SlideShare a Scribd company logo
SHINE
1
Welcome
Presentation of the IEEE 802.11a MAC
May 9th
2001 Mahdi Ahmed Jama
SHINE
2
IEEE 802.11 MAC Overview
 Introduction
Communication Approach
MAC Functionality
MAC Frame Formats
 Conclusion
SHINE
3
IEEE 802.11 MAC Overview
 Introduction
Layers description
Sublayers description
IEEE 802.11a Channels
Infrastructure
Ad hoc Network
 Communication Approach
 MAC Functionality
 MAC Frame Formats
 Conclusion
SHINE
4
IEEE 802.11 Layers Description
802.2 Logical Link ControlData
Link
Layer
MAC 802.11
802.11
e
Prcl 802.11 std 802.11b 802.11a
Tech IR FHSS DSSS DSSS OFDM
Band ~350 103
GHz
2.4GHz Band 5GHz
Band
PHY
Layer
Data
Rate 1 and 2 Mbps
1, 2,
5.5, 11
Mbps
6*,9,12*,
18, 24*,
36, 48 or
54 Mbps
Same
PHY
as
802.11
MAC
*Mandatory
SHINE
5
Sublayers Description
MAC
Sublayer
MAC layer
management
PLCP Sublayer
PMD Sublayer
PHY layer
management
LLC
MAC
PHY
PLCP: Physical Layer Convergence Protocol
PMD: Physical Medium Dependent
SAP (Service Access Point)
SHINE
6
IEEE 802.11a Channels
 Channel Center Frequency (CCF) at every 5 MHz
between 5GHz and 6GHz
 CCF = 5000 + 5*NCH (MHz)
 NCH = 1, 2 …. 200
 Only some channels are available according to
the Country regulation
SHINE
7
Example: US (FCC regulation)
Band (GHz) Ch. Number Ch. Center
freq. (MHz)
Lower band
5.15- 5.25
36
40
44
48
5180
5200
5220
5240
Middel band
5.25- 5.35
52
56
60
64
5260
5280
5300
5320
Upper Band
5.725- 5.825
149
153
157
161
5745
5765
5785
5805
SHINE
8
Infrastructure Network
BSS 1 BSS 2
wired or wireless DS
ESS
DS= Distributed System
ESS= Extended Service Set
BSS= Basic Service Set
SHINE
9
Ad hoc Network
IBSS
IBSS= Independent Basic Service Set (= ad hoc)
SHINE
10
IEEE 802.11 MAC Overview
 Introduction
 Communication Approach
Joining a BSS
Synchronization
Communication scheme
Hidden Node Problem
 MAC Functionality
 MAC Frame Formats
 Conclusion
SHINE
11
Joining a BSS
 STA (Station) performs scanning function:
 Passive scanning: listen for AP’s Beacons
 Active scanning: send a Probe-Request on each
channel en wait for a Probe-Response
 If AP found
 STA and AP perform Authentication function
 If authentication succeeds
 STA and AP perform Association function
SHINE
12
Synchronization
 A TSF (Timing Synchronization Function) timer
with modulus 264
is used
 TSF timer increments in μsec.
 AP is the timing master
 AP sends periodically a copy of its TSF in a
Beacon Frame
 All STA’ s synchronize their local TSF by
listening to Beacons
SHINE
13
Communication scheme
Medium
Busy
RTS
CTS
RTS
time
CTS
Medium
Busy
Data
ACK
SHINE
14
Hidden Node Problem
RTS-
Range
CTS-
Range
STA3 can’t “hear”
the RTS of STA1 and
sense the medium
free
STA1 STA2
STA3
SHINE
15
IEEE 802.11 MAC Overview
 Introduction
 Communication Approach
MAC Functionality
Point Coordination Function (PCF) -Optional
Distributed Coordination Function (DCF)
Encryption/ Decryption (WEP)
Fragmentation
Management
 MAC Frame Formats
Conclusion
SHINE
16
IEEE 802.11 MAC Functionality
 Point Coordination Function (PCF) -Optional
 Distributed Coordination Function (DCF)
 CSMACA +ACK
 Combination of DCF and PCF
 Encryption/ Decryption (WEP)
 Fragmentation/ Defragmentation
 Management
 Roaming (Mobility)
 Power management
SHINE
17
Point Coordination Function (PCF)
Optional
 QOS Support (not efficiently)
 Based on centralised Control (AP polling, no IBSS
configuration)
 Overlap restrictions
 PCF provides contention-free transfer
 The PC resides in AP
 AP informs STA’ s the beginning of a CFP via a
Beacon
SHINE
18
PCF access mechanism
AP
STA
Beacon
Data+
ACK
Data2+ CF-
ACK CF-Poll
SIFS SIFS= 16μs
SIFS
PIFS=25μsDIFS= 34 μs
NO ACK!
PIFS= 25μs
Data1+
CF-Poll
Data3+ CF-
ACK CF-Poll
Data+
ACK
SIFS
SIFS
CF-
end
SIFS
SHINE
19
Distributed Coordination Function
