SlideShare a Scribd company logo
1© Cloudera, Inc. All rights reserved.
機械学習システムのデプロイパターン
Aki Ariga | Field Data Scientist
2© Cloudera, Inc. All rights reserved.
• (Twitter/Github @chezou)
• Field Data Scientist @ Cloudera
•
• NLP/ /
• Rails
•
•
3© Cloudera, Inc. All rights reserved.
4© Cloudera, Inc. All rights reserved. 4
Artificial Intelligence
( )
Machine Learning
by Splintax CC BY-SA 3.0
https://commons.wikimedia.org/wiki/File:IF-
THEN-ELSE-END_flowchart.png
Deep Learning
Good to read: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-
learning-ai/
5© Cloudera, Inc. All rights reserved.
●
○ e.g.) ,
●
○ e.g.)
●
○ e.g.)
●
○ e.g.)
●
○ e.g.) Amazon, Netflix
●
○
e.g.) Alpha-Go,
● etc…
6© Cloudera, Inc. All rights reserved.
Non-Spam
Spam
7© Cloudera, Inc. All rights reserved.
[0, 1, 0, 2.5, 0, -1, ...]
[1, 0.5, 0.1, -2, 3, 2, ...]
[1, 0, 1.0, 1.1, 0, 0, ...]
Logistic Regression,
SVM, Random Forest,
NN...
w1=1, w2=-
1, w3=0 ...
)
8© Cloudera, Inc. All rights reserved.
From data to exploration to action
Data Engineering Data Science (Exploratory) Production (Operational)
Data Models Business ValuePredictions
9© Cloudera, Inc. All rights reserved.
10© Cloudera, Inc. All rights reserved.
Reports Dashboards Scoring
11© Cloudera, Inc. All rights reserved.
12© Cloudera, Inc. All rights reserved.
1. REST API
2. DB
3.
4.
13© Cloudera, Inc. All rights reserved.
Web
DB
/
API
REST
API
User ID/
Item ID
Microservices architecture: Web ML REST (or gRPC) API
ML
ML
14© Cloudera, Inc. All rights reserved.
DB
Web API
REST
API
User ID/
Item ID
DB
/
ML
15© Cloudera, Inc. All rights reserved.
REST API
Web
DB
/
API
REST
API
User ID/
Item ID
ML
16© Cloudera, Inc. All rights reserved.
17© Cloudera, Inc. All rights reserved.
&
/
&
PMML
export
Model building layer
Predicting &
serving layer
CDSW
HDFS
18© Cloudera, Inc. All rights reserved.
&
/
&
Model building layerPredicting &
serving layer
HDFS
Docker
image
CDSW
19© Cloudera, Inc. All rights reserved.
Demo:
https://github.com/chezou/cdsw-serve-docker
20© Cloudera, Inc. All rights reserved.
CDSW
Amazon ECS
Application
Load Balancer
Amazon
S3
Docker HUBDocker
image
Source code
Trained model
Prediction
request
21© Cloudera, Inc. All rights reserved.
Cloudera Data Science Workbench(CDSW)
エンタープライズのためのセルフサービスデータサイエンス基盤
- GPU
-
fork
- Docker
- Spark
-
22© Cloudera, Inc. All rights reserved.
● Pros
○ Web ML
■
■
■
○
○
○ A/B
○
● Cons
○ API
○
23© Cloudera, Inc. All rights reserved.
Web
DB
ML
/
DB : Web ML DB
24© Cloudera, Inc. All rights reserved.
DB /
Web
DB
ML
/
25© Cloudera, Inc. All rights reserved.
DB / DB
Web
/
DB
ML
26© Cloudera, Inc. All rights reserved.
DB
Web ML
/
DB
27© Cloudera, Inc. All rights reserved.
Kudu/HBase
/
&
Model building &
predicting layerServing layer
HDFS
CDSW
28© Cloudera, Inc. All rights reserved.
● Pros
○ Web ML
■
■
■
○
○ :
○
○
● Cons
○ Web
○
29© Cloudera, Inc. All rights reserved.
Web
ML
( : Spark Streaming)
&
-
-
- Kafka MQ (:Kafka)
30© Cloudera, Inc. All rights reserved.
31© Cloudera, Inc. All rights reserved.
● Pros
○
○
○
○
● Cons
○
■
32© Cloudera, Inc. All rights reserved.
DB
ML
/
/
export/
DB
&
33© Cloudera, Inc. All rights reserved.
&
/
&
/export
Model building layer
Predicting &
serving layer
HDFS
CDSW
34© Cloudera, Inc. All rights reserved.
35© Cloudera, Inc. All rights reserved.
●
○ CDSW Job
●
○ NA ( )
●
○ 1
■ PMML export OpenScoring API
■ API Docker
■ API
○ 2
■ CDSW HBase/Kudu/RDB
○ 3
■
○ 4
■ TensorFlow export/CoreML
36© Cloudera, Inc. All rights reserved.
Thank you
Aki Ariga @chezou
ariga@cloudera.com

