SlideShare a Scribd company logo
Advances in impedance spectroscopy of solar energy
               conversion devices



                                       Juan Bisquert

                              Photovoltaic and Optoelectronic Devices Group
                                            Universitat Jaume I
                                              12071 Castelló
                                                  Spain

                                                27 10 2012
Solar cell concepts
Photovoltaics: Light absorber
Photovoltaics: Charge separation




Bisquert, J.; Cahen, D.; Rühle, S.; Hodes, G.; Zaban, A. "Physical chemical principles of photovoltaic conversion with
nanoparticulate, mesoporous dye-sensitized solar cells." The Journal of Physical Chemistry B, 108, 8106, 2004.
Fundamental model for a solar cell
                                                                        Infinite mobilities-
                                                                        no transport resistance
                                                                         Fermi level straight inside

                                                                        Perfect selective contacts




 1.     Generation
 2.     Recombination                                                    Fermi level fixed inside by
 3.     Extraction                                                       external potential, independent
                                                                         of illumination
Bisquert, J.; Cahen, D.; Rühle, S.; Hodes, G.; Zaban, A. "Physical chemical principles of photovoltaic conversion with
nanoparticulate, mesoporous dye-sensitized solar cells." The Journal of Physical Chemistry B, 108, 8106, 2004.
The diode equation for a solar cell

 Dark                At V = 0 equilibrium of generation and recombination
                                jr (0) = j0
                     Rise of the Fermi level enhances recombination
                               jr (V ) = j0 e qV / mk BT



Sunlight             Equilibrium of generation and recombination
                               j = jsc + j0 − j0 e qV / mk BT




                                                      Can be measured directly by
                    Also can be expressed in terms
                    of carrier density
                                                      recombination resistance
Current voltage curves
Solar cell concepts
Dye Solar Cells
Dye-sensitized solar cell




Nayak, Kahn, Garcia.Belmonte, Bisquert, Cahen, Energy and Environmental Science 2012
Limitation to efficiency
The DSC

It is a 3 –materials solar cell

There is a price of energy differences, but
   more versatile and potentially cheap
Influence of energetics: higher Voc


If the conduction band of TiO2 is higher, the Fermi level can rise higher (in
principle) and photovoltage may become larger
Influence of energetics: photocurrent


If the conduction band of TiO2 is higher, there is less injection from the
dye molecules, and current decreases
The redox potential of the hole
                              conductor




                                                                    New redox couples?




The Fermi level of the hole conductor is lower than I-/I3- liquid
electrolyte, which gives higher photovoltage
The energy diagram
Diffusion-recombination transmission line model




J. Bisquert, J. Phys. Chem. B 106, 325-333 (2002)
F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt Solar En.
Mat. Sol.Cells, 87, 117-131 (2005).
Measurement of resistances and
 capacitances by Impedance
        Spectroscopy
DSC device IS model




J. Bisquert, J. Phys. Chem. B 106, 325-333 (2002)
F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt Solar En.
Mat. Sol.Cells, 87, 117-131 (2005).
How do we determine energetics?

           The chemical capacitance measures the density of states in the bandgap
              (DOS) and this provides a reference of the Ec in different cells.


                                                                                                                 Pt
                                                          TCO                           re d o x
                                                                                        e le c t r o ly t e
                                                                         T iO   2


                                                                                    E   C



                                                                                    E   Fn
                            e le c tr ic p o te n tia l
e le c tr o n e n e r g y




                                                          eV

                                                                E   F0
                                                                                                E     re d o x
Chemical capacitance
                                                The conduction band of TiO2 is situated at a given level with respect to the Fermi level of hole
                                                    conductor. The chemical capacitance measures the density of states in the bandgap (DOS)
                                                    and this provides a reference of the Ec in different cells.

                                                              TC O                           re d o x
                                                                                                                      Pt
                                                                                                                            Chemical
                                                                                                                            capacitance
                                                                                             e le c t r o ly t e
                                                                              T iO   2


                                                                                         E   C



                                                                                                                                       ∂n
                                                                                         E   Fn
                                                                                                                           Cµ = q 2
                             e le c t r ic p o t e n t ia l
e le c t r o n e n e r g y




                                                              eV                                                                      ∂E Fn
                                                                     E   F0
                                                                                                     E     re d o x




                             Bisquert, J. "Chemical capacitance of nanostructured semiconductors: its origin and significance for heterogeneous solar
                             cells". Phys. Chem. Chem. Phys. 2003, 5, 5360
Interpretation of recombination
                                   resistance

                   '         q VF 
           Rrec = R0 exp − β
                             k BT 
                                   
The model considers a distribution of
surface states, and charge transfer via
Marcus model

                1                 T
          β=      + α s = 0. 5 +
                2                T0 s




Q. Wang, M. Grätzel, F. Fabregat-Santiago, J. Bisquert et al., J. Phys. Chem. B. 110, 25210-25221
(2006)
J. Bisquert, F. Fabregat –Santiago, I. Mora-Seró, G. Garcia-Belmonte, S. Giménez,
J. Phys. Chem. C, 113, 17278 (2009).
Fill factors

The recombination order β
relates directly to the
 diode ideality factor
m = 1.5-2.5
                                     j = jsc + j0 − j0e qβV / k BT
Restrictions on the fill factor
Shif of the band changes the diode
                                 factor
                                             Jennings and Wang show that the diode factor
                                             changes when the conduction band is brought
                                             down by the addition of lithium.


                                     m = 1 at high lithium content (low cb position)




Because electron
transfer is from
conduction band and
linear recombination
occurs
         J. Jennings, Q. Wang J. Phys. Chem. C, 114, 1715 (2010).
The diffusion length

The diffusion coefficient is related only to
resistances


                                    Rrec
        Ln = Dnτ n = L
                                    Rtr




J. Bisquert, J. Phys. Chem. B, 106, 325-333 (2002)
Variations of the diffusion length
The diffusion length increases with the bias
                                     This is indicating that the free electron lifetime is not a
Ln = Dnτ n = D0τ f                   constant
 Quantitative description is made by Peter et al.
 Using nonlinear recombination model




             J. Villanueva-Cab, H. Wang, G. OskamL. M. Peter, J. Phys. Chem. Lett. 1, 748, (2010).
Phtalocyanine dyes




       O                    O                       O                        O

  O                                 O           O                                    O
                   N                                                N

               N        N                                   N           N
                                                                H
           N       Zn       N                           N                    N
                                                                        H
               N        N                                   N            N

                   N                                                N
   O                                    O       O                                        O

       O                            O               O                                O
                                O                                                O


