑒 π‘Ÿ π‘Ÿπ‘¦ = 𝑒 𝑝 βˆ’3 + 𝑒 π‘ž 3 + 𝑒 π‘Ÿ 0 1 3 πœ•π‘’ πœ•π‘¦ = 1 3 (βˆ’3𝑒 𝑝+3𝑒 π‘ž) = 1 3 3 βˆ’up + uq = βˆ’π‘’ 𝑝 + 𝑒 π‘ž ---------(2) πœ•π‘’ πœ•π‘§ = 𝑒 𝑝 𝑝 𝑧 + 𝑒 π‘ž π‘ž 𝑧 + 𝑒 π‘Ÿ π‘Ÿπ‘§ = 𝑒 𝑝 0 + 𝑒 π‘ž βˆ’4 + 𝑒 π‘Ÿ 4 1 4 πœ•π‘’ πœ•π‘§ = 1 4 βˆ’4𝑒 π‘ž + 4𝑒 π‘Ÿ = 1 4 4 βˆ’π‘’ π‘ž βˆ“ 𝑒 π‘Ÿ = βˆ’π‘’ π‘ž + 𝑒 π‘Ÿ ------- (3) (1)+(2)+(3) β‡’ 1 2 πœ•π‘’ πœ•π‘₯ + 1 3 πœ•π‘’ πœ•π‘¦ + 1 4 πœ•π‘’ πœ•π‘§ = 𝑒 𝑝 βˆ’ 𝑒 π‘Ÿ βˆ’ 𝑒 𝑝 + 𝑒 π‘ž βˆ’ 𝑒 π‘ž + 𝑒 π‘Ÿ = 0
  • 20. Problem3: If 𝒖 = 𝒇( π’šβˆ’π’™ π’™π’š , π’›βˆ’π’™ 𝒙𝒛 ) then find 𝒙 𝟐 𝝏𝒖 𝝏𝒙 + π’š 𝟐 𝝏𝒖 ππ’š + 𝒛 𝟐 𝝏𝒖 𝝏𝒛 Solution: Given𝒖 = 𝒇( π’šβˆ’π’™ π’™π’š , π’›βˆ’π’™ 𝒙𝒛 ) Take p = π’šβˆ’π’™ π’™π’š , π‘ž = π’›βˆ’π’™ 𝒙𝒛 β‡’ 𝑒 = 𝑓(𝑝, π‘ž) and 𝑝 π‘₯, 𝑦 , π‘ž π‘₯, 𝑧 𝐩 = 𝐲 βˆ’ 𝐱 𝐱𝐲 πͺ = 𝐳 βˆ’ 𝐱 𝐱𝐳 𝐩 𝐱 = 𝐱𝐲 βˆ’πŸ βˆ’ π²βˆ’π± 𝐲 𝐱𝐲 𝟐 = βˆ’π±π²βˆ’π² 𝟐+𝐱𝐲 𝐱 𝟐 𝐲 𝟐 = βˆ’ 𝐲 𝟐 𝐱 𝟐 𝐲 𝟐 = βˆ’ 𝟏 𝐱 𝟐 πͺ 𝐱 = 𝐱𝐳 βˆ’πŸ βˆ’ π³βˆ’π± 𝐳 𝐱𝐳 𝟐 = βˆ’π±π³βˆ’π³ 𝟐+𝐱𝐳 𝐱 𝟐 𝐳 𝟐 = βˆ’ 𝐳 𝟐 𝐱 𝟐 𝐳 𝟐 = βˆ’ 𝟏 𝐱 𝟐 𝐩 𝐲 = 𝐱𝐲 𝟏 βˆ’ π²βˆ’π± 𝐱 𝐱𝐲 𝟐 = π±π²βˆ’π±π²+𝐱 𝟐 𝐱 𝟐 𝐲 𝟐 = 𝐱 𝟐 𝐱 𝟐 𝐲 𝟐 = 𝟏 𝐲 𝟐 πͺ 𝐲 = 𝟎 𝐩 𝐳 = 𝟎 πͺ 𝐳 = 𝐱𝐳 𝟏 βˆ’ π³βˆ’π± 𝐱 𝐱𝐳 𝟐 = π±π³βˆ’π³π±+𝐱 𝟐 𝐱 𝟐 𝐳 𝟐 = 𝐱 𝟐 𝐱 𝟐 𝐳 𝟐 = 𝟏 𝐳 𝟐
  • 21. πœ•π‘’ πœ•π‘₯ = 𝑒 𝑝 𝑝 π‘₯ + 𝑒 π‘ž π‘ž π‘₯ = 𝑒 𝑝 βˆ’ 1 π‘₯2 + 𝑒 π‘ž βˆ’ 1 π‘₯2 = βˆ’ 1 π‘₯2 (𝑒 𝑝 + 𝑒 π‘ž) π‘₯2 πœ•π‘’ πœ•π‘₯ = π‘₯2 βˆ’ 1 π‘₯2 𝑒 𝑝 + 𝑒 π‘ž = βˆ’π‘’ 𝑝 βˆ’ 𝑒 π‘ž --------- (1) πœ•π‘’ πœ•π‘¦ = 𝑒 𝑝 𝑝 𝑦 + 𝑒 π‘ž π‘ž 𝑦 = 𝑒 𝑝 1 𝑦2 + 𝑒 π‘ž 0 𝑦2 πœ•π‘’ πœ•π‘¦ = 𝑦2 ( 1 𝑦2 𝑒 𝑝) = 𝑒 𝑝 ---------(2) πœ•π‘’ πœ•π‘§ = 𝑒 𝑝 𝑝 𝑧 + 𝑒 π‘ž π‘ž 𝑧 = 𝑒 𝑝 0 + 𝑒 π‘ž 1 𝑧2 𝑧2 πœ•π‘’ πœ•π‘§ = 𝑧2 1 𝑧2 (𝑒 π‘ž) = 𝑒 π‘ž ------- (3) (1)+(2)+(3) β‡’ π‘₯2 πœ•π‘’ πœ•π‘₯ + 𝑦2 πœ•π‘’ πœ•π‘¦ + 𝑧2 πœ•π‘’ πœ•π‘§ = βˆ’π‘’ 𝑝 βˆ’ 𝑒 π‘ž + 𝑒 𝑝 + 𝑒 π‘ž = 0
  • 22. β€’ If 𝑓(π‘₯, 𝑦) is a function of two variables x and y, then Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the point (π‘Ž, 𝑏) is given by 𝑓 π‘₯, 𝑦 = 𝑓 π‘Ž, 𝑏 + π‘₯ βˆ’ π‘Ž 𝑓π‘₯ π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 𝑓𝑦 π‘Ž, 𝑏 + 1 2! π‘₯ βˆ’ π‘Ž 2 𝑓π‘₯π‘₯ π‘Ž, 𝑏 + 2 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 𝑓π‘₯𝑦 π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 2 𝑓𝑦𝑦 π‘Ž, 𝑏 + 1 3! π‘₯ βˆ’ π‘Ž 3 𝑓π‘₯π‘₯π‘₯ π‘Ž, 𝑏 + 3 π‘₯ βˆ’ π‘Ž 2 𝑦 βˆ’ 𝑏 𝑓π‘₯π‘₯𝑦 + 3 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 2 𝑓π‘₯𝑦𝑦 + 𝑦 βˆ’ 𝑏 3 𝑓𝑦𝑦𝑦 π‘Ž, 𝑏 + β‹― β€’ Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the origin or (0,0) is given by 𝑓 π‘₯, 𝑦 = 𝑓 0,0 + π‘₯𝑓π‘₯ 0,0 + 𝑦𝑓𝑦 0,0 + 1 2! π‘₯2 𝑓π‘₯π‘₯ 0,0 + 2π‘₯𝑦𝑓π‘₯𝑦 0,0 + 𝑦2 𝑓𝑦𝑦 0,0 + β‹― Taylor’s Theorem for functions of two variables
  • 23. Problem 1: Obtain the Taylor series of 𝒙 πŸ‘ + π’š πŸ‘ + π’™π’š 𝟐 in powers of 𝒙 βˆ’ 𝟏 𝒂𝒏𝒅 π’š βˆ’ 𝟐. Solution: W.kt, Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the point (π‘Ž, 𝑏) is given by 𝑓 π‘₯, 𝑦 = 𝑓 π‘Ž, 𝑏 + π‘₯ βˆ’ π‘Ž 𝑓π‘₯ π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 𝑓𝑦 π‘Ž, 𝑏 + 1 2! π‘₯ βˆ’ π‘Ž 2 𝑓π‘₯π‘₯ π‘Ž, 𝑏 + 2 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 𝑓π‘₯𝑦 π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 2 𝑓𝑦𝑦 π‘Ž, 𝑏 + 1 3! π‘₯ βˆ’ π‘Ž 3 𝑓π‘₯π‘₯π‘₯ π‘Ž, 𝑏 + 3 π‘₯ βˆ’ π‘Ž 2 𝑦 βˆ’ 𝑏 𝑓π‘₯π‘₯𝑦(π‘Ž, 𝑏) + 3 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 2 𝑓π‘₯𝑦𝑦(π‘Ž, 𝑏) + 𝑦 βˆ’ 𝑏 3 𝑓𝑦𝑦𝑦 π‘Ž, 𝑏 + β‹― Here 𝑓 π‘₯, 𝑦 = π‘₯3 + 𝑦3 + π‘₯𝑦2 , the points are π‘Ž = 1, 𝑏 = 2 , (∡ π‘₯ βˆ’ 1 = 0 & 𝑦 βˆ’ 2 = 0 β‡’ π‘₯ = 1, 𝑦 = 2 )
  • 24. 𝑓 π‘₯, 𝑦 = π‘₯3 + 𝑦3 + π‘₯𝑦2 𝑓 1,2 = 13 + 23 + 1 22 = 1 + 8 + 4 = 13 𝑓π‘₯ = 3π‘₯2 + 𝑦2 𝑓π‘₯ 1,2 = 3 1 2 + 22 = 3 + 4 = 7 𝑓𝑦 = 3𝑦2 + π‘₯ 2𝑦 = 3𝑦2 + 2π‘₯𝑦 𝑓𝑦 1,2 = 3 2 2 + 2 1 2 = 12 + 4 = 16 𝑓π‘₯π‘₯ = 6π‘₯ + 0 = 6π‘₯ 𝑓π‘₯π‘₯ 1,2 = 6 1 = 6 𝑓π‘₯𝑦 = 0 + 2𝑦 = 2𝑦 𝑓π‘₯𝑦 1,2 = 2 2 = 4 𝑓𝑦𝑦 = 3 2𝑦 + 2π‘₯ 1 = 6𝑦 + 2π‘₯ 𝑓𝑦𝑦 1,2 = 6 2 + 2 1 = 12 + 2 = 14 𝑓π‘₯π‘₯π‘₯ = 6 1 = 6 𝑓π‘₯π‘₯π‘₯ 1,2 = 6 𝑓π‘₯π‘₯𝑦 =0 𝑓π‘₯π‘₯𝑦(1,2) = 0 𝑓π‘₯𝑦𝑦 = 2 1 = 2 𝑓π‘₯𝑦𝑦(1,2) = 2 𝑓𝑦𝑦𝑦 = 6 1 + 0 = 6 𝑓𝑦𝑦𝑦(1,2) = 6