More Related Content

What's hot

Spark One Platform Webinar
Spark One Platform WebinarSpark One Platform Webinar
Spark One Platform Webinar
Cloudera, Inc.
 
Introduction to Machine Learning on Apache Spark MLlib by Juliet Hougland, Se...
Introduction to Machine Learning on Apache Spark MLlib by Juliet Hougland, Se...Introduction to Machine Learning on Apache Spark MLlib by Juliet Hougland, Se...
Introduction to Machine Learning on Apache Spark MLlib by Juliet Hougland, Se...
Cloudera, Inc.
 
Where to Deploy Hadoop: Bare Metal or Cloud?
Where to Deploy Hadoop: Bare Metal or Cloud? Where to Deploy Hadoop: Bare Metal or Cloud?
Where to Deploy Hadoop: Bare Metal or Cloud?
DataWorks Summit
 
Road to Cloudera certification
Road to Cloudera certificationRoad to Cloudera certification
Road to Cloudera certification
Cloudera, Inc.
 
One Hadoop, Multiple Clouds - NYC Big Data Meetup
One Hadoop, Multiple Clouds - NYC Big Data MeetupOne Hadoop, Multiple Clouds - NYC Big Data Meetup
One Hadoop, Multiple Clouds - NYC Big Data Meetup
Andrei Savu
 
Facial recognition
Facial recognitionFacial recognition
Facial recognition
Jason Hubbard
 
Data Science and Machine Learning for the Enterprise
Data Science and Machine Learning for the EnterpriseData Science and Machine Learning for the Enterprise
Data Science and Machine Learning for the Enterprise
Cloudera, Inc.
 
Simplifying Hadoop with RecordService, A Secure and Unified Data Access Path ...
Simplifying Hadoop with RecordService, A Secure and Unified Data Access Path ...Simplifying Hadoop with RecordService, A Secure and Unified Data Access Path ...
Simplifying Hadoop with RecordService, A Secure and Unified Data Access Path ...
Cloudera, Inc.
 
Unlock Hadoop Success with Cloudera Navigator Optimizer
Unlock Hadoop Success with Cloudera Navigator OptimizerUnlock Hadoop Success with Cloudera Navigator Optimizer
Unlock Hadoop Success with Cloudera Navigator Optimizer
Cloudera, Inc.
 
Part 2: Cloudera’s Operational Database: Unlocking New Benefits in the Cloud
Part 2: Cloudera’s Operational Database: Unlocking New Benefits in the CloudPart 2: Cloudera’s Operational Database: Unlocking New Benefits in the Cloud
Part 2: Cloudera’s Operational Database: Unlocking New Benefits in the Cloud
Cloudera, Inc.
 
Envelope
Envelope Envelope
Five Tips for Running Cloudera on AWS
Five Tips for Running Cloudera on AWSFive Tips for Running Cloudera on AWS
Five Tips for Running Cloudera on AWS
Cloudera, Inc.
 