 Efficient medium sharing without overlap
restrictions.
 Use CSMA/CA +ACK (Unicast frames) based on
Carrier Sense function in PHY called Clear
Channel Assessment (CCA)
 CSMA/(CA) (Broadcast frames and small packets)
 No QOS Support
SHINE
20
CSMA/CA +ACK 1
 Sense medium:
 check state of NAV (Network Allocation Vector),
a Virtual Carrier Sense
 use CCA (Clear Channel Assessment) function
of the PHY
 If medium is free and remains idle for a DIFS
period time, send a RTS
 If CTS send data, expect ACK after SIFS time
SHINE
21
CSMA/CA +ACK 2
Src.
Dest.
Others
RTS
CTS
Data
ACK
SIFS SIFS= 16μs
SIFS
DIFS
NAV (RTS)
NAV (CTS)
Next MPDU
Random value*1 slot time
Backoff
1 slot time= 9μsDefer Access
DIFS= 34 μs
Collision!
SHINE
22
RTS/CTS with fragmented MSDU
RTS
CTS
Frag. 0 Frag. 1 Frag. 2
ACK0 ACK1 ACK2
SRC
Dest
Others NAV (RTS)
NAV (CTS)
NAV (frag.0)
NAV (ACK0)
NAV (frag.1)
NAV (ACK1)
SIFS
SIFS SIFS
SIFS SIFS SIFS SIFS DIFS
NAV update
SHINE
23
Backoff Procedure
 Backoff procedure resolves the medium
contention conflicts
 It is invoked if the medium is busy or a
transmission failed
 Procedure is base on a Backoff algorithm: all
Sta’s defer the access to the medium according
to this algorithm
SHINE
24
Backoff Algorithm
 Backoff Time= Random() * aSlotTime
 aSlotTime= 9µs
 Random()= Pseudorandom integer drawn from a
uniform distribution over the interval [0,CW]
(CW=Contention Window)
 CWmin <= CW <= Cwmax (CWmin = 15 and Cwmax= 1023)
 CW= 2(4+ n)
-1 {thus CW[15, 31, 63, 128, 255, 512, 1023]}
 n= number of retransmission given by the Retry
Counter (see next slide)
SHINE
25
Retry Counters
 All Sta’s maintain a Short Retry Count and a Long
Retry Count for the transmission of an MPDU
 A Short Retry Counter (SRC) counts the number of
retransmission of a short MAC frame (i.e. MAC frame
sent without RTS/CTS)
 A Long Retry Counter (LRC) counts the number of
retransmission of a long MAC frame (i.e. MAC frame
sent with RTS/CTS)
 SRC (resp. LRC) shall be incremented every time
transmission of a short (resp. long) MAC frame fails
SHINE
26
Example
CWmin
CWmax
15
1023
Initial attempt 1st
retransmission
2d 3th
31
63
Default values:
• n=3 max retry for Long frames
• n=6 max retry for short frames
SHINE
27
Encryption (WEP)
 Based on a WEP (wired Equivalent Privacy)
algorithm - optional
 Implementation in Hardware OR Software
 Uses RC4 PRN algorithm based on:
 a 40-bit key
 and a 24bit Initialization Vector (IV, send with data)
 includes an Integrity Check Value (ICV) to allow integrity
check
 Only Data Frame Body (Payload) is encrypted
SHINE
28
Encryption/ Decryption Process
Plain
text
encryption decryption
Shared Secret Key (SSK)
Ciphertext Original
Plaintext
Shared Secret Key (SSK)
SHINE
29
Encryption Block
IV
SSK
RC4
PRNG
Key Sequence
Plain Text
Integrity algorithm
ICV
IV
+
Cipher
text
Message
SHINE
30
Encrypted Payload
IV
4 Bytes
Data (MPDU)
>=1 Byte
ICV
4 Bytes
Encrypted
IV (3bytes)
Pad
6bits
Key ID
2bits
1 byte
Encrypted Frame Body:
SHINE
31
Decryption Block
IV
SSK
RC4
PRNG
Key
Sq
Plain Text
Integrity
algorithm
ICV
IV
+
Cipher
text
Message
ICV’
ICV= ICV’?
SHINE
32
Fragmentation
MSDU
MAC
HDR
Frame
Body
CRC
MAC
HDR
Frame
Body
CRC
MAC
HDR
Frame
Body
CRC
SHINE
33
MAC Management
 Roaming
 Power management
 Authentication/ De-authentication
 Association/ Reassociation/
Disassociation
SHINE
34
Roaming1
BSS 1
BSS 2
Distributed System (DS)
BSS 3
SHINE
35
Roaming2
 Quality of the link with current AP is bad
 Use scanning function to find an AP with better
link quality (or information from previous scans):
 Passive scanning: listen for AP’s Beacons
 Active scanning: send a Probe Request on each
channel en wait for a Probe Response
 Send Reassociation Request to new AP
SHINE
36
Roaming3
 New AP sends Reassociation Response and
indicates the Reassociation to Distributed