  • 25. Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the point (1,2) is given by 𝑓 π‘₯, 𝑦 = 𝑓 1,2 + π‘₯ βˆ’ 1 𝑓π‘₯ 1,2 + 𝑦 βˆ’ 2 𝑓𝑦 1,2 + 1 2! π‘₯ βˆ’ 1 2 𝑓π‘₯π‘₯ 1,2 + 2 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 𝑓π‘₯𝑦 1,2 + 𝑦 βˆ’ 2 2 𝑓𝑦𝑦 1,2 + 1 3! π‘₯ βˆ’ 1 3 𝑓π‘₯π‘₯π‘₯ 1,2 + 3 π‘₯ βˆ’ 1 2 𝑦 βˆ’ 2 𝑓π‘₯π‘₯𝑦(1,2) + 3 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 2 𝑓π‘₯𝑦𝑦 (1,2) + 𝑦 βˆ’ 2 3 𝑓𝑦𝑦𝑦 1,2 + β‹― 𝑓 π‘₯, 𝑦 = 13 + 7 π‘₯ βˆ’ 1 + 16 𝑦 βˆ’ 2 + 1 2! [6 π‘₯ βˆ’ 1 2 + 2 4 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 + 14 𝑦 βˆ’ 2 2 ] + 1 3! 6 π‘₯ βˆ’ 1 3 + 3 0 π‘₯ βˆ’ 1 2 𝑦 βˆ’ 2 + 3 2 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 2 + 6 𝑦 βˆ’ 2 3 + β‹― = 13 + 7 π‘₯ βˆ’ 1 + 16 𝑦 βˆ’ 2 + 1 2! [6 π‘₯ βˆ’ 1 2 + 8 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 + 14 𝑦 βˆ’ 2 2 ] + 1 3! 6 π‘₯ βˆ’ 1 3 + 0 + 6 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 2 + 6 𝑦 βˆ’ 2 3 + β‹― = 13 + 7 π‘₯ βˆ’ 1 + 16 𝑦 βˆ’ 2 + 6 2 π‘₯ βˆ’ 1 2 + 8 2 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 + 14 2 𝑦 βˆ’ 2 2 + 6 6 π‘₯ βˆ’ 1 3 + 6 6 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 2 + 6 6 𝑦 βˆ’ 2 3 +… , (2! = 1.2 = 2, 3! = 1.2.3 = 6)
  • 26. = 13 + 7 π‘₯ βˆ’ 1 + 16 𝑦 βˆ’ 2 + 6 2 π‘₯ βˆ’ 1 2 + 8 2 π‘₯ βˆ’ 1 𝑦 βˆ’ 2 + 14 2 𝑦 βˆ’ 2 2 + π‘₯ βˆ’ 1 3 + π‘₯ βˆ’ 1 𝑦 βˆ’ 2 2 + 𝑦 βˆ’ 2 3 + β‹― Problem 2 Expand 𝒆 𝒙 π’„π’π’”π’š at 𝟎, 𝝅 𝟐 upto the third term by using Taylor’s series. Solution W.kt, Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the point (π‘Ž, 𝑏) is given by 𝑓 π‘₯, 𝑦 = 𝑓 π‘Ž, 𝑏 + π‘₯ βˆ’ π‘Ž 𝑓π‘₯ π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 𝑓𝑦 π‘Ž, 𝑏 + 1 2! π‘₯ βˆ’ π‘Ž 2 𝑓π‘₯π‘₯ π‘Ž, 𝑏 + 2 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 𝑓π‘₯𝑦 π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 2 𝑓𝑦𝑦 π‘Ž, 𝑏 + 1 3! π‘₯ βˆ’ π‘Ž 3 𝑓π‘₯π‘₯π‘₯ π‘Ž, 𝑏 + 3 π‘₯ βˆ’ π‘Ž 2 𝑦 βˆ’ 𝑏 𝑓π‘₯π‘₯𝑦(π‘Ž, 𝑏) + 3 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 2 𝑓π‘₯𝑦𝑦(π‘Ž, 𝑏) + 𝑦 βˆ’ 𝑏 3 𝑓𝑦𝑦𝑦 π‘Ž, 𝑏 + β‹― Here 𝑓 π‘₯, 𝑦 = 𝑒 π‘₯ π‘π‘œπ‘ π‘¦ the points are π‘Ž = 0, 𝑏 = πœ‹ 2 ,
  • 27. 𝑓 π‘₯, 𝑦 = 𝑒 π‘₯ π‘π‘œπ‘ π‘¦ 𝑓 0, πœ‹ 2 = 𝑒0 cos πœ‹ 2 = 1.0 = 0, (∡ 𝑒0 = 1, cos πœ‹ 2 = 0 ) 𝑓π‘₯ = 𝑒 π‘₯ π‘π‘œπ‘ π‘¦ 𝑓π‘₯ 0, πœ‹ 2 = 𝑒0 cos πœ‹ 2 = 0 𝑓𝑦 = 𝑒 π‘₯ βˆ’π‘ π‘–π‘›π‘¦ = βˆ’π‘’ π‘₯ 𝑠𝑖𝑛𝑦 𝑓𝑦 0, πœ‹ 2 = βˆ’π‘’0 sin πœ‹ 2 = βˆ’1.1 = βˆ’1 (∡ 𝑒0 = 1, sin πœ‹ 2 = 1) 𝑓π‘₯π‘₯ = 𝑒 π‘₯ π‘π‘œπ‘ π‘¦ 𝑓π‘₯π‘₯ 0, πœ‹ 2 = 𝑒0 cos πœ‹ 2 = 0 𝑓π‘₯𝑦 = βˆ’π‘’ π‘₯ 𝑠𝑖𝑛𝑦 𝑓π‘₯𝑦 0, πœ‹ 2 = βˆ’1 𝑓𝑦𝑦 = βˆ’π‘’ π‘₯ (π‘π‘œπ‘ π‘¦) 𝑓𝑦𝑦 0, πœ‹ 2 = βˆ’π‘’0 cos πœ‹ 2 = 0 𝑓π‘₯π‘₯π‘₯ = 𝑒 π‘₯ π‘π‘œπ‘ π‘¦ 𝑓π‘₯π‘₯π‘₯ 0, πœ‹ 2 = 0 𝑓π‘₯π‘₯𝑦 = βˆ’π‘’ π‘₯ 𝑠𝑖𝑛𝑦 𝑓π‘₯π‘₯𝑦 0, πœ‹ 2 = βˆ’1 𝑓π‘₯𝑦𝑦 = βˆ’π‘’ π‘₯ π‘π‘œπ‘ π‘¦ 𝑓π‘₯𝑦𝑦(0, πœ‹ 2 ) = 0 𝑓𝑦𝑦𝑦 = βˆ’π‘’ π‘₯ βˆ’π‘ π‘–π‘›π‘¦ = 𝑒 π‘₯ 𝑠𝑖𝑛𝑦 𝑓𝑦𝑦𝑦 0, πœ‹ 2 = 1.1 = 1
  • 28. Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the point (0, πœ‹ 2 ) is given by 𝑓 π‘₯, 𝑦 = 𝑓 0, πœ‹ 2 + π‘₯ βˆ’ 0 𝑓π‘₯ 0, πœ‹ 2 + 𝑦 βˆ’ πœ‹ 2 𝑓𝑦 0, πœ‹ 2 + 1 2! π‘₯ βˆ’ 0 2 𝑓π‘₯π‘₯ 0, πœ‹ 2 + 2 π‘₯ βˆ’ 0 𝑦 βˆ’ πœ‹ 2 𝑓π‘₯𝑦 0, πœ‹ 2 + 𝑦 βˆ’ πœ‹ 2 2 𝑓𝑦𝑦 0, πœ‹ 2 + 1 3! π‘₯ βˆ’ 0 3 𝑓π‘₯π‘₯π‘₯ 0, πœ‹ 2 + 3 π‘₯ βˆ’ 0 2 𝑦 βˆ’ πœ‹ 2 𝑓π‘₯π‘₯𝑦(0, πœ‹ 2 ) + 3 π‘₯ βˆ’ 0 𝑦 βˆ’ πœ‹ 2 2 𝑓π‘₯𝑦𝑦(0, πœ‹ 2 ) + 𝑦 βˆ’ πœ‹ 2 3 𝑓𝑦𝑦𝑦 0, πœ‹ 2 + β‹― = 0 + π‘₯ 0 + 𝑦 βˆ’ πœ‹ 2 βˆ’1 + 1 2! π‘₯ 2 0 + 2 π‘₯ 𝑦 βˆ’ πœ‹ 2 βˆ’1 + 𝑦 βˆ’ πœ‹ 2 2 0 + 1 3! π‘₯ 3 0 + 3 π‘₯ 2 𝑦 βˆ’ πœ‹ 2 βˆ’1 + 3 π‘₯ 𝑦 βˆ’ πœ‹ 2 2 (0) + 𝑦 βˆ’ πœ‹ 2 3 (1) + β‹―