大数据数据治理及数据安全
大数据数据治理及数据安全大数据数据治理及数据安全
大数据数据治理及数据安全
Jianwei Li
 
Ibis: Scaling Python Analytics on Hadoop and Impala
Ibis: Scaling Python Analytics on Hadoop and ImpalaIbis: Scaling Python Analytics on Hadoop and Impala
Ibis: Scaling Python Analytics on Hadoop and Impala
Wes McKinney
 
A deep dive into running data analytic workloads in the cloud
A deep dive into running data analytic workloads in the cloudA deep dive into running data analytic workloads in the cloud
A deep dive into running data analytic workloads in the cloud
Cloudera, Inc.
 
Cloud backup you say? Azure Backup of course!
Cloud backup you say? Azure Backup of course!Cloud backup you say? Azure Backup of course!
Cloud backup you say? Azure Backup of course!
Wim Matthyssen
 
[db tech showcase OSS 2017] A11: How Percona is Different, and How We Support...
[db tech showcase OSS 2017] A11: How Percona is Different, and How We Support...[db tech showcase OSS 2017] A11: How Percona is Different, and How We Support...
[db tech showcase OSS 2017] A11: How Percona is Different, and How We Support...
Insight Technology, Inc.
 
Is Cloud a right Companion for Hadoop
Is Cloud a right Companion for HadoopIs Cloud a right Companion for Hadoop
Is Cloud a right Companion for Hadoop
DataWorks Summit
 
Apache Hadoop 3
Apache Hadoop 3Apache Hadoop 3
Apache Hadoop 3
Cloudera, Inc.
 
Edge to ai analytics from edge to cloud with efficient movement of machine data
Edge to ai  analytics from edge to cloud with efficient movement of machine dataEdge to ai  analytics from edge to cloud with efficient movement of machine data
Edge to ai analytics from edge to cloud with efficient movement of machine data
Timothy Spann
 

What's hot (20)

Spark One Platform Webinar
Spark One Platform WebinarSpark One Platform Webinar
Spark One Platform Webinar
 
Introduction to Machine Learning on Apache Spark MLlib by Juliet Hougland, Se...
Introduction to Machine Learning on Apache Spark MLlib by Juliet Hougland, Se...Introduction to Machine Learning on Apache Spark MLlib by Juliet Hougland, Se...
Introduction to Machine Learning on Apache Spark MLlib by Juliet Hougland, Se...
 
Where to Deploy Hadoop: Bare Metal or Cloud?
Where to Deploy Hadoop: Bare Metal or Cloud? Where to Deploy Hadoop: Bare Metal or Cloud?
Where to Deploy Hadoop: Bare Metal or Cloud?
 
Road to Cloudera certification
Road to Cloudera certificationRoad to Cloudera certification
Road to Cloudera certification
 
One Hadoop, Multiple Clouds - NYC Big Data Meetup
One Hadoop, Multiple Clouds - NYC Big Data MeetupOne Hadoop, Multiple Clouds - NYC Big Data Meetup
One Hadoop, Multiple Clouds - NYC Big Data Meetup
 
Facial recognition
Facial recognitionFacial recognition
Facial recognition
 
Data Science and Machine Learning for the Enterprise
Data Science and Machine Learning for the EnterpriseData Science and Machine Learning for the Enterprise
Data Science and Machine Learning for the Enterprise
 
Simplifying Hadoop with RecordService, A Secure and Unified Data Access Path ...
Simplifying Hadoop with RecordService, A Secure and Unified Data Access Path ...Simplifying Hadoop with RecordService, A Secure and Unified Data Access Path ...
Simplifying Hadoop with RecordService, A Secure and Unified Data Access Path ...
 