System
 Update of Distributed System information
 Disassociation old AP
SHINE
37
Power management
 In Power Save mode idle STA’s go to sleep and
wake up periodically to listen for Beacons
 TSF (Timing Synch. Funct.) keeps running and
assures synchronization with AP
 AP buffers packets for STA’s in PS mode
 AP sends with Beacon the Traffic Indication Map
(TIM) and announces which STA’s have frames
buffered
SHINE
38
IEEE 802.11 MAC Overview
 Introduction
 Communication Approach
MAC Functionality
MAC Frame Formats
General and Data MAC frame Format
Control Frame Formats
Management Frame Format
 Conclusion
SHINE
39
General and Data MAC Frame
Formats
 Length of Frame body (=Payload) is variable
 FCS= Frame Check Sequence containing a 32-bit CRC
Frame
Control
Durati
on/ ID
Frame Body
Sequence
Control
Addr
ess 1
Addr
ess 2
Addr
ess 4
Addr
ess 3
FCS
Bytes:
2 2 6 6 6 2 6 0- 2312 4
M A C H e a d e r
SHINE
40
Frame Control field
Prcl
vers.
Typ
e
More
data
More
Frag
Sub
type
To
DS
Ret
ry
From
DS
Ord
er
Bits: 2 2 4 1 1 1 1 1 1
pwr
mgt
W
EP
1 1
LSB MSB
SHINE
41
Types and Subtypes
 Data frames: Data, Data+ACK
 Control frames: RTS, CTS, ACK, PowerSave-Poll
 Management frames: Beacons, Association
(Request and Response), Disassociation,
Reassociation (Request and Response),
Authentication, De-authentication, Probe (Request
and Response), Announcement Traffic Indication
Message (ATIM)
SHINE
42
Address Field Contents
To DS
From
DS
Addr. 1 Addr. 2 Addr. 3 Addr. 4
0 0 DA SA BSSID N/A
0 1 DA BSSID SA N/A
1 0 BSSID SA DA N/A
1 1 RA TA DA SA
BSSID= Basic Service Set Identifier DA= Destination Address
DS= Distributed System SA= Source Address
RA= Receiver Address TA= Transmitter Address
SHINE
43
Address Field Contents in detail
To DS=0 From DS=0
ad1=DA Ad2=SA Ad3=BSSID ad4=N/A BSS
BSS
To DS=0 From DS=1
ad1=DA Ad2=BSSID Ad3=SA Ad4=N/A
To DS=1 From DS=0
ad1= BSSID Ad2=SA Ad3=DA Ad4=N/A
BSSTo DS=1 From DS=1
ad1=RA Ad2=TA Ad3=DA Ad4=SA
SHINE
44
Sequence Control field
Fragment number (4 bits) Sequence number (12 bits)
LSB MSB
SHINE
45
Fragment number
 A fragment number for each fragment of an MPDU
or MMPDU.
 0 for single or 1st
fragment and increase by 1 for next
fragment
 The number remains constant for retransmission.
SHINE
46
Sequence number
 A Sequence number for every MPDU or MMPDU
 Numbers are assigned from a single modulo 4096
counter, starting at 0 and increase by 1 for next
MPDU
 The number remains constant for retransmission.
SHINE
47
Control Frame Formats
Bytes:
Frame Control Duration RA FCS
2 2 6 4
RTS Frame
Bytes
: Frame Control Duration RA FCS
2 2 6 4
Frame Cntrl Duration RA TA FCS
Bytes: 2 2 6 6 4
MAC Header
CTS Frame
ACK Frame
PowerSave- Poll
Frame
Frame Cntrl AID BSS ID TA FCS
2 2 6 6 4
SHINE
48
Management Frame Format
Frame
Control
Durati
on
Frame Body
Sequence
Control
DA SA
BSS
ID
FCS
Bytes:
2 2 6 6 6 2 0- 2312 4
M A C H e a d e r
The frame body contains the management information
that has to be sent, like Challenge text (e.g.
Authentication frame) or Time Indication Message and
PHY parameters (Beacon frame).
SHINE
49
IEEE 802.11 MAC Overview
 Introduction
 Communication Approach
 MAC Functionality
MAC Frame Formats
 Conclusion
SHINE
50
Conclusion
 IEEE 802.11a uses the same MAC as IEEE 802.11
and the same PHY as Hiperlan2
 Main MAC functions are: DCF, PCF, WEP
encryption, fragmentation, roaming and power
management
 MAC frame has a variable length and consists of a
MAC header(max 30 bytes), a frame body (max
2312 bytes) and a 32-bit CRC
SHINE
51
Conclusion 2
 Advantage:
 High speed wirelessLAN
 Good access scheme for medium sharing (DCF)
 Disadvantage:
 No QOS support (DCF)
 WEP protocol is “easy to crack”
 Solution: IEEE 802.11e (MAC and security
enhancement)
SHINE
52
Thank you for your attention