               ZnPc-1                                       H2Pc-2




Barea, E. M.; Ortiz, J.; Payá, F. J.; Fernández-Lázaro, F.; Fabregat-Santiago, F.; Sastre-Santos, A.; Bisquert, J. "Energetic factors governing
injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers". Energy and Environmental Science 2010, 3, 1985
Phtalocyanine dyes
                                                          n at VOC       EC       EC - EFn
             Voc           jsc                   η
Sample                                  FF                  (cm-3)       (eV)       (eV)
             (V)       (mA/cm2)                 (%)
ZnPc-1      0.44          3.48         0.66     1.01      4.2 x 1017    -4.00       0.31
H2Pc-2      0.35          5.71         0.57     1.14      1.5 x 1018    -4.13       0.27
N719        0.45          10.90        0.51     2.50      3.0 x 1018    -4.11       0.19




  Barea, E. M.; Ortiz, J.; Payá, F. J.; Fernández-Lázaro, F.; Fabregat-Santiago, F.; Sastre-Santos, A.; Bisquert, J. "Energetic factors governing
  injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers". Energy and Environmental Science 2010, 3, 1985
Phtalocyanine dyes




The band is shifted for ZnPC




We move the potential scale to
compare recombination

ZnPc has more recombination
Recombination in H2Pc is the
same as in N719
Phtalocianyne dyes

Recombination in H2Pc is the
same as in N719
With the same current it
would give the same voltage




Barea, E. M.; Ortiz, J.; Payá, F. J.; Fernández-Lázaro, F.; Fabregat-Santiago, F.; Sastre-Santos, A.; Bisquert, J. "Energetic factors governing
injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers". Energy and Environmental Science 2010, 3, 1985
The DOS an essential reference to
                      explain performance

Explanation of the low
VOC.

1)an inefficient injection
2)the low position of the
conduction band of TiO2,
Identifying the role that the dye structure plays in DSC
                                       performance
                                                   why YD2 porphyrin dye

                                 Acceptor• Can achieve such a high performance
                                  group close to that of a Ru commercial dye?
Donor
group                                              Besides of the dye structure and
                                                   the related photophysical properties.

                                 bridge            •What other key parameters in a DSC influence
                    YD2                            strongly the overall power conversion efficiency?
 Diau, C.-Y. Yeh, J. Mater. Chem. 2010, 20, 1127




                                                        Angew. Chem. Int. Ed. 2010, 49, 6646 –6649
YD2
                                                                      YD0      Sample name             YD2          YD0          N719
            Current density (mA·cm )                                  N719       Voc (V)
           -2
                                       15
                                                                                                       0.66         0.65          0.74
                                                                                jsc (mA/cm2)         15.4        6.92          12.6
                                       10                                            FF              0.62        0.73          0.70
                                                                              Efficiencysame condictions 7% efficiency is the record
                                                                                  * Under
                                                                                          (%)* 6.36              3.29          6.54
                                       5


                                       0
                                            0.0   0.2    0.4    0.6     0.8

                                                    Potential (V)




                                                                                               N719


Barea, E. M.; Gonzalez-Pedro, V.; Ripolles-Sanchis, T.; Wu, H.-P.; Li, L.-L.; Yeh, C.-Y.; Diau, E. W.-G.; Bisquert, J. "Porphyrin Dyes with High
Injection and Low Recombination for Highly Efficient Mesoscopic Dye-Sensitized Solar Cells". The Journal of Physical Chemistry C 2011, 115,
10898
J. Phys. Chem. B 2006, 110, 25210-25221
                     10-2                                                          105
                                                          (a)                                                         (b)
-2
Capacitance / F·cm




                                                                                   104



                                                                  2
                                                                  Rrec / Ohms·cm
                     10-3
                                                                                   103

                                                                                   102
                     10-4

                                                                                   101

                     10-5                                                          100
                            0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8                          0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
                                 Applied Potential / V                                        Applied Potential / V
N719




Sample name      YD2    YD0    N719
  Voc (V)        0.66   0.65   0.74
 jsc (mA/cm2)    15.4   6.92   12.6
      FF         0.62   0.73   0.70
Efficiency (%)   6.36   3.29   6.54
Sample name        YD2           YD0          N719
   Voc (V)           0.66         0.65          0.74
 jsc (mA/cm2)        15.4         6.92          12.6
      FF             0.62         0.73          0.70
Efficiency (%)       6.36         3.29          6.54

       β             0.47         0.73          0.70
  j0 (mA/cm2)     7.75e-05      6.09e-08      2.09e-08
 j0k (mA/cm )
            2
                      54          1406          213
         α           0.29          0.30         0.24
∆Ec vs ref (mV)      -123         -32.0         Ref
  Rseries (ohm)      19.5         19.4          17.9
  Internal FF        0.73         0.81          0.81
    Internal
efficiency (%)       7.41         3.58          7.54




      Barea, E. M.; Gonzalez-Pedro, V.; Ripolles-Sanchis, T.; Wu, H.-P.; Li, L.-L.; Yeh, C.-Y.; Diau, E. W.-G.; Bisquert, J. "Porphyrin Dyes with High
      Injection and Low Recombination for Highly Efficient Mesoscopic Dye-Sensitized Solar Cells". The Journal of Physical Chemistry C 2011, 115,
      10898
• ISTPro Features



               - Analyzes IS data of
               dye-sensitized solar
               cells (DSC).

               - Allows to treat
               impedance
               spectroscopy
               parameters to obtain
               the essential
               parameters of the DSC
               performance.

               - Display the
• ISTPro Features
Main Window:
• ISTPro Features
Organic solar cells
Organic solar cells




Sunflower project: http://sunflower-fp7.eu
Organic solar cell




On Voltage, Photovoltage, and Photocurrent in Bulk Heterojunction Organic Solar Cells
Juan Bisquert and Germa Garcia-Belmonte, J. Phys. Chem. Lett. 2011, 2, 1950–1964
Organic solar cell




Ratcliff, E. L.; Zacher, B.; Armstrong, N. R. "Selective Interlayers and Contacts in Organic Photovoltaic
Cells". The Journal of Physical Chemistry Letters 2011, 2, 1337.
The bands and the Fermi levels




Dielectric (depletion)
capacitance                         The chemical capacitance
Band bending and Fermi levels




   Donor LUMO

   Acceptor LUMO




                   EF

   Donor HOMO             ---
                              --
                                 --




                                      Cathode
   Acceptor HOMO




                                w
                   V=0
Band bending and Fermi levels




   Donor LUMO

   Acceptor LUMO




                      EF

   Donor HOMO
                                --
                                   --