Unlock Hadoop Success with Cloudera Navigator Optimizer
Unlock Hadoop Success with Cloudera Navigator OptimizerUnlock Hadoop Success with Cloudera Navigator Optimizer
Unlock Hadoop Success with Cloudera Navigator Optimizer
 
Part 2: Cloudera’s Operational Database: Unlocking New Benefits in the Cloud
Part 2: Cloudera’s Operational Database: Unlocking New Benefits in the CloudPart 2: Cloudera’s Operational Database: Unlocking New Benefits in the Cloud
Part 2: Cloudera’s Operational Database: Unlocking New Benefits in the Cloud
 
Envelope
Envelope Envelope
Envelope
 
Five Tips for Running Cloudera on AWS
Five Tips for Running Cloudera on AWSFive Tips for Running Cloudera on AWS
Five Tips for Running Cloudera on AWS
 
大数据数据治理及数据安全
大数据数据治理及数据安全大数据数据治理及数据安全
大数据数据治理及数据安全
 
Ibis: Scaling Python Analytics on Hadoop and Impala
Ibis: Scaling Python Analytics on Hadoop and ImpalaIbis: Scaling Python Analytics on Hadoop and Impala
Ibis: Scaling Python Analytics on Hadoop and Impala
 
A deep dive into running data analytic workloads in the cloud
A deep dive into running data analytic workloads in the cloudA deep dive into running data analytic workloads in the cloud
A deep dive into running data analytic workloads in the cloud
 
Cloud backup you say? Azure Backup of course!
Cloud backup you say? Azure Backup of course!Cloud backup you say? Azure Backup of course!
Cloud backup you say? Azure Backup of course!
 
[db tech showcase OSS 2017] A11: How Percona is Different, and How We Support...
[db tech showcase OSS 2017] A11: How Percona is Different, and How We Support...[db tech showcase OSS 2017] A11: How Percona is Different, and How We Support...
[db tech showcase OSS 2017] A11: How Percona is Different, and How We Support...
 
Is Cloud a right Companion for Hadoop
Is Cloud a right Companion for HadoopIs Cloud a right Companion for Hadoop
Is Cloud a right Companion for Hadoop
 
Apache Hadoop 3
Apache Hadoop 3Apache Hadoop 3
Apache Hadoop 3
 
Edge to ai analytics from edge to cloud with efficient movement of machine data
Edge to ai  analytics from edge to cloud with efficient movement of machine dataEdge to ai  analytics from edge to cloud with efficient movement of machine data
Edge to ai analytics from edge to cloud with efficient movement of machine data
 

Viewers also liked

Cloudera in the Cloud #CWT2017
Cloudera in the Cloud #CWT2017Cloudera in the Cloud #CWT2017
Cloudera in the Cloud #CWT2017
Cloudera Japan
 
Apache Kuduを使った分析システムの裏側
Apache Kuduを使った分析システムの裏側Apache Kuduを使った分析システムの裏側
Apache Kuduを使った分析システムの裏側
Cloudera Japan
 
Hue 4.0 / Hue Meetup Tokyo #huejp
Hue 4.0 / Hue Meetup Tokyo #huejpHue 4.0 / Hue Meetup Tokyo #huejp
Hue 4.0 / Hue Meetup Tokyo #huejp
Cloudera Japan
 
Clouderaが提供するエンタープライズ向け運用、データ管理ツールの使い方 #CW2017
Clouderaが提供するエンタープライズ向け運用、データ管理ツールの使い方 #CW2017Clouderaが提供するエンタープライズ向け運用、データ管理ツールの使い方 #CW2017
Clouderaが提供するエンタープライズ向け運用、データ管理ツールの使い方 #CW2017
Cloudera Japan
 
先行事例から学ぶ IoT / ビッグデータの始め方
先行事例から学ぶ IoT / ビッグデータの始め方先行事例から学ぶ IoT / ビッグデータの始め方
先行事例から学ぶ IoT / ビッグデータの始め方
Cloudera Japan
 
ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術
Shohei Hido
 
Deep LearningフレームワークChainerと最近の技術動向
Deep LearningフレームワークChainerと最近の技術動向Deep LearningフレームワークChainerと最近の技術動向
Deep LearningフレームワークChainerと最近の技術動向
Shunta Saito
 
Kerasを用いた3次元検索エンジン@TFUG
Kerasを用いた3次元検索エンジン@TFUGKerasを用いた3次元検索エンジン@TFUG
Kerasを用いた3次元検索エンジン@TFUG
Ogushi Masaya
 