More Related Content

What's hot

Wi-Fi Architecture
Wi-Fi ArchitectureWi-Fi Architecture
Wi-Fi Architecture
Arnab Ghosal
 
Multiple access techniques for wireless communications
Multiple access techniques for wireless communicationsMultiple access techniques for wireless communications
Multiple access techniques for wireless communications
METHODIST COLLEGE OF ENGG & TECH
 
Chapter 7 multiple access techniques
Chapter 7 multiple access techniquesChapter 7 multiple access techniques
Chapter 7 multiple access techniquesKaushal Kabra
 
Mac protocols
Mac protocolsMac protocols
Mac protocols
juno susi
 
Gsm channels concept
Gsm channels conceptGsm channels concept
Gsm channels concept
Telebeansolutions
 
Lecture 23 27. quality of services in ad hoc wireless networks
Lecture 23 27. quality of services in ad hoc wireless networksLecture 23 27. quality of services in ad hoc wireless networks
Lecture 23 27. quality of services in ad hoc wireless networksChandra Meena
 
IEEE 802.11
IEEE 802.11IEEE 802.11
IEEE 802.11
Ramasubbu .P
 
LTE Architecture
LTE ArchitectureLTE Architecture
LTE Architecture
Manje Gowda
 
GSM channels
GSM channelsGSM channels
GSM channels
Mohd Nazir Shakeel
 
Mobile Network Layer
Mobile Network LayerMobile Network Layer
Mobile Network Layer
Rahul Hada
 
TDMA Time Division Multiple Access
TDMA Time Division Multiple AccessTDMA Time Division Multiple Access
TDMA Time Division Multiple Access
Md. Saddam Hossain Noyon
 
Ieee 802.11 wireless lan
Ieee 802.11 wireless lanIeee 802.11 wireless lan
Ieee 802.11 wireless lan
Parthipan Parthi
 
Unit II -Mobile telecommunication systems
Unit II -Mobile telecommunication systemsUnit II -Mobile telecommunication systems
Unit II -Mobile telecommunication systems
Ramco Institute of Technology, Rajapalayam, Tamilnadu, India
 
CDMA
CDMACDMA
Wifi & 802.11 Standards
Wifi & 802.11 StandardsWifi & 802.11 Standards
Wifi & 802.11 Standards
Vipul Kumar Maurya
 

What's hot (20)

Wi-Fi Architecture
Wi-Fi ArchitectureWi-Fi Architecture
Wi-Fi Architecture
 
Multiple access techniques for wireless communications
Multiple access techniques for wireless communicationsMultiple access techniques for wireless communications
Multiple access techniques for wireless communications
 
csma ca
 csma ca csma ca
csma ca
 
Chapter 7 multiple access techniques
Chapter 7 multiple access techniquesChapter 7 multiple access techniques
Chapter 7 multiple access techniques
 
Mac protocols
Mac protocolsMac protocols
Mac protocols
 
Gsm channels concept
Gsm channels conceptGsm channels concept
Gsm channels concept
 
WCDMA
WCDMAWCDMA
WCDMA
 
Lecture 23 27. quality of services in ad hoc wireless networks
Lecture 23 27. quality of services in ad hoc wireless networksLecture 23 27. quality of services in ad hoc wireless networks
Lecture 23 27. quality of services in ad hoc wireless networks
 
IEEE 802.11
IEEE 802.11IEEE 802.11
IEEE 802.11
 
Cordless Technology
Cordless TechnologyCordless Technology
Cordless Technology
 
Gsm signaling
Gsm signalingGsm signaling
Gsm signaling
 
LTE Architecture
LTE ArchitectureLTE Architecture
LTE Architecture
 
GSM channels
GSM channelsGSM channels
GSM channels
 
Mobile Network Layer
Mobile Network LayerMobile Network Layer
Mobile Network Layer
 
Spread spectrum
Spread spectrumSpread spectrum
Spread spectrum
 
TDMA Time Division Multiple Access
TDMA Time Division Multiple AccessTDMA Time Division Multiple Access
TDMA Time Division Multiple Access
 
Ieee 802.11 wireless lan
Ieee 802.11 wireless lanIeee 802.11 wireless lan
Ieee 802.11 wireless lan
 
Unit II -Mobile telecommunication systems
Unit II -Mobile telecommunication systemsUnit II -Mobile telecommunication systems
Unit II -Mobile telecommunication systems
 