                                        Cathode
   Acceptor HOMO




                                w
                   V < Vfb
Band bending and Fermi levels




   Donor LUMO

   Acceptor LUMO




                      EF

   Donor HOMO                   ---




                                      Cathode
                                      Cathode
   Acceptor HOMO




                                 w
                   V < Vfb
Band bending and Fermi levels




   Donor LUMO

   Acceptor LUMO




                      EF

   Donor HOMO                   -




                                    Cathode
   Acceptor HOMO




                                w
                   V < Vfb
Band bending and Fermi levels




   Donor LUMO

   Acceptor LUMO




                      EF

   Donor HOMO




                                Cathode
   Acceptor HOMO




                   V = Vfb
Depletion region – Mott Schottky plots



                                                                              Increase in the capacitance
                                                                              caused by the reduction of
                                                                              the depletion zone




Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopyw
Francisco Fabregat-Santiago, Germa Garcia-Belmonte, Ivan Mora-Sero´ and Juan Bisquert
Phys. Chem. Chem. Phys., 2011, 13, 9083–9118
Depletion region




-P. P. Boix, G. Garcia-Belmonte, U. Muñecas, M.Neophytou, C. Waldauf, R. Pacios,
Appl Phys. Lett 95, 1, (2009)
Depletion region
Additional proofs of electrical field confined near the
                                                              cathode




FIG. 2. (Color online) (a) The mean-field potential line-profile of the cross-sectional image and (b) the corresponding energy band diagram after contacting of all layers.

Appl. Phys. Lett. 99, 243301 (2011)
© 2011 American Institute of Physics
Measured DOS of organic BHJ
                                                                               Measurement of the DOS

                                                                               The chemical capacitance

                                                                                                       ∂nL
                                                                                      Cµ ( E ) = q 2        = qg n ( E Fn )
                                                                                                       ∂EFn




 PCBM-P3HT solar cell




Germà Garcia-Belmonte, Pablo P. Boix, Juan Bisquert, Michele Sessolo, and Henk J. Bolink
Solar Energy Materials and Solar Cells, 94, 366 (2010)
Comparison of different fullerenes
with similar reduction potential but different DOS




                                                                                                     DPM6
                                                                                PCBM
                                                                             Higher Voc related to full occupancy of
                                                                             intermediate electronic band
                                         G. Gar


Germa Garcia-Belmonte Pablo P. Boix, Juan Bisquert, Martijn Lenes, Henk J. Bolink,
Andrea La Rosa, Salvatore Filippone,and Nazario Martín§,J. Phys. Chem. Lett. 1 (2010) 2566-2571
Carrier diffusion in organic BHJ




PCBM-P3HT solar cell




Diffusion-Recombination Determines Collected Current and Voltage in Polymer:Fullerene Solar Cells
Teresa Ripolles-Sanchis, Antonio Guerrero, Juan Bisquert, and Germà Garcia-Belmonte, J. Phys. Chem. C 2012, 116, 16925−16933
The Fermi level in the Gaussian distribution


                                        In the presence of a Gaussian distribution, the
                                        carriers do not lie below the Fermi level.




Bisquert, J. "Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distributions
of states". Physical Chemistry Chemical Physics 2008, 10, 3175
Why is Voc less than HOMO-LUMO difference?
                                 This is explained by disorder




                                                                                 qVoc = E Fn − E Fp

                                                                                  σ n2 + σ p2                 Nn N p 
                                                            qVoc = E g −                            − k BT ln
                                                                                                              np    
                                                                                      2k BT                          




                             This formula derived by G. Garcia-Belmonte quantifies
                             the energy loss related to disorder



Garcia-Belmonte, G. "Temperature dependence of open-circuit voltage inorganic solar cells from generation–recombination
kinetic balance". Solar Energy Materials and Solar Cells 2010, 94, 2166
Recombination in organic BHJ
Energetics of recombination




Guerrero, A.; Marchesi, L. F.; Boix, P. P.; Bisquert, J.; Garcia-Belmonte, G. "Recombination in Organic Bulk Heterojunction Solar Cells: Small
Dependence of Interfacial Charge Transfer Kinetics on Fullerene Affinity". The Journal of Physical Chemistry Letters 2012, 3, 1386
Reconstruction of current voltage curves from
                                   recombination resistance data




Boix, P. P.; Guerrero, A.; Marchesi, L. F.; Garcia-Belmonte, G.; Bisquert, J. "Current-Voltage Characteristics of Bulk Heterojunction Organic
Solar Cells: Connection Between Light and Dark Curves". Advanced Energy Materials 2011, 1, 1073
Reconstruction of current voltage curves from
                                   recombination resistance data
                                                               −1                                           k BT
                                                      dj                      jsc = j rec (Voc ) = L
                                           Rrec   = L rec 
                                                      dV                                               βqRrec (Voc )
                                                      F 




Boix, P. P.; Guerrero, A.; Marchesi, L. F.; Garcia-Belmonte, G.; Bisquert, J. "Current-Voltage Characteristics of Bulk Heterojunction Organic
Solar Cells: Connection Between Light and Dark Curves". Advanced Energy Materials 2011, 1, 1073
Quantum dot solar cells
Charge Transfer, Transport and
                               Recombination Processes
                                                                        T1→ e- transport
                                 R4                                     T2→ h+ transport
                                                                        I1→ e- injection from QD CB
                                                                        I2→ e- injection from QD trap
                 I1                          R5                         I3→ e- back injection to QD
     T1          I2
                                                                        I4 → h+ injection from QD CB
          Tr3    I3        Tr1 R1
                                                                        I5 → h+ injection from QD trap
                                                                        Tr1→ e- trapping in the QD
                      R2                                  T2
                R3                                                      Tr2 → h+ trapping in the QD
                                        I4                              R1→ e-- h+ band-to-band
                           Tr2                I5                              recombination in the QD
                                                                        R2→ e-- h+ trap mediated
                                                                             recombination in the QD
 Electron                        QD          Hole                       R3→ recombination of e- in the
Transporter                               Transporter                        TiO2 with h+ in the QD
                                                                        R4→ recombination of e- in the
                                                                             TiO2 with h+ in the HT
                                                                        R5→ recombination of e- in the
                                                                             QD with h+ in the HT




                  - G. Hodes, J. Phys. Chem. C 2008, 112, 17778–17787
Quantum dot solar cells




Boix, P. P.; Larramona, G.; Jacob, A.; Delatouche, B.; Mora-Seró, I.; Bisquert, J., Hole Transport and
Recombination in All-Solid Sb2S3-Sensitized TiO2 Solar Cells Using CuSCN As Hole Transporter. Journal
of Physical Chemistry C 2012, 116, 1579–1587..
Sensitizer Material

  PbS/CdS


 CdS
PbS




            Combination of different kinds of
            QDS increases dramatically cell
            performance.


            Braga et al., J. Phys. Chem. Lett. 2011, 2, 454–460
Surface treatment Effect



     Surface treatments have
     a dramatic effect on solar
     cell performance




              Barea et al.
              J. AM. CHEM. SOC.
              2010, 132, 6834–6839
Water splitting with sunlight
Water splitting cell




 Energy diagram of a PEC cell for the photo-electrolysis of water. The cell is based on an n-type
semiconducting photo-anode.