ICCV 2017 速報
ICCV 2017 速報 ICCV 2017 速報
ICCV 2017 速報
cvpaper. challenge
 
AWS AI Solutions
AWS AI SolutionsAWS AI Solutions
AWS AI Solutions
Amazon Web Services Japan
 

Viewers also liked (10)

Cloudera in the Cloud #CWT2017
Cloudera in the Cloud #CWT2017Cloudera in the Cloud #CWT2017
Cloudera in the Cloud #CWT2017
 
Apache Kuduを使った分析システムの裏側
Apache Kuduを使った分析システムの裏側Apache Kuduを使った分析システムの裏側
Apache Kuduを使った分析システムの裏側
 
Hue 4.0 / Hue Meetup Tokyo #huejp
Hue 4.0 / Hue Meetup Tokyo #huejpHue 4.0 / Hue Meetup Tokyo #huejp
Hue 4.0 / Hue Meetup Tokyo #huejp
 
Clouderaが提供するエンタープライズ向け運用、データ管理ツールの使い方 #CW2017
Clouderaが提供するエンタープライズ向け運用、データ管理ツールの使い方 #CW2017Clouderaが提供するエンタープライズ向け運用、データ管理ツールの使い方 #CW2017
Clouderaが提供するエンタープライズ向け運用、データ管理ツールの使い方 #CW2017
 
先行事例から学ぶ IoT / ビッグデータの始め方
先行事例から学ぶ IoT / ビッグデータの始め方先行事例から学ぶ IoT / ビッグデータの始め方
先行事例から学ぶ IoT / ビッグデータの始め方
 
ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術ディープラーニングの産業応用とそれを支える技術
ディープラーニングの産業応用とそれを支える技術
 
Deep LearningフレームワークChainerと最近の技術動向
Deep LearningフレームワークChainerと最近の技術動向Deep LearningフレームワークChainerと最近の技術動向
Deep LearningフレームワークChainerと最近の技術動向
 
Kerasを用いた3次元検索エンジン@TFUG
Kerasを用いた3次元検索エンジン@TFUGKerasを用いた3次元検索エンジン@TFUG
Kerasを用いた3次元検索エンジン@TFUG
 
ICCV 2017 速報
ICCV 2017 速報 ICCV 2017 速報
ICCV 2017 速報
 
AWS AI Solutions
AWS AI SolutionsAWS AI Solutions
AWS AI Solutions
 

Similar to How to go into production your machine learning models? #CWT2017

Cloudera のサポートエンジニアリング #supennight
Cloudera のサポートエンジニアリング #supennightCloudera のサポートエンジニアリング #supennight
Cloudera のサポートエンジニアリング #supennight
Cloudera Japan
 
Enterprise machine learning on k8s lessons learned and the road ahead
Enterprise machine learning on k8s   lessons learned and the road aheadEnterprise machine learning on k8s   lessons learned and the road ahead
Enterprise machine learning on k8s lessons learned and the road ahead
Timothy Chen
 
Part 2: A Visual Dive into Machine Learning and Deep Learning 

Part 2: A Visual Dive into Machine Learning and Deep Learning 
Part 2: A Visual Dive into Machine Learning and Deep Learning 

Part 2: A Visual Dive into Machine Learning and Deep Learning 

Cloudera, Inc.
 
Machine Learning in the Enterprise 2019
Machine Learning in the Enterprise 2019   Machine Learning in the Enterprise 2019
Machine Learning in the Enterprise 2019
Timothy Spann
 
The Edge to AI Deep Dive Barcelona Meetup March 2019
The Edge to AI Deep Dive Barcelona Meetup March 2019The Edge to AI Deep Dive Barcelona Meetup March 2019
The Edge to AI Deep Dive Barcelona Meetup March 2019
Timothy Spann
 
Apache Spark Operations
Apache Spark OperationsApache Spark Operations
Apache Spark Operations
Cloudera, Inc.
 