CDMA
CDMACDMA
CDMA
 
Wifi & 802.11 Standards
Wifi & 802.11 StandardsWifi & 802.11 Standards
Wifi & 802.11 Standards
 

Similar to Presentation of the IEEE 802.11a MAC Layer

80211
8021180211
80211
Võ Nhựt
 
WLAN - IEEE 802.11
WLAN - IEEE 802.11WLAN - IEEE 802.11
WLAN - IEEE 802.11
Rahul Hada
 
denme
denmedenme
denme
Caspian
 
WSN protocol 802.15.4 together with cc2420 seminars
WSN protocol 802.15.4 together with cc2420 seminars WSN protocol 802.15.4 together with cc2420 seminars
WSN protocol 802.15.4 together with cc2420 seminars
Salah Amean
 
Tutorial on IEEE 802.11 - MAC Protocols and Frames
Tutorial on IEEE 802.11 - MAC Protocols and FramesTutorial on IEEE 802.11 - MAC Protocols and Frames
Tutorial on IEEE 802.11 - MAC Protocols and Frames
Dheryta Jaisinghani
 
Ccnpswitch
CcnpswitchCcnpswitch
Networking basics
Networking basicsNetworking basics
Networking basics
Sridhar Baithi
 
Polyraptor
PolyraptorPolyraptor
Polyraptor
MohammedAlasmar2
 
Technical Overview of QUIC
Technical  Overview of QUICTechnical  Overview of QUIC
Technical Overview of QUIC
shigeki_ohtsu
 
Lte protocols
Lte protocolsLte protocols
Lte protocols
ece_narender
 
Best practices for catalyst 4500 4000, 5500-5000, and 6500-6000 series switch...
Best practices for catalyst 4500 4000, 5500-5000, and 6500-6000 series switch...Best practices for catalyst 4500 4000, 5500-5000, and 6500-6000 series switch...
Best practices for catalyst 4500 4000, 5500-5000, and 6500-6000 series switch...
abdenour boussioud
 
Ss7 Introduction Li In
Ss7 Introduction Li InSs7 Introduction Li In
Ss7 Introduction Li In
mhaviv
 
Ccna Imp Guide
Ccna Imp GuideCcna Imp Guide
Ccna Imp Guide
abhijitgnbbl
 
Chapter#14
Chapter#14Chapter#14
Zigbee 802-15-4
Zigbee 802-15-4Zigbee 802-15-4
Zigbee 802-15-4
SHUBHAM MORGAONKAR
 
wimaxME.ppt
wimaxME.pptwimaxME.ppt
wimaxME.ppt
Madhumitha Jayaram
 
225735365 ccna-study-guide-a
225735365 ccna-study-guide-a225735365 ccna-study-guide-a
225735365 ccna-study-guide-a
homeworkping10
 
Interprocess Message Formats
Interprocess Message FormatsInterprocess Message Formats
Interprocess Message Formats
Pathfinder Solutions
 

Similar to Presentation of the IEEE 802.11a MAC Layer (20)

80211
8021180211
80211
 
Ieee 802.11overview
Ieee 802.11overviewIeee 802.11overview
Ieee 802.11overview
 
WLAN - IEEE 802.11
WLAN - IEEE 802.11WLAN - IEEE 802.11
WLAN - IEEE 802.11
 
denme
denmedenme
denme
 
WSN protocol 802.15.4 together with cc2420 seminars
WSN protocol 802.15.4 together with cc2420 seminars WSN protocol 802.15.4 together with cc2420 seminars
WSN protocol 802.15.4 together with cc2420 seminars
 
Tutorial on IEEE 802.11 - MAC Protocols and Frames
Tutorial on IEEE 802.11 - MAC Protocols and FramesTutorial on IEEE 802.11 - MAC Protocols and Frames
Tutorial on IEEE 802.11 - MAC Protocols and Frames
 
Ccnpswitch
CcnpswitchCcnpswitch
Ccnpswitch
 
Networking basics
Networking basicsNetworking basics
Networking basics
 
Polyraptor
PolyraptorPolyraptor
Polyraptor
 
Technical Overview of QUIC
Technical  Overview of QUICTechnical  Overview of QUIC
Technical Overview of QUIC
 
Lte protocols
Lte protocolsLte protocols
Lte protocols
 
Best practices for catalyst 4500 4000, 5500-5000, and 6500-6000 series switch...
Best practices for catalyst 4500 4000, 5500-5000, and 6500-6000 series switch...Best practices for catalyst 4500 4000, 5500-5000, and 6500-6000 series switch...
Best practices for catalyst 4500 4000, 5500-5000, and 6500-6000 series switch...
 