  • 29. = βˆ’ 𝑦 βˆ’ πœ‹ 2 + βˆ’ 2 2 π‘₯ 𝑦 βˆ’ πœ‹ 2 + βˆ’ 3 6 π‘₯ 2 𝑦 βˆ’ πœ‹ 2 + 1 6 𝑦 βˆ’ πœ‹ 2 3 + β‹― (∡ 2! = 1.2 = 2, 3! = 1.2.3 = 6) = βˆ’ 𝑦 βˆ’ πœ‹ 2 βˆ’ π‘₯ 𝑦 βˆ’ πœ‹ 2 βˆ’ 1 2 π‘₯ 2 𝑦 βˆ’ πœ‹ 2 + 1 6 𝑦 βˆ’ πœ‹ 2 3 + β‹― Problem 3 Find the Taylor’s series expansion of 𝟏 + 𝒙 + π’š 𝟐 in powers of 𝒙 βˆ’ 𝟏 and π’š upto second degree term. Solution: W.kt, Taylor’s expansion (upto second degree) of 𝑓(π‘₯, 𝑦) about the point (π‘Ž, 𝑏) is given by 𝑓 π‘₯, 𝑦 = 𝑓 π‘Ž, 𝑏 + π‘₯ βˆ’ π‘Ž 𝑓π‘₯ π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 𝑓𝑦 π‘Ž, 𝑏 + 1 2! π‘₯ βˆ’ π‘Ž 2 𝑓π‘₯π‘₯ π‘Ž, 𝑏 + 2 π‘₯ βˆ’ π‘Ž 𝑦 βˆ’ 𝑏 𝑓π‘₯𝑦 π‘Ž, 𝑏 + 𝑦 βˆ’ 𝑏 2 𝑓𝑦𝑦 π‘Ž, 𝑏 + β‹― Here 𝑓 π‘₯, 𝑦 = 1 + π‘₯ + 𝑦2 the points are π‘Ž = 1, 𝑏 = 0,
  • 30. 𝑓 π‘₯, 𝑦 = 1 + π‘₯ + 𝑦2 = 1 + π‘₯ + 𝑦2 1 2 𝑓 1,0 = 1 + 1 + 0 = 2 1 2 𝑓π‘₯ = 1 2 1 + π‘₯ + 𝑦2 1 2 βˆ’1 1 = 1 2 (1 + π‘₯ + 𝑓π‘₯ 1,0 = 1 2 1 + 1 + 0 βˆ’ 1 2 = 1 2 2 βˆ’ 1 2 = 2βˆ’ 1 2 βˆ’1 = 2βˆ’ 3 2 𝑓𝑦 = 1 2 1 + π‘₯ + 𝑦2 1 2 βˆ’1 2𝑦 = 𝑦 1 + π‘₯ + 𝑦2 βˆ’ 1 2 𝑓𝑦 1,0 = 0 𝑓π‘₯π‘₯ = 1 2 βˆ’ 1 2 1 + π‘₯ + 𝑦2 βˆ’ 1 2 βˆ’1 1 = βˆ’1 4 1 + π‘₯ + 𝑦2 βˆ’ 3 2 𝑓π‘₯π‘₯ 1,0 = βˆ’ 1 4 1 + 1 + 0 βˆ’ 3 2 = 1 4 2 βˆ’ 3 2 = βˆ’ 1 22 2 βˆ’ 3 2 = βˆ’2βˆ’ 3 2 βˆ’2 = βˆ’2βˆ’ 7 2 𝑓π‘₯𝑦 = 1 2 βˆ’ 1 2 1 + π‘₯ + 𝑦2 βˆ’ 1 2 βˆ’1 2𝑦 = βˆ’π‘¦ 2 1 + π‘₯ + 𝑦2 βˆ’ 3 2 𝑓π‘₯𝑦 1,0 = 0 𝑓𝑦𝑦 = 𝑦 βˆ’ 1 2 1 + π‘₯ + 𝑦2 βˆ’ 1 2 βˆ’1 2𝑦 + 1 + π‘₯ + 𝑦2 βˆ’ 1 2 1 = βˆ’π‘¦ 1 + π‘₯ + 𝑦2 βˆ’ 3 2 +(1 + π‘₯ + 𝑓𝑦𝑦 1,0 = 0 + 1 + 1 + 0 βˆ’ 1 2 = 2βˆ’ 1 2
  • 31. Taylor’s expansion of 𝑓(π‘₯, 𝑦) about the point (1,0) is given by 𝑓 π‘₯, 𝑦 = 𝑓 1,0 + π‘₯ βˆ’ 1 𝑓π‘₯ 1,0 + 𝑦 𝑓𝑦 1,0 + 1 2! π‘₯ βˆ’ 1 2 𝑓π‘₯π‘₯ 1,0 + 2 π‘₯ βˆ’ 1 𝑦 𝑓π‘₯𝑦 1,0 + 𝑦 2 𝑓𝑦𝑦 1,0 + β‹― = 2 1 2 + π‘₯ βˆ’ 1 2βˆ’ 3 2 + 𝑦 0 + 1 2 π‘₯ βˆ’ 1 2 βˆ’2 βˆ’ 7 2 + 2 2 π‘₯ βˆ’ 1 𝑦 0 + 𝑦22βˆ’ 1 2 = 2 1 2 + 2βˆ’ 3 2 π‘₯ βˆ’ 1 βˆ’ βˆ’2 βˆ’ 7 2 βˆ’1 π‘₯ βˆ’ 1 2 + 2βˆ’ 1 2 𝑦2 = 2 1 2 + 2βˆ’ 3 2 π‘₯ βˆ’ 1 βˆ’ βˆ’2 βˆ’ 9 2 π‘₯ βˆ’ 1 2 + 2βˆ’ 1 2 𝑦2
  • 32. Maximum and Minimum (Extreme Values) of two variable function
  • 33. Necessary Conditions The necessary conditions for 𝑓(π‘₯, 𝑦) to have a maximum or minimum at a point (π‘Ž, 𝑏) are that 𝑓π‘₯ π‘Ž, 𝑏 = 0 π‘Žπ‘›π‘‘ 𝑓𝑦(π‘Ž, 𝑏) = 0 π‘Žπ‘‘ (π‘Ž, 𝑏) Sufficient Conditions The sufficient conditions for 𝑓(π‘₯, 𝑦) to have a maximum or minimum at a point (π‘Ž, 𝑏) are as follows Let π‘Ÿ = 𝑓π‘₯π‘₯ π‘Ž, 𝑏 , 𝑠 = 𝑓π‘₯𝑦 π‘Ž, 𝑏 π‘Žπ‘›π‘‘ 𝑑 = 𝑓𝑦𝑦 π‘Ž, 𝑏 The function 𝑓(π‘₯, 𝑦) has maximum or minimum (extreme values) at ( a, b) if 1. 𝑓π‘₯ π‘Ž, 𝑏 = 0 π‘Žπ‘›π‘‘ 𝑓𝑦(π‘Ž, 𝑏) = 0 2. π‘Ÿπ‘‘ βˆ’ 𝑠2 > 0 3. 𝑓(π‘₯, 𝑦) has maximum or minimum at (π‘Ž, 𝑏) according as π‘Ÿ < 0 or π‘Ÿ > 0
  • 34. Procedure to find maximum or minimum (extreme values): Step 1. Find 𝑓π‘₯ π‘Žπ‘›π‘‘ 𝑓𝑦 Step 2. Put 𝑓π‘₯ = 0 π‘Žπ‘›π‘‘ 𝑓𝑦 = 0 Step 3. Solve the simultaneous equations in a and y, find the values of x and y Say (π‘Ž, 𝑏), (𝑐, 𝑑) … . ( these points are called stationary / critical points) Step 4.Find π‘Ÿ = 𝑓π‘₯π‘₯ , 𝑑 = 𝑓𝑦𝑦 π‘Žπ‘›π‘‘ 𝑠 = 𝑓π‘₯𝑦 (at each pair (π‘Ž, 𝑏) , (𝑐, 𝑑) … . ) Step 5. Find π‘Ÿπ‘‘ βˆ’ 𝑠2 (at each pair (π‘Ž, 𝑏) , (𝑐, 𝑑) … . ) Step 6. (i) If r𝑑 βˆ’ 𝑠2 > 0 π‘Žπ‘›π‘‘ π‘Ÿ < 0 π‘Žπ‘‘ (π‘Ž, 𝑏) , then 𝑓(π‘₯, 𝑦) has maximum at (π‘Ž, 𝑏) And the maximum value is 𝑓(π‘Ž, 𝑏) (ii) If r𝑑 βˆ’ 𝑠2 > 0 π‘Žπ‘›π‘‘ π‘Ÿ > 0 π‘Žπ‘‘ (π‘Ž, 𝑏) , then 𝑓(π‘₯, 𝑦) has minimum at (π‘Ž, 𝑏) And the minimum value is 𝑓(π‘Ž, 𝑏) (iii) If r𝑑 βˆ’ 𝑠2 < 0 π‘Žπ‘‘ (π‘Ž, 𝑏) , then 𝑓(π‘₯, 𝑦) has neither maximum nor minimum at (π‘Ž, 𝑏) (no extreme values at (π‘Ž, 𝑏)) and the point (π‘Ž, 𝑏) is called saddle point. (iv) If π‘Ÿπ‘‘ βˆ’ 𝑠2 = 0 π‘Žπ‘‘ (π‘Ž, 𝑏), the case is doubtful and need further investigation. Step 7. Step 6 to be repeated for other pair of values (c, d) … to examine extreme values