Gerischer, H. "The impact of semiconductors on the concepts of electrochemistry". Electrochimica Acta 1990, 35, 1677-1699
Semiconductor photoelectrochemistry




         Reichman Appl. Phys. Lett. 1980, 36, 574
Hematite




GrätZel et al J. AM. CHEM. SOC. VOL. 132, 2010
Photogeneration of electrons and holes
                Charge transfer via surface states




Carrier density and interfacial kinetics in mesoporous TiO 2 during water splitting determined by impedance
spectroscopy Sixto Giménez, J. Electroanal Chem 2012
Water splitting cell




Simple model of a photoelectrochemical cell



Bertoluzzi, L.; Bisquert, J. "Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical
Water Splitting Applications". The Journal of Physical Chemistry Letters 2012, 3, 2517
Equivalent circuit




Simple model of a photoelectrochemical cell



Bertoluzzi, L.; Bisquert, J. "Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical
Water Splitting Applications". The Journal of Physical Chemistry Letters 2012, 3, 2517
Thin hematite layer
                            JV curve and impedance model




Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. "Water Oxidation at Hematite Photoelectrodes: The
Role of Surface States". Journal of the American Chemical Society 2012, 134, 4294
impedance results




Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. "Water Oxidation at Hematite Photoelectrodes: The
Role of Surface States". Journal of the American Chemical Society 2012, 134, 4294
Impedance model and results




Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. "Water Oxidation at Hematite Photoelectrodes: The
Role of Surface States". Journal of the American Chemical Society 2012, 134, 4294
Other redox couple




                                                             water                                                     Fe(CN)6]3-/4-


     With [Fe(CN)6]3-/4- in solution, however, the charge transfer resistance is essentially constant
     over the measured potential range for a given light intensity as shown in figure 4c. The
     absence of a measureable surface state capacitance and absence of a dip in the charge
     transfer resistance suggests that photooxidaiton of [Fe(CN)6]4- does not involve surface states
     and can be described as a simple outersphere

Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. "Electrochemical and photoelectrochemical
investigation of water oxidation with hematite electrodes". Energy & Environmental Science 2012, 5, 7626
Surface treatment with Co-Pi




Sivula et al., Energy Environ. Sci. 2011, 4, 1759
Durrant, Gratzel, et al JACS 2011
Interpretation of Co-Pi




Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. "Photoelectrochemical and Impedance Spectroscopic Investigation of
Water Oxidation with Co-Pi -Coated Hematite Electrodes". Journal of the American Chemical Society 2012, 134, 16693
Thank you
Impedance Spectroscopy

More Related Content

What's hot

Thin films
Thin filmsThin films
Thin films
Nischith Nbs
 
Models for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy resultsModels for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy results
bisquertGroup
 
Water splitting on semiconductor catalysts under visible light irradiation
Water splitting on semiconductor catalysts under visible light irradiationWater splitting on semiconductor catalysts under visible light irradiation
Water splitting on semiconductor catalysts under visible light irradiation
Muhammad Mudassir
 
Perovskite
PerovskitePerovskite
Perovskite
Preeti Choudhary
 
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Sajjad Ullah
 
New Material:Perovskites presentation
New Material:Perovskites presentationNew Material:Perovskites presentation
New Material:Perovskites presentation
John Shiloba Pishikeni
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
Dileep V Raj
 
presentation on SUPERCAPACITOR
presentation on SUPERCAPACITORpresentation on SUPERCAPACITOR
presentation on SUPERCAPACITOR
Gaurav Shukla
 
METAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUET
METAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUETMETAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUET
METAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUET
A. S. M. Jannatul Islam
 
Pulsed Laser Ablation
Pulsed Laser AblationPulsed Laser Ablation
Pulsed Laser Ablation
Arun Aravind
 
Computational modeling of perovskites ppt
Computational modeling of perovskites pptComputational modeling of perovskites ppt
Computational modeling of perovskites ppt
tedoado
 
Electrochemical impedance spectroscopy
Electrochemical impedance spectroscopyElectrochemical impedance spectroscopy
Electrochemical impedance spectroscopy
Halavath Ramesh
 
x-ray photoelectron spectroscopy
x-ray photoelectron spectroscopyx-ray photoelectron spectroscopy
x-ray photoelectron spectroscopy
Ishfaq Ahmad
 
final ppt on 30 sep 2022.pptx
final ppt on 30 sep 2022.pptxfinal ppt on 30 sep 2022.pptx
final ppt on 30 sep 2022.pptx
AbdulJaleelLecturerP
 
Thin film gas sensor
Thin film gas sensorThin film gas sensor
Thin film gas sensor
Dr. M. K. Deore
 
Auger Electron Spectroscopy
Auger Electron SpectroscopyAuger Electron Spectroscopy
Auger Electron Spectroscopy
hasanjamal13
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
Vasanth Victor
 
Thin film fabrication using thermal evaporation
Thin film fabrication using thermal evaporationThin film fabrication using thermal evaporation
Thin film fabrication using thermal evaporation
Udhayasuriyan V
 

What's hot (20)

Thin films
Thin filmsThin films
Thin films
 
Models for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy resultsModels for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy results
 
Water splitting on semiconductor catalysts under visible light irradiation
Water splitting on semiconductor catalysts under visible light irradiationWater splitting on semiconductor catalysts under visible light irradiation
Water splitting on semiconductor catalysts under visible light irradiation
 
Perovskite
PerovskitePerovskite
Perovskite
 
Spin coating
Spin coatingSpin coating
Spin coating
 
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
 
New Material:Perovskites presentation
New Material:Perovskites presentationNew Material:Perovskites presentation
New Material:Perovskites presentation
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
presentation on SUPERCAPACITOR
presentation on SUPERCAPACITORpresentation on SUPERCAPACITOR
presentation on SUPERCAPACITOR
 
METAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUET
METAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUETMETAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUET
METAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUET
 
Pulsed Laser Ablation
Pulsed Laser AblationPulsed Laser Ablation
Pulsed Laser Ablation
 
Computational modeling of perovskites ppt
Computational modeling of perovskites pptComputational modeling of perovskites ppt
Computational modeling of perovskites ppt
 
Electrochemical impedance spectroscopy
Electrochemical impedance spectroscopyElectrochemical impedance spectroscopy
Electrochemical impedance spectroscopy
 
non linear optics
non linear opticsnon linear optics
non linear optics
 
x-ray photoelectron spectroscopy
x-ray photoelectron spectroscopyx-ray photoelectron spectroscopy
x-ray photoelectron spectroscopy
 
final ppt on 30 sep 2022.pptx
final ppt on 30 sep 2022.pptxfinal ppt on 30 sep 2022.pptx
final ppt on 30 sep 2022.pptx
 