Edge to AI: Analytics from Edge to Cloud with Efficient Movement of Machine ...
Edge to AI:  Analytics from Edge to Cloud with Efficient Movement of Machine ...Edge to AI:  Analytics from Edge to Cloud with Efficient Movement of Machine ...
Edge to AI: Analytics from Edge to Cloud with Efficient Movement of Machine ...
Timothy Spann
 
Hadoop on Cloud: Why and How?
Hadoop on Cloud: Why and How?Hadoop on Cloud: Why and How?
Hadoop on Cloud: Why and How?
Cloudera, Inc.
 
One Hadoop, Multiple Clouds
One Hadoop, Multiple CloudsOne Hadoop, Multiple Clouds
One Hadoop, Multiple Clouds
Cloudera, Inc.
 
Emerging trends in data analytics
Emerging trends in data analyticsEmerging trends in data analytics
Emerging trends in data analytics
Wei-Chiu Chuang
 
仕事ではじめる機械学習
仕事ではじめる機械学習仕事ではじめる機械学習
仕事ではじめる機械学習
Aki Ariga
 
Hadoop 3 (2017 hadoop taiwan workshop)
Hadoop 3 (2017 hadoop taiwan workshop)Hadoop 3 (2017 hadoop taiwan workshop)
Hadoop 3 (2017 hadoop taiwan workshop)
Wei-Chiu Chuang
 
Cloud-Native Machine Learning: Emerging Trends and the Road Ahead
Cloud-Native Machine Learning: Emerging Trends and the Road AheadCloud-Native Machine Learning: Emerging Trends and the Road Ahead
Cloud-Native Machine Learning: Emerging Trends and the Road Ahead
DataWorks Summit
 
Hadoop Application Architectures tutorial at Big DataService 2015
Hadoop Application Architectures tutorial at Big DataService 2015Hadoop Application Architectures tutorial at Big DataService 2015
Hadoop Application Architectures tutorial at Big DataService 2015
hadooparchbook
 
Big data journey to the cloud 5.30.18 asher bartch
Big data journey to the cloud 5.30.18   asher bartchBig data journey to the cloud 5.30.18   asher bartch
Big data journey to the cloud 5.30.18 asher bartch
Cloudera, Inc.
 
Enterprise Metadata Integration, Cloudera
Enterprise Metadata Integration, ClouderaEnterprise Metadata Integration, Cloudera
Enterprise Metadata Integration, Cloudera
Neo4j
 
26Oct2023_Adding Generative AI to Real-Time Streaming Pipelines_ NYC Meetup
26Oct2023_Adding Generative AI to Real-Time Streaming Pipelines_ NYC Meetup26Oct2023_Adding Generative AI to Real-Time Streaming Pipelines_ NYC Meetup
26Oct2023_Adding Generative AI to Real-Time Streaming Pipelines_ NYC Meetup
Timothy Spann
 
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Cloudera, Inc.
 
Deep Learning with Cloudera
Deep Learning with ClouderaDeep Learning with Cloudera
Deep Learning with Cloudera
Cloudera, Inc.
 
Enabling Deep Learning in IoT Applications with Apache MXNet
Enabling Deep Learning in IoT Applications with Apache MXNetEnabling Deep Learning in IoT Applications with Apache MXNet
Enabling Deep Learning in IoT Applications with Apache MXNet
Amazon Web Services
 

Similar to How to go into production your machine learning models? #CWT2017 (20)

Cloudera のサポートエンジニアリング #supennight
Cloudera のサポートエンジニアリング #supennightCloudera のサポートエンジニアリング #supennight
Cloudera のサポートエンジニアリング #supennight
 
Enterprise machine learning on k8s lessons learned and the road ahead
Enterprise machine learning on k8s   lessons learned and the road aheadEnterprise machine learning on k8s   lessons learned and the road ahead
Enterprise machine learning on k8s lessons learned and the road ahead
 
Part 2: A Visual Dive into Machine Learning and Deep Learning 

Part 2: A Visual Dive into Machine Learning and Deep Learning 
Part 2: A Visual Dive into Machine Learning and Deep Learning 

Part 2: A Visual Dive into Machine Learning and Deep Learning 

 
Machine Learning in the Enterprise 2019
Machine Learning in the Enterprise 2019   Machine Learning in the Enterprise 2019
Machine Learning in the Enterprise 2019
 