  • 35. Problem 1: Discuss the maxima and minima of the function 𝒇 𝒙, π’š = 𝒙 πŸ’ + π’š πŸ’ βˆ’ πŸπ’™ 𝟐 + πŸ’π’™π’š βˆ’ πŸπ’š 𝟐 Solution: Given 𝑓 π‘₯, 𝑦 = π‘₯4 + 𝑦4 βˆ’ 2π‘₯2 + 4π‘₯𝑦 βˆ’ 2𝑦2 --------- (1) To find the stationary point: Put 𝝏𝒇 𝝏𝒙 = 𝑓π‘₯ = 0 & 𝝏𝒇 ππ’š = 𝒇 π’š = 0 𝝏𝒇 𝝏𝒙 = 0 ⟹ 4π‘₯3 βˆ’ 4π‘₯ + 4𝑦 = 0 ⟹ 4(π‘₯3 βˆ’ π‘₯ + 𝑦) = 0 ⟹ π‘₯3 βˆ’ π‘₯ + 𝑦 = 0 ---------(2) 𝝏𝒇 ππ’š = 0 ⟹ 4𝑦3 + 4π‘₯ βˆ’ 4𝑦 = 0 ⟹ 4 𝑦3 + π‘₯ βˆ’ 𝑦 = 0 ⟹ 𝑦3 + π‘₯ βˆ’ 𝑦 = 0 ------(3) 𝐩 = π››πŸ 𝛛𝐱 = 𝒇 𝒙 = πŸ’π± πŸ‘ βˆ’ πŸ’π± + πŸ’π² 𝐫 = 𝛛 𝟐 𝐟 𝛛𝐱 𝟐 = 𝐟 𝐱𝐱 = = 𝟏𝟐𝐱 𝟐 βˆ’ πŸ’ 𝐬 = 𝛛 𝟐 𝐟 𝛛𝐱𝛛𝐲 = 𝒇 π’™π’š = πŸ’ πͺ = π››πŸ 𝛛𝐲 = 𝐟 𝐲 = πŸ’π² πŸ‘ + πŸ’π± βˆ’ πŸ’π² 𝐭 = 𝛛 𝟐𝐟 𝛛𝐲 𝟐 = 𝐟 𝐲𝐲 = 𝟏𝟐𝐲 𝟐 βˆ’ πŸ’
  • 36. 2 ⟹ π‘₯3 βˆ’ π‘₯ + 𝑦 = 0 3 ⟹ 𝑦3 + π‘₯ βˆ’ 𝑦 = 0 Add ------------------------ π‘₯3 + 𝑦3 = 0 ⟹ π‘₯ + 𝑦 π‘₯2 βˆ’ π‘₯𝑦 + 𝑦2 = 0 , (∡ π‘Ž3 + 𝑏3 = (π‘Ž + 𝑏)(π‘Ž2 βˆ’ π‘Žπ‘ + 𝑏2 ) ⟹ π‘₯ + 𝑦 = 0 π‘œπ‘Ÿ (π‘₯2 βˆ’ π‘₯𝑦 + 𝑦2) = 0 ⟹ π‘₯ = βˆ’π‘¦ π‘œπ‘Ÿ π‘₯2 βˆ’ π‘₯𝑦 + 𝑦2 = 0 Put π‘₯ = βˆ’π‘¦ in (2) ⟹ βˆ’π‘¦ 3 βˆ’ βˆ’π‘¦ + 𝑦 = 0 ⟹ βˆ’π‘¦3 + 𝑦 + 𝑦 = 0 ⟹ βˆ’π‘¦3 + 2𝑦 = 0 ⟹ 𝑦(βˆ’π‘¦2 + 2) = 0 ⟹ 𝑦 = 0 π‘œπ‘Ÿ βˆ’ 𝑦2 + 2 = 0 ⟹ 𝑦 = 0 π‘œπ‘Ÿ 𝑦2 = 2 ⟹ 𝑦 = 0 π‘œπ‘Ÿ 𝑦 = Β± 2 When 𝑦 = 0 , from (3) 0 + π‘₯ βˆ’ 0 = 0 ⟹ π‘₯ = 0 The point is ( π‘₯, 𝑦) = (0,0) When 𝑦 = 2 , from (3) 2 3 + π‘₯ βˆ’ 2 = 0 ⟹ π‘₯ = βˆ’ 2 3 + 2 ⟹ π‘₯ = 2 (βˆ’ 2 2 + 1) ⟹ π‘₯ = 2 βˆ’2 + 1 = 2 βˆ’1 = βˆ’ 2 The point is ( π‘₯, 𝑦) = (βˆ’ 2, 2)
  • 37. When 𝑦 = βˆ’ 2 , from (3), βˆ’ 2 3 + π‘₯ βˆ’ (βˆ’ 2) = 0 ⟹ βˆ’ 2 3 + π‘₯ + 2 = 0 ⟹ π‘₯ = 2 3 βˆ’ 2 = 2 2 2 βˆ’ 1 = 2 2 βˆ’ 1 = 2 1 = 2 The point is ( π‘₯, 𝑦) = ( 2, βˆ’ 2) The stationary / critical points are (0,0), βˆ’ 2, 2 , ( 2, βˆ’ 2) To find the point at which 𝒇(𝒙, π’š) has maximum/minimum: π‘Ÿπ‘‘ βˆ’ 𝑠2 = 12π‘₯2 βˆ’ 4 12𝑦2 βˆ’ 4 βˆ’ 4 2 = 12π‘₯2 βˆ’ 4 12𝑦2 βˆ’ 4 βˆ’ 16 At the Point (0,0): π‘Ÿπ‘‘ βˆ’ 𝑠2 π‘Žπ‘‘ 0,0 = 12 0 2 βˆ’ 4 12 0 2 βˆ’ 4 βˆ’ 16 = βˆ’4 βˆ’4 βˆ’ 16 = 16 βˆ’ 16 = 𝟎 Hence there is no maximum / minimum for 𝑓(π‘₯, 𝑦) at (0,0) (we can’t judge) At the Point βˆ’ 𝟐, 𝟐 : π‘Ÿπ‘‘ βˆ’ 𝑠2 π‘Žπ‘‘ βˆ’ 2, 2 = 12 βˆ’ 2 2 βˆ’ 4 12 2 2 βˆ’ 4 βˆ’ 16 = 12 2 βˆ’ 4 12 2 βˆ’ 4 βˆ’ 16 = 24 βˆ’ 4 24 βˆ’ 4 βˆ’ 16 = 20 20 βˆ’ 16 = 400 βˆ’ 16 = 394 > 𝟎 π‘Ÿ π‘Žπ‘‘ βˆ’ 2, 2 = 12 βˆ’ 2 2 βˆ’ 4 = 12 2 βˆ’ 4 = 24 βˆ’ 4 = 20 > 𝟎 Hence 𝑓(π‘₯, 𝑦) has minimum at βˆ’ 2, 2
  • 38. To find the minimum value : Put x, y = βˆ’ 2, 2 in (1) The minimum value is 𝑓(βˆ’ 2, 2) = βˆ’ 2 4 + 2 4 βˆ’ 2 βˆ’ 2 2 + 4 βˆ’ 2 2 βˆ’ 2 2 2 = 4 + 4 βˆ’ 4 βˆ’ 8 βˆ’ 4 = βˆ’8 Hence the minimum value is βˆ’8 At the Point 𝟐, βˆ’ 𝟐 : π‘Ÿπ‘‘ βˆ’ 𝑠2 π‘Žπ‘‘ 2,βˆ’ 2 = 12 2 2 βˆ’ 4 12 βˆ’ 2 2 βˆ’ 4 βˆ’ 16 = 12 2 βˆ’ 4 12 2 βˆ’ 4 βˆ’ 16 = 24 βˆ’ 4 24 βˆ’ 4 βˆ’ 16 = 20 20 βˆ’ 16 = 400 βˆ’ 16 = 394 > 𝟎 π‘Ÿ π‘Žπ‘‘ βˆ’ 2, 2 = 12 βˆ’ 2 2 βˆ’ 4 = 12 2 βˆ’ 4 = 24 βˆ’ 4 = 20 > 𝟎 Again 𝑓(π‘₯, 𝑦) has minimum at 2, βˆ’ 2
  • 39. Problem 2: Find the maximum or minimum values of 𝒇 𝒙, π’š = πŸ‘π’™ 𝟐 βˆ’ π’š 𝟐 + 𝒙 πŸ‘ Solution: Given 𝑓 π‘₯, 𝑦 = 3π‘₯2 βˆ’ 𝑦2 + π‘₯3 ------- (1) To find the stationary point: Put πœ•π‘“ πœ•π‘₯ = 𝑓π‘₯ = 0 & πœ•π‘“ πœ•π‘¦ = 𝑓𝑦 = 0 πœ•π‘“ πœ•π‘₯ = 0 β‡’ 6π‘₯ + 3π‘₯2 = 0 ⟹ 3π‘₯ 2 + π‘₯ = 0 ⟹ π‘₯ = 0, π‘₯ + 2 = 0 ⟹ π‘₯ = 0, π‘₯ = βˆ’2 πœ•π‘“ πœ•π‘¦ = 0 ⟹ βˆ’2𝑦 = 0 ⟹ 𝑦 = 0 The stationary points are 0,0 , (βˆ’2,0) 𝑝 = 𝐟 𝐱 = πœ•π‘“ πœ•π‘₯ = 6π‘₯ + 3π‘₯2 π‘Ÿ = 𝐟 𝐱𝐱 = πœ•2 𝑓 πœ•π‘₯2 = 6 + 6π‘₯ 𝑠 = 𝐟 𝐱𝐲 = πœ•2 𝑓 πœ•π‘₯πœ•π‘¦ = 0 π‘ž = 𝐟 𝐲 = πœ•π‘“ πœ•π‘¦ = βˆ’2𝑦 𝑑 = 𝑓𝑦𝑦 = πœ•2𝑓 πœ•π‘¦2 = βˆ’2
  • 40. To find the point at which 𝒇(𝒙, π’š) has maximum/minimum: π‘Ÿπ‘‘ βˆ’ 𝑠2 = 6 + 6π‘₯ βˆ’2 βˆ’ 0 = βˆ’12 βˆ’ 12π‘₯ At the Point (0,0): π‘Ÿπ‘‘ βˆ’ 𝑠2 π‘Žπ‘‘ 0,0 = βˆ’12 βˆ’ 12 0 = βˆ’12 < 𝟎 Hence the point (0,0) is the saddle point of 𝑓(π‘₯, 𝑦) At the Point (-2,0): π‘Ÿπ‘‘ βˆ’ 𝑠2 π‘Žπ‘‘ βˆ’2,0 = βˆ’12 βˆ’ 12 βˆ’2 = βˆ’12 + 24 = 12 > 𝟎 π‘Ÿat βˆ’2,0 = 6 + 6 βˆ’2 = 6 βˆ’ 12 = βˆ’6 < 𝟎 Hence at the point βˆ’2,0 the function 𝑓 π‘₯, 𝑦 has maximum. To find the maximum value: Put π‘₯, 𝑦 = (βˆ’2,0) in (1), 𝑓 βˆ’2,0 = 3(βˆ’2)2 βˆ’ 0 2 + βˆ’2 3 = 12 βˆ’ 8 = 4