Ss7 Introduction Li In
Ss7 Introduction Li InSs7 Introduction Li In
Ss7 Introduction Li In
 
Ccna Imp Guide
Ccna Imp GuideCcna Imp Guide
Ccna Imp Guide
 
Chapter#14
Chapter#14Chapter#14
Chapter#14
 
Zigbee 802-15-4
Zigbee 802-15-4Zigbee 802-15-4
Zigbee 802-15-4
 
wimaxME.ppt
wimaxME.pptwimaxME.ppt
wimaxME.ppt
 
225735365 ccna-study-guide-a
225735365 ccna-study-guide-a225735365 ccna-study-guide-a
225735365 ccna-study-guide-a
 
LTE Air Interface
LTE Air InterfaceLTE Air Interface
LTE Air Interface
 
Interprocess Message Formats
Interprocess Message FormatsInterprocess Message Formats
Interprocess Message Formats
 

Recently uploaded

The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Tobias Schneck
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
DianaGray10
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 

Recently uploaded (20)

The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 

Presentation of the IEEE 802.11a MAC Layer

  • 1. SHINE 1 Welcome Presentation of the IEEE 802.11a MAC May 9th 2001 Mahdi Ahmed Jama
  • 2. SHINE 2 IEEE 802.11 MAC Overview  Introduction Communication Approach MAC Functionality MAC Frame Formats  Conclusion
  • 3. SHINE 3 IEEE 802.11 MAC Overview  Introduction Layers description Sublayers description IEEE 802.11a Channels Infrastructure Ad hoc Network  Communication Approach  MAC Functionality  MAC Frame Formats  Conclusion
  • 4. SHINE 4 IEEE 802.11 Layers Description 802.2 Logical Link ControlData Link Layer MAC 802.11 802.11 e Prcl 802.11 std 802.11b 802.11a Tech IR FHSS DSSS DSSS OFDM Band ~350 103 GHz 2.4GHz Band 5GHz Band PHY Layer Data Rate 1 and 2 Mbps 1, 2, 5.5, 11 Mbps 6*,9,12*, 18, 24*, 36, 48 or 54 Mbps Same PHY as 802.11 MAC *Mandatory
  • 5. SHINE 5 Sublayers Description MAC Sublayer MAC layer management PLCP Sublayer PMD Sublayer PHY layer management LLC MAC PHY PLCP: Physical Layer Convergence Protocol PMD: Physical Medium Dependent SAP (Service Access Point)
  • 6. SHINE 6 IEEE 802.11a Channels  Channel Center Frequency (CCF) at every 5 MHz between 5GHz and 6GHz  CCF = 5000 + 5*NCH (MHz)  NCH = 1, 2 …. 200  Only some channels are available according to the Country regulation
  • 7. SHINE 7 Example: US (FCC regulation) Band (GHz) Ch. Number Ch. Center freq. (MHz) Lower band 5.15- 5.25 36 40 44 48 5180 5200 5220 5240 Middel band 5.25- 5.35 52 56 60 64 5260 5280 5300 5320 Upper Band 5.725- 5.825 149 153 157 161 5745 5765 5785 5805
  • 8. SHINE 8 Infrastructure Network BSS 1 BSS 2 wired or wireless DS ESS DS= Distributed System ESS= Extended Service Set BSS= Basic Service Set
  • 9. SHINE 9 Ad hoc Network IBSS IBSS= Independent Basic Service Set (= ad hoc)
  • 10. SHINE 10 IEEE 802.11 MAC Overview  Introduction  Communication Approach Joining a BSS Synchronization Communication scheme Hidden Node Problem  MAC Functionality  MAC Frame Formats  Conclusion
  • 11. SHINE 11 Joining a BSS  STA (Station) performs scanning function:  Passive scanning: listen for AP’s Beacons  Active scanning: send a Probe-Request on each channel en wait for a Probe-Response  If AP found  STA and AP perform Authentication function  If authentication succeeds  STA and AP perform Association function
  • 12. SHINE 12 Synchronization  A TSF (Timing Synchronization Function) timer with modulus 264 is used  TSF timer increments in μsec.  AP is the timing master  AP sends periodically a copy of its TSF in a Beacon Frame  All STA’ s synchronize their local TSF by listening to Beacons
  • 14. SHINE 14 Hidden Node Problem RTS- Range CTS- Range STA3 can’t “hear” the RTS of STA1 and sense the medium free STA1 STA2 STA3
  • 15. SHINE 15 IEEE 802.11 MAC Overview  Introduction  Communication Approach MAC Functionality Point Coordination Function (PCF) -Optional Distributed Coordination Function (DCF) Encryption/ Decryption (WEP) Fragmentation Management  MAC Frame Formats Conclusion
  • 16. SHINE 16 IEEE 802.11 MAC Functionality  Point Coordination Function (PCF) -Optional  Distributed Coordination Function (DCF)  CSMACA +ACK  Combination of DCF and PCF  Encryption/ Decryption (WEP)  Fragmentation/ Defragmentation  Management  Roaming (Mobility)  Power management