Thin film gas sensor
Thin film gas sensorThin film gas sensor
Thin film gas sensor
 
Auger Electron Spectroscopy
Auger Electron SpectroscopyAuger Electron Spectroscopy
Auger Electron Spectroscopy
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
Thin film fabrication using thermal evaporation
Thin film fabrication using thermal evaporationThin film fabrication using thermal evaporation
Thin film fabrication using thermal evaporation
 

Similar to Impedance Spectroscopy

Math Project
Math ProjectMath Project
Math Project
turtlemonvh
 
Phys e8(2000)1
Phys e8(2000)1Phys e8(2000)1
Phys e8(2000)1FISICO2012
 
Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)
Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)
Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)
Piero Belforte
 
The Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesThe Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting Oxides
University of Liverpool
 
Dielectrics_2
Dielectrics_2Dielectrics_2
Dielectrics_2
krishslide
 
Extremely of low frequency Magnetic Field on RBCs
Extremely of low frequency Magnetic Field on RBCsExtremely of low frequency Magnetic Field on RBCs
Extremely of low frequency Magnetic Field on RBCs
Fatma Abdelhamied Ahmed
 
Presentación Tesis Doctoral Carmen Iglesias Escudero EnergyFlow Algorithm
Presentación Tesis Doctoral Carmen Iglesias Escudero EnergyFlow AlgorithmPresentación Tesis Doctoral Carmen Iglesias Escudero EnergyFlow Algorithm
Presentación Tesis Doctoral Carmen Iglesias Escudero EnergyFlow Algorithm
CARMEN IGLESIAS
 
I-Electrochemistry-Introduction-2014-15-Class 1 and 2.ppt
I-Electrochemistry-Introduction-2014-15-Class 1 and 2.pptI-Electrochemistry-Introduction-2014-15-Class 1 and 2.ppt
I-Electrochemistry-Introduction-2014-15-Class 1 and 2.ppt
RumaChandra2
 
Semiconductor part-2
Semiconductor part-2Semiconductor part-2
Semiconductor part-2
Santanu Paria
 
Polyion-induced liposome aggregation : specific interactions, kinetic arrest...
Polyion-induced liposome aggregation: specific interactions, kinetic arrest...Polyion-induced liposome aggregation: specific interactions, kinetic arrest...
Polyion-induced liposome aggregation : specific interactions, kinetic arrest...fondente83
 
report ch5.docx
report ch5.docxreport ch5.docx
report ch5.docx
Subhash Chavadaki
 
Impedance dispersion
Impedance dispersionImpedance dispersion
Impedance dispersion
ES-Teck India
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003
Nityanand Gopalika
 
ECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddf
ECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddfECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddf
ECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddf
hushamss2271
 
NWTC General Chemistry Ch 10
NWTC General Chemistry Ch 10NWTC General Chemistry Ch 10
NWTC General Chemistry Ch 10Steve Sinclair
 
Compton effect
Compton effectCompton effect
Compton effect
Anteneh Andualem
 
ICTMC-21: Key Structural and Chemical Features of Defect-Tolerant Semiconductors
ICTMC-21: Key Structural and Chemical Features of Defect-Tolerant SemiconductorsICTMC-21: Key Structural and Chemical Features of Defect-Tolerant Semiconductors
ICTMC-21: Key Structural and Chemical Features of Defect-Tolerant Semiconductors
Prashun Gorai
 

Similar to Impedance Spectroscopy (20)

Math Project
Math ProjectMath Project
Math Project
 
quantum dots
quantum dotsquantum dots
quantum dots
 
Phys e8(2000)1
Phys e8(2000)1Phys e8(2000)1
Phys e8(2000)1
 
Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)
Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)
Prediction of Pcb Radiated Emissions (Emc Symposium Zurich 1998)
 
G24041050
G24041050G24041050
G24041050
 
The Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesThe Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting Oxides
 
Dielectrics_2
Dielectrics_2Dielectrics_2
Dielectrics_2
 
Extremely of low frequency Magnetic Field on RBCs
Extremely of low frequency Magnetic Field on RBCsExtremely of low frequency Magnetic Field on RBCs
Extremely of low frequency Magnetic Field on RBCs
 
Presentación Tesis Doctoral Carmen Iglesias Escudero EnergyFlow Algorithm
Presentación Tesis Doctoral Carmen Iglesias Escudero EnergyFlow AlgorithmPresentación Tesis Doctoral Carmen Iglesias Escudero EnergyFlow Algorithm
Presentación Tesis Doctoral Carmen Iglesias Escudero EnergyFlow Algorithm
 
I-Electrochemistry-Introduction-2014-15-Class 1 and 2.ppt
I-Electrochemistry-Introduction-2014-15-Class 1 and 2.pptI-Electrochemistry-Introduction-2014-15-Class 1 and 2.ppt
I-Electrochemistry-Introduction-2014-15-Class 1 and 2.ppt
 
Semiconductor part-2
Semiconductor part-2Semiconductor part-2
Semiconductor part-2
 
Polyion-induced liposome aggregation : specific interactions, kinetic arrest...
Polyion-induced liposome aggregation: specific interactions, kinetic arrest...Polyion-induced liposome aggregation: specific interactions, kinetic arrest...
Polyion-induced liposome aggregation : specific interactions, kinetic arrest...
 
report ch5.docx
report ch5.docxreport ch5.docx
report ch5.docx
 
Impedance dispersion
Impedance dispersionImpedance dispersion
Impedance dispersion
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003
 
ECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddf
ECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddfECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddf
ECE692_3_1008.pptdfdfdfdfdfdfdffdfdfdfddf
 
NWTC General Chemistry Ch 10
NWTC General Chemistry Ch 10NWTC General Chemistry Ch 10
NWTC General Chemistry Ch 10
 
Compton effect
Compton effectCompton effect
Compton effect
 
ICTMC-21: Key Structural and Chemical Features of Defect-Tolerant Semiconductors
ICTMC-21: Key Structural and Chemical Features of Defect-Tolerant SemiconductorsICTMC-21: Key Structural and Chemical Features of Defect-Tolerant Semiconductors
ICTMC-21: Key Structural and Chemical Features of Defect-Tolerant Semiconductors
 
Chapter 07
Chapter 07Chapter 07
Chapter 07
 

Recently uploaded

Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
UiPathCommunity
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdfSAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
Peter Spielvogel
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
mikeeftimakis1
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
OnBoard
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.
ViralQR
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 

Recently uploaded (20)

Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdfSAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
SAP Sapphire 2024 - ASUG301 building better apps with SAP Fiori.pdf
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
Leading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdfLeading Change strategies and insights for effective change management pdf 1.pdf
Leading Change strategies and insights for effective change management pdf 1.pdf
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 