  • 41. Constrained Maxima and Minima – Lagrangian Multiplier If 𝑓(π‘₯, 𝑦, 𝑧) is a function of three variables π‘₯, 𝑦, 𝑧 , we will find the extreme values (maximum or minimum) of 𝑓(π‘₯, 𝑦, 𝑧) with respect to a constraint βˆ… π‘₯, 𝑦, 𝑧 = 0 Procedure Step 1. Identify the constraint equation βˆ… π‘₯, 𝑦, 𝑧 = 0 Step 2. Identify the main function for which we have to find the extreme value, let it be 𝑓(π‘₯, 𝑦, 𝑧) Step 3. Form the equation 𝐹 = 𝑓 + πœ†βˆ… Step 4. Find 𝐹π‘₯ , 𝐹𝑦, 𝐹𝑧 Step 5. Put 𝐹π‘₯ = 0 , 𝐹𝑦 = 0, 𝐹𝑧 = 0 and solve all the equations including βˆ… π‘₯, 𝑦, 𝑧 = 0 Step 6. Find the values of π‘₯, 𝑦, 𝑧 and πœ† Step 7. The values of π‘₯, 𝑦, 𝑧 gives the extreme values of 𝑓(π‘₯, 𝑦, 𝑧)
  • 42. Note : Distance of a point π‘₯1, 𝑦1, 𝑧1 π‘“π‘Ÿπ‘œπ‘š π‘₯, 𝑦, 𝑧 is given by 𝑑 = π‘₯ βˆ’ π‘₯1 2 + 𝑦 βˆ’ 𝑦1 2 + 𝑧 βˆ’ 𝑧1 2 Square of the distance is 𝑑2 = π‘₯ βˆ’ π‘₯1 2 + 𝑦 βˆ’ 𝑦1 2 + 𝑧 βˆ’ 𝑧1 2
  • 43. Problem 1: Find the length of the shortest line form the point (𝟎, 𝟎, πŸπŸ“ πŸ— ) to the surface 𝒛 = π’™π’š Solution: The square of the distance from the point (0,0, 25 9 ) to (π‘₯, 𝑦, 𝑧) is (𝑑2) 𝑓 π‘₯, 𝑦, 𝑧 = π‘₯ βˆ’ 0 2 + 𝑦 βˆ’ 0 2 + 𝑧 βˆ’ 25 9 2 𝑓 π‘₯, 𝑦, 𝑧 = π‘₯2 + 𝑦2 + 𝑧 βˆ’ 25 9 2 ------- (1) Subject to ( to the surface) βˆ… π‘₯, 𝑦𝑧 = 𝑧 βˆ’ π‘₯𝑦 = 0 ------------(2) (∡ 𝑧 = π‘₯𝑦 ⟹ 𝑧 βˆ’ π‘₯𝑦 = 0) Consider the Lagrangian function F = 𝑓 π‘₯, 𝑦, 𝑧 + πœ†πœ™ π‘₯, 𝑦, 𝑧 𝐹 = π‘₯2 + 𝑦2 + 𝑧 βˆ’ 25 9 2 + πœ†(𝑧 βˆ’ π‘₯𝑦) πœ•F πœ•π± = 2x βˆ’ Ξ»y πœ•F πœ•y = 2y βˆ’ Ξ»x πœ•F πœ•z = 2 z βˆ’ 25 9 + Ξ»
  • 44. To find the stationary points: Put πœ•F πœ•π‘₯ = 0, πœ•F πœ•π‘¦ = 0 & πœ•F πœ•π‘§ = 0 πœ•πΉ πœ•π‘₯ = 0 ⟹ 2π‘₯ βˆ’ πœ†π‘¦ = 0 ⟹ πœ†π‘¦ = 2π‘₯ ⟹ πœ† = 2π‘₯ 𝑦 ------- (3) πœ•F πœ•π‘¦ = 0 ⟹ 2𝑦 βˆ’ πœ†x = 0 ⟹ πœ†π‘₯ = 2𝑦 ⟹ πœ† = 2𝑦 π‘₯ ------ (4) πœ•F πœ•π‘§ = 0 ⟹ 2 z βˆ’ 25 9 + Ξ» = 0 ⟹ Ξ» = βˆ’2 z βˆ’ 25 9 ----- (5) From (3), (4), (5), 2π‘₯ 𝑦 = 2𝑦 π‘₯ = βˆ’2 z βˆ’ 25 9 ⟹ π‘₯ 𝑦 = 𝑦 π‘₯ = βˆ’z + 25 9 Consider π‘₯ 𝑦 = 𝑦 π‘₯ ⟹ π‘₯2 = 𝑦2 ⟹ π‘₯ = ±𝑦 Consider 𝑦 π‘₯ = βˆ’z + 25 9 , If π‘₯ = 𝑦 βˆ’π‘§ + 25 9 = 𝑦 𝑦 = 1 ⟹ 𝑧 = 25 9 βˆ’ 1 = 25βˆ’9 9 = 16 9 Given 𝑧 = π‘₯𝑦 = 𝑦. 𝑦 = 𝑦2 (∡ π‘₯ = 𝑦) ⟹ 𝑦2 = 16 9 ∡ 𝑧 = 16 9 ⟹ 𝑦 = Β± 16 9 = Β± 4 3 If π‘₯ = βˆ’π‘¦ βˆ’π‘§ + 25 9 = 𝑦 βˆ’π‘¦ = βˆ’1 ⟹ 𝑧 = 25 9 + 1 = 25+9 9 = 34 9 Given 𝑧 = π‘₯𝑦 = βˆ’π‘¦. 𝑦 = βˆ’π‘¦2 (∡ π‘₯ = βˆ’π‘¦) ⟹ βˆ’π‘¦2 = 34 9 ⟹ 𝑦2 = βˆ’ 34 9 ∡ 𝑧 = 34 9 ⟹ 𝑦 = Β± βˆ’34 9 (Imaginary , this is not possible) Hence π‘₯ = βˆ’π‘¦ is ruled out.
  • 45. Hence π‘₯ = 𝑦 = Β± 4 3 & 𝑧 = π‘₯𝑦 = 𝑦2 = 4 3 2 = 16 9 From (1) square distance is 𝑑2 = π‘₯2 + 𝑦2 + 𝑧 βˆ’ 25 9 2 = 4 3 2 + 4 3 2 + 16 9 βˆ’ 25 9 2 = 16 9 + 16 9 + βˆ’ 9 9 2 = 2 16 9 + βˆ’1 2 = 32 9 + 1 = 32+9 9 = 41 9 The required minimum distance is (d) = 41 9 = 41 3 units Problem 2: A rectangular box open at the top is to have a volume of 32 cc .Find the dimensions of the box that requires the least material for its construction Solution: Given a rectangular open box with volume 32cc Let us take the length, width and height of the box be x, y and z respectively.
  • 46. Hence the volume of the box is π‘₯𝑦𝑧 = 32 , which is the given constrain (condition). Let βˆ… π‘₯, 𝑦, 𝑧 = π‘₯𝑦𝑧 βˆ’ 32 ------ (1) Requirement of least material to construct the open top box is the total least surface area of the box. Total surface area of the open rectangular box is π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 Let 𝑓 π‘₯, 𝑦, 𝑧 = π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 ------ (2)
  • 47. Note:
  • 48.