  • 17. SHINE 17 Point Coordination Function (PCF) Optional  QOS Support (not efficiently)  Based on centralised Control (AP polling, no IBSS configuration)  Overlap restrictions  PCF provides contention-free transfer  The PC resides in AP  AP informs STA’ s the beginning of a CFP via a Beacon
  • 18. SHINE 18 PCF access mechanism AP STA Beacon Data+ ACK Data2+ CF- ACK CF-Poll SIFS SIFS= 16μs SIFS PIFS=25μsDIFS= 34 μs NO ACK! PIFS= 25μs Data1+ CF-Poll Data3+ CF- ACK CF-Poll Data+ ACK SIFS SIFS CF- end SIFS
  • 19. SHINE 19 Distributed Coordination Function  Efficient medium sharing without overlap restrictions.  Use CSMA/CA +ACK (Unicast frames) based on Carrier Sense function in PHY called Clear Channel Assessment (CCA)  CSMA/(CA) (Broadcast frames and small packets)  No QOS Support
  • 20. SHINE 20 CSMA/CA +ACK 1  Sense medium:  check state of NAV (Network Allocation Vector), a Virtual Carrier Sense  use CCA (Clear Channel Assessment) function of the PHY  If medium is free and remains idle for a DIFS period time, send a RTS  If CTS send data, expect ACK after SIFS time
  • 21. SHINE 21 CSMA/CA +ACK 2 Src. Dest. Others RTS CTS Data ACK SIFS SIFS= 16μs SIFS DIFS NAV (RTS) NAV (CTS) Next MPDU Random value*1 slot time Backoff 1 slot time= 9μsDefer Access DIFS= 34 μs Collision!
  • 22. SHINE 22 RTS/CTS with fragmented MSDU RTS CTS Frag. 0 Frag. 1 Frag. 2 ACK0 ACK1 ACK2 SRC Dest Others NAV (RTS) NAV (CTS) NAV (frag.0) NAV (ACK0) NAV (frag.1) NAV (ACK1) SIFS SIFS SIFS SIFS SIFS SIFS SIFS DIFS NAV update
  • 23. SHINE 23 Backoff Procedure  Backoff procedure resolves the medium contention conflicts  It is invoked if the medium is busy or a transmission failed  Procedure is base on a Backoff algorithm: all Sta’s defer the access to the medium according to this algorithm
  • 24. SHINE 24 Backoff Algorithm  Backoff Time= Random() * aSlotTime  aSlotTime= 9µs  Random()= Pseudorandom integer drawn from a uniform distribution over the interval [0,CW] (CW=Contention Window)  CWmin <= CW <= Cwmax (CWmin = 15 and Cwmax= 1023)  CW= 2(4+ n) -1 {thus CW[15, 31, 63, 128, 255, 512, 1023]}  n= number of retransmission given by the Retry Counter (see next slide)
  • 25. SHINE 25 Retry Counters  All Sta’s maintain a Short Retry Count and a Long Retry Count for the transmission of an MPDU  A Short Retry Counter (SRC) counts the number of retransmission of a short MAC frame (i.e. MAC frame sent without RTS/CTS)  A Long Retry Counter (LRC) counts the number of retransmission of a long MAC frame (i.e. MAC frame sent with RTS/CTS)  SRC (resp. LRC) shall be incremented every time transmission of a short (resp. long) MAC frame fails
  • 26. SHINE 26 Example CWmin CWmax 15 1023 Initial attempt 1st retransmission 2d 3th 31 63 Default values: • n=3 max retry for Long frames • n=6 max retry for short frames
  • 27. SHINE 27 Encryption (WEP)  Based on a WEP (wired Equivalent Privacy) algorithm - optional  Implementation in Hardware OR Software  Uses RC4 PRN algorithm based on:  a 40-bit key  and a 24bit Initialization Vector (IV, send with data)  includes an Integrity Check Value (ICV) to allow integrity check  Only Data Frame Body (Payload) is encrypted
  • 28. SHINE 28 Encryption/ Decryption Process Plain text encryption decryption Shared Secret Key (SSK) Ciphertext Original Plaintext Shared Secret Key (SSK)
  • 29. SHINE 29 Encryption Block IV SSK RC4 PRNG Key Sequence Plain Text Integrity algorithm ICV IV + Cipher text Message
  • 30. SHINE 30 Encrypted Payload IV 4 Bytes Data (MPDU) >=1 Byte ICV 4 Bytes Encrypted IV (3bytes) Pad 6bits Key ID 2bits 1 byte Encrypted Frame Body:
  • 33. SHINE 33 MAC Management  Roaming  Power management  Authentication/ De-authentication  Association/ Reassociation/ Disassociation