Impedance Spectroscopy

  • 1. Advances in impedance spectroscopy of solar energy conversion devices Juan Bisquert Photovoltaic and Optoelectronic Devices Group Universitat Jaume I 12071 Castelló Spain 27 10 2012
  • 4. Photovoltaics: Charge separation Bisquert, J.; Cahen, D.; Rühle, S.; Hodes, G.; Zaban, A. "Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells." The Journal of Physical Chemistry B, 108, 8106, 2004.
  • 5. Fundamental model for a solar cell Infinite mobilities- no transport resistance Fermi level straight inside Perfect selective contacts 1. Generation 2. Recombination Fermi level fixed inside by 3. Extraction external potential, independent of illumination Bisquert, J.; Cahen, D.; Rühle, S.; Hodes, G.; Zaban, A. "Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells." The Journal of Physical Chemistry B, 108, 8106, 2004.
  • 6. The diode equation for a solar cell Dark At V = 0 equilibrium of generation and recombination jr (0) = j0 Rise of the Fermi level enhances recombination jr (V ) = j0 e qV / mk BT Sunlight Equilibrium of generation and recombination j = jsc + j0 − j0 e qV / mk BT Can be measured directly by Also can be expressed in terms of carrier density recombination resistance
  • 10. Dye-sensitized solar cell Nayak, Kahn, Garcia.Belmonte, Bisquert, Cahen, Energy and Environmental Science 2012
  • 11. Limitation to efficiency The DSC It is a 3 –materials solar cell There is a price of energy differences, but more versatile and potentially cheap
  • 12. Influence of energetics: higher Voc If the conduction band of TiO2 is higher, the Fermi level can rise higher (in principle) and photovoltage may become larger
  • 13. Influence of energetics: photocurrent If the conduction band of TiO2 is higher, there is less injection from the dye molecules, and current decreases
  • 14. The redox potential of the hole conductor New redox couples? The Fermi level of the hole conductor is lower than I-/I3- liquid electrolyte, which gives higher photovoltage
  • 16. Diffusion-recombination transmission line model J. Bisquert, J. Phys. Chem. B 106, 325-333 (2002) F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt Solar En. Mat. Sol.Cells, 87, 117-131 (2005).
  • 17. Measurement of resistances and capacitances by Impedance Spectroscopy
  • 18. DSC device IS model J. Bisquert, J. Phys. Chem. B 106, 325-333 (2002) F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt Solar En. Mat. Sol.Cells, 87, 117-131 (2005).
  • 19. How do we determine energetics? The chemical capacitance measures the density of states in the bandgap (DOS) and this provides a reference of the Ec in different cells. Pt TCO re d o x e le c t r o ly t e T iO 2 E C E Fn e le c tr ic p o te n tia l e le c tr o n e n e r g y eV E F0 E re d o x
  • 20. Chemical capacitance The conduction band of TiO2 is situated at a given level with respect to the Fermi level of hole conductor. The chemical capacitance measures the density of states in the bandgap (DOS) and this provides a reference of the Ec in different cells. TC O re d o x Pt Chemical capacitance e le c t r o ly t e T iO 2 E C ∂n E Fn Cµ = q 2 e le c t r ic p o t e n t ia l e le c t r o n e n e r g y eV ∂E Fn E F0 E re d o x Bisquert, J. "Chemical capacitance of nanostructured semiconductors: its origin and significance for heterogeneous solar cells". Phys. Chem. Chem. Phys. 2003, 5, 5360
  • 21. Interpretation of recombination resistance '  q VF  Rrec = R0 exp − β  k BT   The model considers a distribution of surface states, and charge transfer via Marcus model 1 T β= + α s = 0. 5 + 2 T0 s Q. Wang, M. Grätzel, F. Fabregat-Santiago, J. Bisquert et al., J. Phys. Chem. B. 110, 25210-25221 (2006) J. Bisquert, F. Fabregat –Santiago, I. Mora-Seró, G. Garcia-Belmonte, S. Giménez, J. Phys. Chem. C, 113, 17278 (2009).
  • 22. Fill factors The recombination order β relates directly to the diode ideality factor m = 1.5-2.5 j = jsc + j0 − j0e qβV / k BT Restrictions on the fill factor
  • 23. Shif of the band changes the diode factor Jennings and Wang show that the diode factor changes when the conduction band is brought down by the addition of lithium. m = 1 at high lithium content (low cb position) Because electron transfer is from conduction band and linear recombination occurs J. Jennings, Q. Wang J. Phys. Chem. C, 114, 1715 (2010).
  • 24. The diffusion length The diffusion coefficient is related only to resistances Rrec Ln = Dnτ n = L Rtr J. Bisquert, J. Phys. Chem. B, 106, 325-333 (2002)
  • 25. Variations of the diffusion length The diffusion length increases with the bias This is indicating that the free electron lifetime is not a Ln = Dnτ n = D0τ f constant Quantitative description is made by Peter et al. Using nonlinear recombination model J. Villanueva-Cab, H. Wang, G. OskamL. M. Peter, J. Phys. Chem. Lett. 1, 748, (2010).
  • 26. Phtalocyanine dyes O O O O O O O O N N N N N N H N Zn N N N H N N N N N N O O O O O O O O O O ZnPc-1 H2Pc-2 Barea, E. M.; Ortiz, J.; Payá, F. J.; Fernández-Lázaro, F.; Fabregat-Santiago, F.; Sastre-Santos, A.; Bisquert, J. "Energetic factors governing injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers". Energy and Environmental Science 2010, 3, 1985
  • 27. Phtalocyanine dyes n at VOC EC EC - EFn Voc jsc η Sample FF (cm-3) (eV) (eV) (V) (mA/cm2) (%) ZnPc-1 0.44 3.48 0.66 1.01 4.2 x 1017 -4.00 0.31 H2Pc-2 0.35 5.71 0.57 1.14 1.5 x 1018 -4.13 0.27 N719 0.45 10.90 0.51 2.50 3.0 x 1018 -4.11 0.19 Barea, E. M.; Ortiz, J.; Payá, F. J.; Fernández-Lázaro, F.; Fabregat-Santiago, F.; Sastre-Santos, A.; Bisquert, J. "Energetic factors governing injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers". Energy and Environmental Science 2010, 3, 1985
  • 28. Phtalocyanine dyes The band is shifted for ZnPC We move the potential scale to compare recombination ZnPc has more recombination Recombination in H2Pc is the same as in N719