  • 49. Hence the total surface area of a open rectangular box is π’™π’š + πŸπ’™π’› + πŸπ’šπ’›
  • 50. Consider the Lagrangian function 𝐹 = 𝑓 + πœ†πœ™ 𝐹 = π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 + πœ† π‘₯𝑦𝑧 βˆ’ 32 ( by using (1) & (2)) To find the stationary points: Put πœ•F πœ•π‘₯ = 0, πœ•F πœ•π‘¦ = 0 & πœ•F πœ•π‘§ = 0 πœ•πΉ πœ•π‘₯ = 0 ⟹ y + 2z + πœ†π‘¦π‘§ = 0 ⟹ πœ†π‘¦π‘§ = βˆ’ 𝑦 + 2𝑧 ⟹ πœ† = βˆ’(𝑦+2𝑧) 𝑦𝑧 ------ (3) πœ•F πœ•π‘¦ = 0 ⟹ π‘₯ + 2𝑧 + πœ†xz = 0 ⟹ πœ†π‘₯𝑧 = βˆ’(π‘₯ + 2𝑧) ⟹ πœ† = βˆ’(π‘₯+2𝑧) π‘₯𝑧 ------ (4) πœ•F πœ•π‘§ = 0 ⟹ 2x + 2y + Ξ»xy = 0 ⟹ Ξ»xy = βˆ’2x βˆ’ 2y = βˆ’2 x + y πœ† = βˆ’2 π‘₯+𝑦 π‘₯𝑦 ----- (5) πœ•πΉ πœ•π‘₯ = 𝑦 + 2𝑧 + πœ†π‘¦π‘§ πœ•πΉ πœ•π‘¦ = π‘₯ + 2𝑧 + πœ†π‘₯𝑧 πœ•πΉ πœ•π‘§ = 2π‘₯ + 2𝑦 + πœ†π‘₯𝑦
  • 51. From (3), (4), (5), βˆ’(𝑦+2𝑧) 𝑦𝑧 = βˆ’(π‘₯+2𝑧) π‘₯𝑧 = βˆ’2 π‘₯+𝑦 π‘₯𝑦 Consider βˆ’(𝑦+2𝑧) 𝑦𝑧 = βˆ’(π‘₯+2𝑧) π‘₯𝑧 β‡’ βˆ’π‘₯(𝑦+2𝑧) π‘₯𝑦𝑧 = βˆ’π‘¦(π‘₯+2𝑧) 𝑦π‘₯𝑧 β‡’ π‘₯𝑦 + 2𝑧π‘₯ = (𝑦π‘₯ + 2𝑧𝑦) β‡’ 2𝑧π‘₯ = 2𝑧𝑦 β‡’ π‘₯ = 𝑦 ------ (6) Consider βˆ’(π‘₯+2𝑧) π‘₯𝑧 = βˆ’2 π‘₯+𝑦 π‘₯𝑦 β‡’ π‘₯+2𝑧 π‘₯𝑧 = 2 π‘₯+𝑦 π‘₯𝑦 Using (6), π‘₯+2𝑧 π‘₯𝑧 = 2 π‘₯+π‘₯ π‘₯π‘₯ β‡’ π‘₯+2𝑧 π‘₯𝑧 = 4π‘₯ π‘₯2 β‡’ π‘₯+2𝑧 π‘₯𝑧 = 4 π‘₯ β‡’ π‘₯+2𝑧 𝑧 = 4
  • 52. β‡’ π‘₯ + 2𝑧 = 4𝑧 β‡’ 4𝑧 βˆ’ 2𝑧 = π‘₯ β‡’ 2𝑧 = π‘₯ β‡’ 𝑧 = π‘₯ 2 -------- (7) Given volume π‘₯𝑦𝑧 = 32 From (6) & (7) π‘₯ . π‘₯ . π‘₯ 2 = 32 , (∡ 𝑦 = π‘₯ & 𝑧 = π‘₯ 2 ) π‘₯3 = 2 32 = 64 π‘₯ = 64 1 3 π‘₯ = 43 1 3 = 4 3 3 = 4 Hence π‘₯ = 4 , 𝑦 = π‘₯ = 4 and 𝑧 = π‘₯ 2 = 4 2 = 2 The required dimension is π‘₯ = 4, 𝑦 = 4 π‘Žπ‘›π‘‘ 𝑧 = 2
  • 53. Problem 3: Find the dimensions of the rectangular box, open at the top, of maximum capacity whose surface area is 432 square meter. Solution: Given a rectangular open box with surface area 432 sq.m Let us take the length, width and height of the box be x, y and z respectively. Hence the surface area π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 = 432, which is the given constrain(condition) Let βˆ… π‘₯, 𝑦, 𝑧 = π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 βˆ’ 432 ------ (1) Requirement of a open rectangular box with maximum capacity (volume) Total volume of the open rectangular box is π‘₯𝑦𝑧 Let 𝑓 π‘₯, 𝑦, 𝑧 = π‘₯𝑦𝑧 ------ (2)
  • 54. Consider the Lagrangian function 𝐹 = 𝑓 + πœ†πœ™ 𝐹 = π‘₯𝑦𝑧 + πœ† π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 βˆ’ 432 ( by using (1) & (2)) To find the stationary points: Put πœ•F πœ•π‘₯ = 0, πœ•F πœ•π‘¦ = 0 & πœ•F πœ•π‘§ = 0 πœ•πΉ πœ•π‘₯ = 0 ⟹ yz + πœ† 𝑦 + 2z = 0 ⟹ πœ† 𝑦 + 2𝑧 = βˆ’π‘¦π‘§ ⟹ πœ† = βˆ’π‘¦π‘§ 𝑦+2𝑧 ------ (3) πœ•F πœ•π‘¦ = 0 ⟹ π‘₯𝑧 + πœ†(x + 2z) = 0 ⟹ πœ†(π‘₯ + 2𝑧) = βˆ’π‘₯𝑧 ⟹ πœ† = βˆ’π‘₯𝑧 π‘₯+2𝑧 ------ (4) πœ•F πœ•π‘§ = 0 ⟹ xy + Ξ» 2x + 2y = 0 ⟹ Ξ» 2x + 2y = βˆ’xy β‡’ πœ† = βˆ’π‘₯𝑦 2π‘₯+2𝑦 ----- (5) πœ•πΉ πœ•π‘₯ = 𝑦𝑧 + πœ†(𝑦 + 2𝑧) πœ•πΉ πœ•π‘¦ = π‘₯𝑧 + πœ†(π‘₯ + 2𝑧) πœ•πΉ πœ•π‘§ = π‘₯𝑦 + πœ†(2π‘₯ + 2𝑦)
  • 55. From (3), (4), (5), βˆ’π‘¦π‘§ 𝑦+2𝑧 = βˆ’π‘₯𝑧 π‘₯+2𝑧 = βˆ’π‘₯𝑦 2π‘₯+2𝑦 Consider βˆ’π‘¦π‘§ 𝑦+2𝑧 = βˆ’π‘₯𝑧 π‘₯+2𝑧 β‡’ 𝑦𝑧 𝑦+2𝑧 = π‘₯𝑧 π‘₯+2𝑧 β‡’ 𝑦 𝑦+2𝑧 = π‘₯ π‘₯+2𝑧 β‡’ 𝑦 π‘₯ + 2𝑧 = π‘₯(𝑦 + 2𝑧) β‡’ π‘₯𝑦 + 2𝑧𝑦 = π‘₯𝑦 + 2𝑧π‘₯ β‡’ 2𝑧𝑦 = 2𝑧π‘₯ β‡’ 𝑦 = π‘₯ -------- (6) Consider βˆ’π‘₯𝑧 π‘₯+2𝑧 = βˆ’π‘₯𝑦 2π‘₯+2𝑦 β‡’ 𝑧 π‘₯+2𝑧 = 𝑦 2 π‘₯+𝑦 β‡’ 𝑧 π‘₯+2𝑧 = π‘₯ 2 π‘₯+π‘₯ (by using (6)) β‡’ 𝑧 π‘₯+2𝑧 = π‘₯ 2 2π‘₯ β‡’ 𝑧 π‘₯+2𝑧 = 1 4
  • 56. β‡’ 𝑧 π‘₯+2𝑧 = 1 4 β‡’ 4𝑧 = π‘₯ + 2𝑧 β‡’ 4𝑧 βˆ’ 2𝑧 = π‘₯ β‡’ 2𝑧 = π‘₯ β‡’ 𝑧 = π‘₯ 2 ------- (7) Given surface area π‘₯𝑦 + 2π‘₯𝑧 + 2𝑦𝑧 = 432 Using (6) & (7), π‘₯. π‘₯ + 2π‘₯. π‘₯ 2 + 2π‘₯. π‘₯ 2 = 432 β‡’ π‘₯2 + π‘₯2 + π‘₯2 = 432 β‡’ 3π‘₯2 = 432 β‡’ π‘₯2 = 432 3 β‡’ π‘₯2 = 144 β‡’ π‘₯ = Β± 144 β‡’ π‘₯ = Β±12 (since π‘₯ is the length , π‘₯ = βˆ’12 is not possible ) Hence π‘₯ = 12 , 𝑦 = π‘₯ = 12 , & 𝑧 = π‘₯ 2 = 12 2 = 6 The required dimension for maximum capacity is π‘₯ = 12 , 𝑦 = 12 & 𝑧 = 6