  • 35. SHINE 35 Roaming2  Quality of the link with current AP is bad  Use scanning function to find an AP with better link quality (or information from previous scans):  Passive scanning: listen for AP’s Beacons  Active scanning: send a Probe Request on each channel en wait for a Probe Response  Send Reassociation Request to new AP
  • 36. SHINE 36 Roaming3  New AP sends Reassociation Response and indicates the Reassociation to Distributed System  Update of Distributed System information  Disassociation old AP
  • 37. SHINE 37 Power management  In Power Save mode idle STA’s go to sleep and wake up periodically to listen for Beacons  TSF (Timing Synch. Funct.) keeps running and assures synchronization with AP  AP buffers packets for STA’s in PS mode  AP sends with Beacon the Traffic Indication Map (TIM) and announces which STA’s have frames buffered
  • 38. SHINE 38 IEEE 802.11 MAC Overview  Introduction  Communication Approach MAC Functionality MAC Frame Formats General and Data MAC frame Format Control Frame Formats Management Frame Format  Conclusion
  • 39. SHINE 39 General and Data MAC Frame Formats  Length of Frame body (=Payload) is variable  FCS= Frame Check Sequence containing a 32-bit CRC Frame Control Durati on/ ID Frame Body Sequence Control Addr ess 1 Addr ess 2 Addr ess 4 Addr ess 3 FCS Bytes: 2 2 6 6 6 2 6 0- 2312 4 M A C H e a d e r
  • 41. SHINE 41 Types and Subtypes  Data frames: Data, Data+ACK  Control frames: RTS, CTS, ACK, PowerSave-Poll  Management frames: Beacons, Association (Request and Response), Disassociation, Reassociation (Request and Response), Authentication, De-authentication, Probe (Request and Response), Announcement Traffic Indication Message (ATIM)
  • 42. SHINE 42 Address Field Contents To DS From DS Addr. 1 Addr. 2 Addr. 3 Addr. 4 0 0 DA SA BSSID N/A 0 1 DA BSSID SA N/A 1 0 BSSID SA DA N/A 1 1 RA TA DA SA BSSID= Basic Service Set Identifier DA= Destination Address DS= Distributed System SA= Source Address RA= Receiver Address TA= Transmitter Address
  • 43. SHINE 43 Address Field Contents in detail To DS=0 From DS=0 ad1=DA Ad2=SA Ad3=BSSID ad4=N/A BSS BSS To DS=0 From DS=1 ad1=DA Ad2=BSSID Ad3=SA Ad4=N/A To DS=1 From DS=0 ad1= BSSID Ad2=SA Ad3=DA Ad4=N/A BSSTo DS=1 From DS=1 ad1=RA Ad2=TA Ad3=DA Ad4=SA
  • 44. SHINE 44 Sequence Control field Fragment number (4 bits) Sequence number (12 bits) LSB MSB
  • 45. SHINE 45 Fragment number  A fragment number for each fragment of an MPDU or MMPDU.  0 for single or 1st fragment and increase by 1 for next fragment  The number remains constant for retransmission.
  • 46. SHINE 46 Sequence number  A Sequence number for every MPDU or MMPDU  Numbers are assigned from a single modulo 4096 counter, starting at 0 and increase by 1 for next MPDU  The number remains constant for retransmission.
  • 47. SHINE 47 Control Frame Formats Bytes: Frame Control Duration RA FCS 2 2 6 4 RTS Frame Bytes : Frame Control Duration RA FCS 2 2 6 4 Frame Cntrl Duration RA TA FCS Bytes: 2 2 6 6 4 MAC Header CTS Frame ACK Frame PowerSave- Poll Frame Frame Cntrl AID BSS ID TA FCS 2 2 6 6 4
  • 48. SHINE 48 Management Frame Format Frame Control Durati on Frame Body Sequence Control DA SA BSS ID FCS Bytes: 2 2 6 6 6 2 0- 2312 4 M A C H e a d e r The frame body contains the management information that has to be sent, like Challenge text (e.g. Authentication frame) or Time Indication Message and PHY parameters (Beacon frame).
  • 49. SHINE 49 IEEE 802.11 MAC Overview  Introduction  Communication Approach  MAC Functionality MAC Frame Formats  Conclusion
  • 50. SHINE 50 Conclusion  IEEE 802.11a uses the same MAC as IEEE 802.11 and the same PHY as Hiperlan2  Main MAC functions are: DCF, PCF, WEP encryption, fragmentation, roaming and power management  MAC frame has a variable length and consists of a MAC header(max 30 bytes), a frame body (max 2312 bytes) and a 32-bit CRC
  • 51. SHINE 51 Conclusion 2  Advantage:  High speed wirelessLAN  Good access scheme for medium sharing (DCF)  Disadvantage:  No QOS support (DCF)  WEP protocol is “easy to crack”  Solution: IEEE 802.11e (MAC and security enhancement)
  • 52. SHINE 52 Thank you for your attention