  • 29. Phtalocianyne dyes Recombination in H2Pc is the same as in N719 With the same current it would give the same voltage Barea, E. M.; Ortiz, J.; Payá, F. J.; Fernández-Lázaro, F.; Fabregat-Santiago, F.; Sastre-Santos, A.; Bisquert, J. "Energetic factors governing injection, regeneration and recombination in dye solar cells with phthalocyanine sensitizers". Energy and Environmental Science 2010, 3, 1985
  • 30. The DOS an essential reference to explain performance Explanation of the low VOC. 1)an inefficient injection 2)the low position of the conduction band of TiO2,
  • 31. Identifying the role that the dye structure plays in DSC performance why YD2 porphyrin dye Acceptor• Can achieve such a high performance group close to that of a Ru commercial dye? Donor group Besides of the dye structure and the related photophysical properties. bridge •What other key parameters in a DSC influence YD2 strongly the overall power conversion efficiency? Diau, C.-Y. Yeh, J. Mater. Chem. 2010, 20, 1127 Angew. Chem. Int. Ed. 2010, 49, 6646 –6649
  • 32. YD2 YD0 Sample name YD2 YD0 N719 Current density (mA·cm ) N719 Voc (V) -2 15 0.66 0.65 0.74 jsc (mA/cm2) 15.4 6.92 12.6 10 FF 0.62 0.73 0.70 Efficiencysame condictions 7% efficiency is the record * Under (%)* 6.36 3.29 6.54 5 0 0.0 0.2 0.4 0.6 0.8 Potential (V) N719 Barea, E. M.; Gonzalez-Pedro, V.; Ripolles-Sanchis, T.; Wu, H.-P.; Li, L.-L.; Yeh, C.-Y.; Diau, E. W.-G.; Bisquert, J. "Porphyrin Dyes with High Injection and Low Recombination for Highly Efficient Mesoscopic Dye-Sensitized Solar Cells". The Journal of Physical Chemistry C 2011, 115, 10898
  • 33. J. Phys. Chem. B 2006, 110, 25210-25221 10-2 105 (a) (b) -2 Capacitance / F·cm 104 2 Rrec / Ohms·cm 10-3 103 102 10-4 101 10-5 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Applied Potential / V Applied Potential / V
  • 34. N719 Sample name YD2 YD0 N719 Voc (V) 0.66 0.65 0.74 jsc (mA/cm2) 15.4 6.92 12.6 FF 0.62 0.73 0.70 Efficiency (%) 6.36 3.29 6.54
  • 35. Sample name YD2 YD0 N719 Voc (V) 0.66 0.65 0.74 jsc (mA/cm2) 15.4 6.92 12.6 FF 0.62 0.73 0.70 Efficiency (%) 6.36 3.29 6.54 β 0.47 0.73 0.70 j0 (mA/cm2) 7.75e-05 6.09e-08 2.09e-08 j0k (mA/cm ) 2 54 1406 213 α 0.29 0.30 0.24 ∆Ec vs ref (mV) -123 -32.0 Ref Rseries (ohm) 19.5 19.4 17.9 Internal FF 0.73 0.81 0.81 Internal efficiency (%) 7.41 3.58 7.54 Barea, E. M.; Gonzalez-Pedro, V.; Ripolles-Sanchis, T.; Wu, H.-P.; Li, L.-L.; Yeh, C.-Y.; Diau, E. W.-G.; Bisquert, J. "Porphyrin Dyes with High Injection and Low Recombination for Highly Efficient Mesoscopic Dye-Sensitized Solar Cells". The Journal of Physical Chemistry C 2011, 115, 10898
  • 36. • ISTPro Features - Analyzes IS data of dye-sensitized solar cells (DSC). - Allows to treat impedance spectroscopy parameters to obtain the essential parameters of the DSC performance. - Display the
  • 40. Organic solar cells Sunflower project: http://sunflower-fp7.eu
  • 41. Organic solar cell On Voltage, Photovoltage, and Photocurrent in Bulk Heterojunction Organic Solar Cells Juan Bisquert and Germa Garcia-Belmonte, J. Phys. Chem. Lett. 2011, 2, 1950–1964
  • 42. Organic solar cell Ratcliff, E. L.; Zacher, B.; Armstrong, N. R. "Selective Interlayers and Contacts in Organic Photovoltaic Cells". The Journal of Physical Chemistry Letters 2011, 2, 1337.
  • 43. The bands and the Fermi levels Dielectric (depletion) capacitance The chemical capacitance
  • 44. Band bending and Fermi levels Donor LUMO Acceptor LUMO EF Donor HOMO --- -- -- Cathode Acceptor HOMO w V=0
  • 45. Band bending and Fermi levels Donor LUMO Acceptor LUMO EF Donor HOMO -- -- Cathode Acceptor HOMO w V < Vfb
  • 46. Band bending and Fermi levels Donor LUMO Acceptor LUMO EF Donor HOMO --- Cathode Cathode Acceptor HOMO w V < Vfb
  • 47. Band bending and Fermi levels Donor LUMO Acceptor LUMO EF Donor HOMO - Cathode Acceptor HOMO w V < Vfb
  • 48. Band bending and Fermi levels Donor LUMO Acceptor LUMO EF Donor HOMO Cathode Acceptor HOMO V = Vfb
  • 49. Depletion region – Mott Schottky plots Increase in the capacitance caused by the reduction of the depletion zone Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopyw Francisco Fabregat-Santiago, Germa Garcia-Belmonte, Ivan Mora-Sero´ and Juan Bisquert Phys. Chem. Chem. Phys., 2011, 13, 9083–9118
  • 50. Depletion region -P. P. Boix, G. Garcia-Belmonte, U. Muñecas, M.Neophytou, C. Waldauf, R. Pacios, Appl Phys. Lett 95, 1, (2009)
  • 52. Additional proofs of electrical field confined near the cathode FIG. 2. (Color online) (a) The mean-field potential line-profile of the cross-sectional image and (b) the corresponding energy band diagram after contacting of all layers. Appl. Phys. Lett. 99, 243301 (2011) © 2011 American Institute of Physics
  • 53. Measured DOS of organic BHJ Measurement of the DOS The chemical capacitance ∂nL Cµ ( E ) = q 2 = qg n ( E Fn ) ∂EFn PCBM-P3HT solar cell Germà Garcia-Belmonte, Pablo P. Boix, Juan Bisquert, Michele Sessolo, and Henk J. Bolink Solar Energy Materials and Solar Cells, 94, 366 (2010)
  • 54. Comparison of different fullerenes with similar reduction potential but different DOS DPM6 PCBM Higher Voc related to full occupancy of intermediate electronic band G. Gar Germa Garcia-Belmonte Pablo P. Boix, Juan Bisquert, Martijn Lenes, Henk J. Bolink, Andrea La Rosa, Salvatore Filippone,and Nazario Martín§,J. Phys. Chem. Lett. 1 (2010) 2566-2571
  • 55. Carrier diffusion in organic BHJ PCBM-P3HT solar cell Diffusion-Recombination Determines Collected Current and Voltage in Polymer:Fullerene Solar Cells Teresa Ripolles-Sanchis, Antonio Guerrero, Juan Bisquert, and Germà Garcia-Belmonte, J. Phys. Chem. C 2012, 116, 16925−16933
  • 56. The Fermi level in the Gaussian distribution In the presence of a Gaussian distribution, the carriers do not lie below the Fermi level. Bisquert, J. "Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distributions of states". Physical Chemistry Chemical Physics 2008, 10, 3175
  • 57. Why is Voc less than HOMO-LUMO difference? This is explained by disorder qVoc = E Fn − E Fp σ n2 + σ p2  Nn N p  qVoc = E g − − k BT ln  np   2k BT   This formula derived by G. Garcia-Belmonte quantifies the energy loss related to disorder Garcia-Belmonte, G. "Temperature dependence of open-circuit voltage inorganic solar cells from generation–recombination kinetic balance". Solar Energy Materials and Solar Cells 2010, 94, 2166