  • 57. Problem 4: Find the minimum distance from the point (𝟏, 𝟐, 𝟎) to the cone 𝒛 𝟐 = 𝒙 𝟐 + π’š 𝟐 Solution: Wkt, the square of the distance (𝑑2 ) from the point (1, 2, 0) to (π‘₯, 𝑦, 𝑧) is π‘₯ βˆ’ 1 2 + 𝑦 βˆ’ 2 2 + 𝑧 βˆ’ 0 2 = π‘₯ βˆ’ 1 2 + 𝑦 βˆ’ 2 2 + 𝑧2 Let 𝑓 π‘₯, 𝑦, 𝑧 = π‘₯ βˆ’ 1 2 + 𝑦 βˆ’ 2 2 + 𝑧2 --------- (1) Subject to 𝑧2 = π‘₯2 + 𝑦2 β‡’ 𝑧2 βˆ’ π‘₯2 βˆ’ 𝑦2 = 0 Let βˆ… π‘₯, 𝑦, 𝑧 = 𝑧2 βˆ’ π‘₯2 βˆ’ 𝑦2 ---------- (2) Consider the Lagrangian function 𝐹 = 𝑓 + πœ†πœ™ 𝐹 = π‘₯ βˆ’ 1 2 + 𝑦 βˆ’ 2 2 + 𝑧2 + πœ†(𝑧2 βˆ’ π‘₯2 βˆ’ 𝑦2) πœ•F πœ•x = 2 x βˆ’ 1 βˆ’ Ξ»(2x) πœ•F πœ•y = 2 y βˆ’ 2 βˆ’ Ξ»(2y) πœ•F πœ•z = 2z + Ξ» 2z = 2z(1 + Ξ»)
  • 58. To find the stationary points: Put πœ•F πœ•π‘₯ = 0, πœ•F πœ•π‘¦ = 0 & πœ•F πœ•π‘§ = 0 πœ•πΉ πœ•π‘₯ = 0 ⟹ 2 π‘₯ βˆ’ 1 βˆ’ πœ† 2π‘₯ = 0 ⟹ 2πœ†π‘₯ = 2 π‘₯ βˆ’ 1 ⟹ πœ† = (π‘₯βˆ’1) π‘₯ ------ (3) πœ•F πœ•π‘¦ = 0 ⟹ 2 𝑦 βˆ’ 2 βˆ’ πœ† 2𝑦 = 0 ⟹ 2πœ†π‘¦ = 2 𝑦 βˆ’ 2 ⟹ πœ† = (π‘¦βˆ’2) 𝑦 ------ (4) πœ•F πœ•π‘§ = 0 ⟹ 2𝑧(1 + πœ†) = 0 ----- (5) 5 ⟹ 𝑧 = 0 π‘œπ‘Ÿ 1 + πœ† = 0 ⟹ 𝑧 = 0 π‘œπ‘Ÿ πœ† = βˆ’1 Suppose 𝑧 = 0, Since π‘₯2 + 𝑦2 = 𝑧2 β‡’ π‘₯2 + 𝑦2 = 0 β‡’ π‘₯ = 0 & 𝑦 = 0 , this is not possible. Hence πœ† = βˆ’1
  • 59. From (3) , -1= (π‘₯βˆ’1) π‘₯ β‡’ βˆ’π‘₯ = π‘₯ βˆ’ 1 β‡’ βˆ’π‘₯ βˆ’ π‘₯ = βˆ’1 β‡’ βˆ’2π‘₯ = βˆ’1 β‡’ 2π‘₯ = 1 β‡’ π‘₯ = 1 2 From(4), βˆ’1 = π‘¦βˆ’2 𝑦 β‡’ βˆ’π‘¦ = 𝑦 βˆ’ 2 β‡’ βˆ’π‘¦ βˆ’ 𝑦 = βˆ’2 β‡’ βˆ’2𝑦 = βˆ’2 β‡’ 𝑦 = 1 Since π‘₯2 + 𝑦2 = 𝑧2 Substitute π‘₯ = 1 2 , 𝑦 = 1 𝑧2 = 1 2 2 + 1 2 = 1 4 + 1 = 1+4 4 = 5 4 β‡’ 𝑧 = Β± 5 4 = Β± 5 2 Hence , π‘₯ = 1 2 , 𝑦 = 1 , 𝑧 = Β± 5 2 The square distance (𝑑2) is π‘₯ βˆ’ 1 2 + 𝑦 βˆ’ 2 2 + 𝑧2 = 1 2 βˆ’ 1 2 + 1 βˆ’ 2 2 + 5 2 2 = βˆ’ 1 2 2 + βˆ’1 2 + 5 4 = 1 4 + 1 + 5 4 = 1+4+5 4 = 10 4 = 5 2 The minimum distance (𝑑) = 5 2
  • 60. Jacobian β€’ If 𝑒 = 𝑓(π‘₯, 𝑦) and 𝑣 = 𝑔(π‘₯, 𝑦) are two continuous functions of two independent variables x and y then the functional determinant 𝐽 = πœ•π‘’ πœ•π‘₯ πœ•π‘’ πœ•π‘¦ πœ•π‘£ πœ•π‘₯ πœ•π‘£ πœ•π‘¦ = 𝑒 π‘₯ 𝑒 𝑦 𝑣 π‘₯ 𝑣 𝑦 is called Jacobian of 𝑒 , 𝑣 with respect to π‘₯, 𝑦 and it is denoted by πœ• 𝑒,𝑣 πœ• π‘₯,𝑦 β€’ If u , v, w are functions of x ,y , z then jacobian of u , v , w with respect to x , y , z is given by πœ• 𝑒,𝑣,𝑀 πœ• π‘₯,𝑦,𝑧 = πœ•π‘’ πœ•π‘₯ πœ•π‘’ πœ•π‘¦ πœ•π‘’ πœ•π‘§ πœ•π‘£ πœ•π‘₯ πœ•π‘£ πœ•π‘¦ πœ•π‘£ πœ•π‘§ πœ•π‘€ πœ•π‘₯ πœ•π‘€ πœ•π‘¦ πœ•π‘€ πœ•π‘§ = 𝑒 π‘₯ 𝑒 𝑦 𝑒 𝑧 𝑣 π‘₯ 𝑣 𝑦 𝑣𝑧 𝑀 π‘₯ 𝑀 𝑦 𝑀𝑧
  • 61. Two important Properties of Jacobian 1. If 𝑒, 𝑣 are functions of π‘₯, 𝑦 and π‘₯, 𝑦 are the function of π‘Ÿ, 𝑠 then πœ• 𝑒,𝑣 πœ• π‘Ÿ,𝑠 = πœ• 𝑒,𝑣 πœ• π‘₯,𝑦 πœ• π‘₯,𝑦 πœ• π‘Ÿ,𝑠 2. If 𝑒, 𝑣 are the functions of π‘₯, 𝑦 then πœ• π‘₯,𝑦 πœ• 𝑒,𝑣 = 1 πœ• 𝑒,𝑣 πœ• π‘₯,𝑦 Note : Two functions 𝑒(π‘₯, 𝑦) & 𝑣(π‘₯, 𝑦) are functionally depended if πœ• 𝑒,𝑣 πœ• π‘₯,𝑦 =0
  • 62. Problem 1: If 𝒖 = π’šπ’› 𝒙 , 𝒗 = 𝒛𝒙 π’š , π’˜ = π’™π’š 𝒛 find 𝝏 𝒖,𝒗,π’˜ 𝝏 𝒙,π’š,𝒛 Solution: Wkt, the jacobian of 𝑒, 𝑣, 𝑀 with respect to π‘₯, 𝑦, 𝑧 is given by πœ• 𝑒,𝑣,𝑀 πœ• π‘₯,𝑦,𝑧 = 𝑒 π‘₯ 𝑒 𝑦 𝑒 𝑧 𝑣 π‘₯ 𝑣 𝑦 𝑣𝑧 𝑀 π‘₯ 𝑀 𝑦 𝑀𝑧 Given 𝑒 = 𝑦𝑧 π‘₯ , 𝑣 = 𝑧π‘₯ 𝑦 , 𝑀 = π‘₯𝑦 𝑧
  • 63.
  • 64. πœ• 𝑒,𝑣,𝑀 πœ• π‘₯,𝑦,𝑧 = 𝑒 π‘₯ 𝑒 𝑦 𝑒 𝑧 𝑣 π‘₯ 𝑣 𝑦 𝑣𝑧 𝑀 π‘₯ 𝑀 𝑦 𝑀𝑧 = βˆ’ 𝑦𝑧 π‘₯2 𝑧 π‘₯ 𝑦 π‘₯ 𝑧 𝑦 βˆ’ 𝑧π‘₯ 𝑦2 π‘₯ 𝑦 𝑦 𝑧 π‘₯ 𝑧 βˆ’ π‘₯𝑦 𝑧2 = 1 π‘₯ 1 𝑦 1 𝑧 βˆ’ 𝑦𝑧 π‘₯ 𝑧 𝑦 𝑧 βˆ’ 𝑧π‘₯ 𝑦 π‘₯ 𝑦 π‘₯ βˆ’ π‘₯𝑦 𝑧 = 1 π‘₯𝑦𝑧 βˆ’ 𝑦𝑧 π‘₯ βˆ’ 𝑧π‘₯ 𝑦 βˆ’ π‘₯𝑦 𝑧 βˆ’ π‘₯2 βˆ’ 𝑧 𝑧 βˆ’ π‘₯𝑦 𝑧 βˆ’ 𝑦π‘₯ + 𝑦 𝑧π‘₯ βˆ’ βˆ’ 𝑧π‘₯ 𝑦 𝑦 = 1 π‘₯𝑦𝑧 [ βˆ’ 𝑦𝑧 π‘₯ π‘₯2 βˆ’ π‘₯2 βˆ’ 𝑧 βˆ’π‘₯𝑦 βˆ’ π‘₯𝑦 + 𝑦 𝑧π‘₯ + 𝑧π‘₯ ] = 1 π‘₯𝑦𝑧 βˆ’ 𝑦𝑧 π‘₯ 0 βˆ’ 𝑧 βˆ’2π‘₯𝑦 + 𝑦 2𝑧π‘₯ = 1 π‘₯𝑦𝑧 2π‘₯𝑦𝑧 + 2π‘₯𝑦𝑧 = 4π‘₯𝑦𝑧 π‘₯𝑦𝑧 = 4
  • 65. Problem 2: If 𝒙 = 𝒖 𝟐 – 𝒗 𝟐 , π’š = πŸπ’–π’— find the Jacobian of 𝒙, π’š with respect to 𝒖 𝒂𝒏𝒅 𝒗 Solution: Given π‘₯ = 𝑒2 – 𝑣2 , 𝑦 = 2𝑒𝑣 To find the jacobian of π‘₯, 𝑦 w . r. to 𝑒 & 𝑣 To find πœ• π‘₯,𝑦 πœ• 𝑒,𝑣 = π‘₯ 𝑒 π‘₯ 𝑣 𝑦 𝑒 𝑦𝑣 π‘₯ = 𝑒2 – 𝑣2 𝑦 = 2𝑒𝑣 π‘₯ 𝑒 = 2𝑒 𝑦𝑒 = 2𝑣 π‘₯ 𝑣 = βˆ’2𝑣 𝑦𝑣 = 2𝑒
  • 66. πœ• π‘₯,𝑦 πœ• 𝑒,𝑣 = π‘₯ 𝑒 π‘₯ 𝑣 𝑦 𝑒 𝑦𝑣 = 2𝑒 βˆ’2𝑣 βˆ’2𝑣 2𝑒 = 4𝑒2 βˆ’ 4𝑣2 = 4 𝑒2 βˆ’ 𝑣2 Problem 3: If 𝒙 = 𝒖𝒗 𝒂𝒏𝒅 π’š = 𝒖 𝒗 , then find 𝝏 𝒙,π’š 𝝏 𝒖,𝒗 Solution: Given π‘₯ = 𝑒𝑣 π‘Žπ‘›π‘‘ 𝑦 = 𝑒 𝑣 π‘₯ = 𝑒𝑣 𝑦 = 𝑒 𝑣 π‘₯ 𝑒 = 𝑣 𝑦𝑒 = 1 𝑣 π‘₯ 𝑣 = 𝑒 𝑦𝑣 = βˆ’ 𝑒 𝑣2
  • 67. πœ• π‘₯,𝑦 πœ• 𝑒,𝑣 = π‘₯ 𝑒 π‘₯ 𝑣 𝑦 𝑒 𝑦𝑣 = 𝑣 𝑒 1 𝑣 βˆ’ 𝑒 𝑣2 = 𝑣 𝑒 𝑣2 βˆ’ 1 𝑣 𝑒 = 𝑒 𝑣 βˆ’ 𝑒 𝑣 = 0 Problem 4: If 𝒙 = 𝒓 𝐜𝐨𝐬 𝜽 and π’š = 𝒓 𝐬𝐒𝐧 𝜽 then find 𝝏𝒓 𝝏𝒙 Solution: Given π‘₯ = π‘Ÿ cos πœƒ and 𝑦 = π‘Ÿ sin πœƒ π‘₯2 + 𝑦2 = π‘Ÿ2 cos2 πœƒ + π‘Ÿ2 sin2 πœƒ = π‘Ÿ2(cos2 πœƒ + sin2 πœƒ) = π‘Ÿ2 ∴ π‘Ÿ2 = π‘₯2 + 𝑦2 2π‘Ÿ πœ•π‘Ÿ πœ•π‘₯ = 2π‘₯ ⟹ πœ•π‘Ÿ πœ•π‘₯ = 2π‘₯ 2π‘Ÿ = π‘₯ π‘Ÿ = π‘₯ π‘₯2+𝑦2 , ∡ π‘Ÿ = π‘₯2 + 𝑦2
  • 68. Problem 5: If 𝒙 = 𝒖 (𝟏 – 𝒗) and π’š = 𝒖𝒗, find 𝝏 𝒖,𝒗 𝝏 𝒙,π’š Solution: Given π‘₯ = 𝑒 (1 – 𝑣) and 𝑦 = 𝑒𝑣 𝑖. 𝑒 π‘₯ = 𝑒 βˆ’ 𝑒𝑣 and 𝑦 = 𝑒𝑣 Wkt πœ• 𝑒,𝑣 πœ• π‘₯,𝑦 = 1 πœ• π‘₯,𝑦 πœ• 𝑒,𝑣 Now πœ• π‘₯,𝑦 πœ• 𝑒,𝑣 = π‘₯ 𝑒 π‘₯ 𝑣 𝑦 𝑒 𝑦𝑣 π‘₯ = 𝑒 βˆ’ 𝑒𝑣 𝑦 = 𝑒𝑣 π‘₯ 𝑒 = 1 βˆ’ 𝑣 𝑦𝑒 = 𝑣 π‘₯ 𝑣 = βˆ’π‘’ 𝑦𝑣 = 𝑒
  • 69. πœ• π‘₯,𝑦 πœ• 𝑒,𝑣 = π‘₯ 𝑒 π‘₯ 𝑣 𝑦 𝑒 𝑦𝑣 = 1 βˆ’ 𝑣 βˆ’π‘’ 𝑣 𝑒 = 1 βˆ’ 𝑣 𝑒 + 𝑒𝑣 = 𝑒 βˆ’ 𝑒𝑣 + 𝑒𝑣 = 𝑒 Hence πœ• 𝑒,𝑣 πœ• π‘₯,𝑦 = 1 πœ• π‘₯,𝑦 πœ• 𝑒,𝑣 = 1 𝑒 Problem 6: If 𝒙 = 𝒓 π’„π’π’”πœ½ π’š = 𝒓 𝐬𝐒𝐧 𝜽 then find 𝝏 𝒓,𝜽 𝝏 𝒙,π’š Solution: Given π‘₯ = π‘Ÿ π‘π‘œπ‘ πœƒ 𝑦 = π‘Ÿ sin πœƒ Wkt, πœ• π‘₯,𝑦 πœ• π‘Ÿ,πœƒ = π‘₯ π‘Ÿ π‘₯ πœƒ π‘¦π‘Ÿ 𝑦 πœƒ
  • 70. π‘₯ = π‘Ÿ π‘π‘œπ‘ πœƒ 𝑦 = π‘Ÿ π‘ π‘–π‘›πœƒ π‘₯ π‘Ÿ = π‘π‘œπ‘ πœƒ π‘¦π‘Ÿ = π‘ π‘–π‘›πœƒ π‘₯ πœƒ = βˆ’π‘Ÿπ‘ π‘–π‘›πœƒ 𝑦 πœƒ = π‘Ÿ π‘π‘œπ‘ πœƒ πœ• π‘₯,𝑦 πœ• π‘Ÿ,πœƒ = π‘₯ π‘Ÿ π‘₯ πœƒ π‘¦π‘Ÿ 𝑦 πœƒ = π‘π‘œπ‘ πœƒ βˆ’π‘Ÿπ‘ π‘–π‘›πœƒ π‘ π‘–π‘›πœƒ π‘Ÿ π‘π‘œπ‘ πœƒ = π‘Ÿ cos2 πœƒ + π‘Ÿπ‘ π‘–π‘›2 πœƒ = π‘Ÿ (cos2 πœƒ + sin2 πœƒ) = π‘Ÿ πœ• π‘Ÿ,πœƒ πœ• π‘₯,𝑦 = 1 πœ• π‘₯,𝑦 πœ• π‘Ÿ,πœƒ = 1 π‘Ÿ
  • 71. Problem 7 If 𝒖 = 𝒙 + π’š & π’š = 𝒖𝒗, then find the jacobian 𝝏 𝒙,π’š 𝝏 𝒖,𝒗 Solution: Given 𝑒 = π‘₯ + 𝑦 & 𝑦 = 𝑒𝑣 ⟹ 𝑒 = π‘₯ + 𝑒𝑣 ∡ 𝑦 = 𝑒𝑣 ⟹ π‘₯ = 𝑒 βˆ’ 𝑒𝑣 & 𝑦 = 𝑒𝑣 Wkt, πœ• π‘₯,𝑦 πœ• 𝑒,𝑣 = π‘₯ 𝑒 π‘₯ 𝑣 𝑦 𝑒 𝑦𝑣 π‘₯ = 𝑒 βˆ’ 𝑒𝑣 𝑦 = 𝑒𝑣 π‘₯ 𝑒 = 1 βˆ’ 𝑣 𝑦𝑒 = 𝑣 π‘₯ 𝑣 = βˆ’π‘’ 𝑦𝑣 = 𝑒
  • 72. πœ• π‘₯,𝑦 πœ• 𝑒,𝑣 = π‘₯ 𝑒 π‘₯ 𝑣 𝑦𝑒 𝑦𝑣 = 1 βˆ’ 𝑣 βˆ’π‘’ 𝑣 𝑒 = 1 βˆ’ 𝑣 𝑒 + 𝑒𝑣 = 𝑒 βˆ’ 𝑒𝑣 + 𝑒𝑣 = 𝑒 Note : Implicit vs Explicit Explicit: "y = some function of x". When we know x we can calculate y directly. An explicit function is one which is given in terms of the independent variable. Example , consider 𝑦 = π‘₯2 + 3π‘₯ – 8 here y is the dependent variable and is given in terms of the independent variable x. More Examples : 𝑦 = π‘₯ + 3 , 𝑦 = π‘₯2 βˆ’ π‘Ÿ2 𝑒𝑑𝑐., Implicit: "some function of y and x equals something else". Implicit functions, on the other hand, are usually given in terms of both dependent and independent variables. Example, consider 𝑦 + π‘₯2 βˆ’ 3π‘₯ + 8 = 0 More Examples: π‘₯2 + 𝑦2 = π‘Ž2 , π‘₯3 + π‘₯𝑦2 + 4π‘₯ = 5, 𝑒𝑑𝑐. ,
  • 73. Differentiation of implicit functions If 𝑓(π‘₯, 𝑦 ) is the given implicit function , then 𝑑𝑦 𝑑π‘₯ = βˆ’ πœ•π‘“ πœ•π‘₯ πœ•π‘“ πœ•π‘¦ Producer to find the differentiation: (i) Take 𝑓(π‘₯, 𝑦) (ii) Find πœ•π‘“ πœ•π‘₯ & πœ•π‘“ πœ•π‘¦ (iii) Find 𝑑𝑦 𝑑π‘₯ = βˆ’ πœ•π‘“ πœ•π‘₯ πœ•π‘“ πœ•π‘¦ Problem 1: If 𝒙 π’š + π’š 𝒙 = 𝒄, then find π’…π’š 𝒅𝒙 Solution: Given π‘₯ 𝑦 + 𝑦 π‘₯ = 𝑐 ⟹ π‘₯ 𝑦 + 𝑦 π‘₯ βˆ’ 𝑐 = 0 Take 𝑓 π‘₯, 𝑦 = π‘₯ 𝑦 + 𝑦 π‘₯ βˆ’ 𝑐
  • 74. Now πœ•π‘“ πœ•π‘₯ = πœ• πœ•π‘₯ π‘₯ 𝑦 + 𝑦 π‘₯ βˆ’ 𝑐 = πœ• πœ•π‘₯ π‘₯ 𝑦 + πœ• πœ•π‘₯ 𝑦 π‘₯ βˆ’ πœ• πœ•π‘₯ (𝑐) = 𝑦π‘₯ π‘¦βˆ’1 + 𝑦 π‘₯ log 𝑦 βˆ’ 0 , (∡ 𝑑 𝑑π‘₯ π‘₯ 𝑛 = 𝑛π‘₯ π‘›βˆ’1 & 𝑑 𝑑π‘₯ π‘Ž π‘₯ = π‘Ž π‘₯ log π‘Ž ) πœ•π‘“ πœ•π‘₯ = 𝑦π‘₯ π‘¦βˆ’1 + 𝑦 π‘₯ log 𝑦 Now πœ•π‘“ πœ•π‘¦ = πœ• πœ•π‘¦ π‘₯ 𝑦 + 𝑦 π‘₯ βˆ’ 𝑐 = πœ• πœ•π‘¦ π‘₯ 𝑦 + πœ• πœ•π‘¦ 𝑦 π‘₯ βˆ’ πœ• πœ•π‘¦ (𝑐) = π‘₯ 𝑦 log π‘₯ + π‘₯ 𝑦 π‘₯βˆ’1 βˆ’ 0 πœ•π‘“ πœ•π‘¦ = π‘₯ 𝑦 log π‘₯ + π‘₯ 𝑦 π‘₯βˆ’1 Wkt 𝑑𝑦 𝑑π‘₯ = βˆ’ πœ•π‘“ πœ•π‘₯ πœ•π‘“ πœ•π‘¦ = βˆ’ 𝑦π‘₯ π‘¦βˆ’1 +𝑦 π‘₯ log 𝑦 π‘₯ 𝑦 log π‘₯+π‘₯ 𝑦 π‘₯βˆ’1