  • 59. Energetics of recombination Guerrero, A.; Marchesi, L. F.; Boix, P. P.; Bisquert, J.; Garcia-Belmonte, G. "Recombination in Organic Bulk Heterojunction Solar Cells: Small Dependence of Interfacial Charge Transfer Kinetics on Fullerene Affinity". The Journal of Physical Chemistry Letters 2012, 3, 1386
  • 60. Reconstruction of current voltage curves from recombination resistance data Boix, P. P.; Guerrero, A.; Marchesi, L. F.; Garcia-Belmonte, G.; Bisquert, J. "Current-Voltage Characteristics of Bulk Heterojunction Organic Solar Cells: Connection Between Light and Dark Curves". Advanced Energy Materials 2011, 1, 1073
  • 61. Reconstruction of current voltage curves from recombination resistance data −1 k BT  dj  jsc = j rec (Voc ) = L Rrec = L rec   dV  βqRrec (Voc )  F  Boix, P. P.; Guerrero, A.; Marchesi, L. F.; Garcia-Belmonte, G.; Bisquert, J. "Current-Voltage Characteristics of Bulk Heterojunction Organic Solar Cells: Connection Between Light and Dark Curves". Advanced Energy Materials 2011, 1, 1073
  • 63.
  • 64. Charge Transfer, Transport and Recombination Processes T1→ e- transport R4 T2→ h+ transport I1→ e- injection from QD CB I2→ e- injection from QD trap I1 R5 I3→ e- back injection to QD T1 I2 I4 → h+ injection from QD CB Tr3 I3 Tr1 R1 I5 → h+ injection from QD trap Tr1→ e- trapping in the QD R2 T2 R3 Tr2 → h+ trapping in the QD I4 R1→ e-- h+ band-to-band Tr2 I5 recombination in the QD R2→ e-- h+ trap mediated recombination in the QD Electron QD Hole R3→ recombination of e- in the Transporter Transporter TiO2 with h+ in the QD R4→ recombination of e- in the TiO2 with h+ in the HT R5→ recombination of e- in the QD with h+ in the HT - G. Hodes, J. Phys. Chem. C 2008, 112, 17778–17787
  • 65. Quantum dot solar cells Boix, P. P.; Larramona, G.; Jacob, A.; Delatouche, B.; Mora-Seró, I.; Bisquert, J., Hole Transport and Recombination in All-Solid Sb2S3-Sensitized TiO2 Solar Cells Using CuSCN As Hole Transporter. Journal of Physical Chemistry C 2012, 116, 1579–1587..
  • 66. Sensitizer Material PbS/CdS CdS PbS Combination of different kinds of QDS increases dramatically cell performance. Braga et al., J. Phys. Chem. Lett. 2011, 2, 454–460
  • 67. Surface treatment Effect Surface treatments have a dramatic effect on solar cell performance Barea et al. J. AM. CHEM. SOC. 2010, 132, 6834–6839
  • 69. Water splitting cell Energy diagram of a PEC cell for the photo-electrolysis of water. The cell is based on an n-type semiconducting photo-anode. Gerischer, H. "The impact of semiconductors on the concepts of electrochemistry". Electrochimica Acta 1990, 35, 1677-1699
  • 70. Semiconductor photoelectrochemistry Reichman Appl. Phys. Lett. 1980, 36, 574
  • 71. Hematite GrätZel et al J. AM. CHEM. SOC. VOL. 132, 2010
  • 72. Photogeneration of electrons and holes Charge transfer via surface states Carrier density and interfacial kinetics in mesoporous TiO 2 during water splitting determined by impedance spectroscopy Sixto Giménez, J. Electroanal Chem 2012
  • 73. Water splitting cell Simple model of a photoelectrochemical cell Bertoluzzi, L.; Bisquert, J. "Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical Water Splitting Applications". The Journal of Physical Chemistry Letters 2012, 3, 2517
  • 74. Equivalent circuit Simple model of a photoelectrochemical cell Bertoluzzi, L.; Bisquert, J. "Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical Water Splitting Applications". The Journal of Physical Chemistry Letters 2012, 3, 2517
  • 75. Thin hematite layer JV curve and impedance model Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. "Water Oxidation at Hematite Photoelectrodes: The Role of Surface States". Journal of the American Chemical Society 2012, 134, 4294
  • 76. impedance results Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. "Water Oxidation at Hematite Photoelectrodes: The Role of Surface States". Journal of the American Chemical Society 2012, 134, 4294
  • 77. Impedance model and results Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. "Water Oxidation at Hematite Photoelectrodes: The Role of Surface States". Journal of the American Chemical Society 2012, 134, 4294
  • 78. Other redox couple water Fe(CN)6]3-/4- With [Fe(CN)6]3-/4- in solution, however, the charge transfer resistance is essentially constant over the measured potential range for a given light intensity as shown in figure 4c. The absence of a measureable surface state capacitance and absence of a dip in the charge transfer resistance suggests that photooxidaiton of [Fe(CN)6]4- does not involve surface states and can be described as a simple outersphere Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. "Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes". Energy & Environmental Science 2012, 5, 7626
  • 79. Surface treatment with Co-Pi Sivula et al., Energy Environ. Sci. 2011, 4, 1759 Durrant, Gratzel, et al JACS 2011
  • 80. Interpretation of Co-Pi Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. "Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with Co-Pi -Coated Hematite Electrodes". Journal of the American Chemical Society 2012, 134, 16693

Editor's Notes

  1. Experimetal results showed a a negative shift. Therefore we can conclude that the impedance at these potentials is governed by the cap. of the uncovered CS and complete the model initially used with this.
  2. DSC  Light harvesting material  QDs benefits for a panchromatic sensitizer
  3. Absorption of light is inherently on the nanoscale Conventional materials such as Si and GaAs do a good job but are too expensive and can not be manufactured like printing the newspaper Nanomaterials offer the ability to get good light absorption in flexible formats Interpenetrating networks on the nanoscale offer the opportunity to get high performance charge collection from low cost materials