The Edge to AI Deep Dive Barcelona Meetup March 2019
The Edge to AI Deep Dive Barcelona Meetup March 2019The Edge to AI Deep Dive Barcelona Meetup March 2019
The Edge to AI Deep Dive Barcelona Meetup March 2019
 
Apache Spark Operations
Apache Spark OperationsApache Spark Operations
Apache Spark Operations
 
Edge to AI: Analytics from Edge to Cloud with Efficient Movement of Machine ...
Edge to AI:  Analytics from Edge to Cloud with Efficient Movement of Machine ...Edge to AI:  Analytics from Edge to Cloud with Efficient Movement of Machine ...
Edge to AI: Analytics from Edge to Cloud with Efficient Movement of Machine ...
 
Hadoop on Cloud: Why and How?
Hadoop on Cloud: Why and How?Hadoop on Cloud: Why and How?
Hadoop on Cloud: Why and How?
 
One Hadoop, Multiple Clouds
One Hadoop, Multiple CloudsOne Hadoop, Multiple Clouds
One Hadoop, Multiple Clouds
 
Emerging trends in data analytics
Emerging trends in data analyticsEmerging trends in data analytics
Emerging trends in data analytics
 
仕事ではじめる機械学習
仕事ではじめる機械学習仕事ではじめる機械学習
仕事ではじめる機械学習
 
Hadoop 3 (2017 hadoop taiwan workshop)
Hadoop 3 (2017 hadoop taiwan workshop)Hadoop 3 (2017 hadoop taiwan workshop)
Hadoop 3 (2017 hadoop taiwan workshop)
 
Cloud-Native Machine Learning: Emerging Trends and the Road Ahead
Cloud-Native Machine Learning: Emerging Trends and the Road AheadCloud-Native Machine Learning: Emerging Trends and the Road Ahead
Cloud-Native Machine Learning: Emerging Trends and the Road Ahead
 
Hadoop Application Architectures tutorial at Big DataService 2015
Hadoop Application Architectures tutorial at Big DataService 2015Hadoop Application Architectures tutorial at Big DataService 2015
Hadoop Application Architectures tutorial at Big DataService 2015
 
Big data journey to the cloud 5.30.18 asher bartch
Big data journey to the cloud 5.30.18   asher bartchBig data journey to the cloud 5.30.18   asher bartch
Big data journey to the cloud 5.30.18 asher bartch
 
Enterprise Metadata Integration, Cloudera
Enterprise Metadata Integration, ClouderaEnterprise Metadata Integration, Cloudera
Enterprise Metadata Integration, Cloudera
 
26Oct2023_Adding Generative AI to Real-Time Streaming Pipelines_ NYC Meetup
26Oct2023_Adding Generative AI to Real-Time Streaming Pipelines_ NYC Meetup26Oct2023_Adding Generative AI to Real-Time Streaming Pipelines_ NYC Meetup
26Oct2023_Adding Generative AI to Real-Time Streaming Pipelines_ NYC Meetup
 
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19
 
Deep Learning with Cloudera
Deep Learning with ClouderaDeep Learning with Cloudera
Deep Learning with Cloudera
 
Enabling Deep Learning in IoT Applications with Apache MXNet
Enabling Deep Learning in IoT Applications with Apache MXNetEnabling Deep Learning in IoT Applications with Apache MXNet
Enabling Deep Learning in IoT Applications with Apache MXNet
 

More from Cloudera Japan

Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)
Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)
Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)
Cloudera Japan
 
機械学習の定番プラットフォームSparkの紹介
機械学習の定番プラットフォームSparkの紹介機械学習の定番プラットフォームSparkの紹介
機械学習の定番プラットフォームSparkの紹介
Cloudera Japan
 
HDFS Supportaiblity Improvements
HDFS Supportaiblity ImprovementsHDFS Supportaiblity Improvements
HDFS Supportaiblity Improvements
Cloudera Japan
 
Apache Impalaパフォーマンスチューニング #dbts2018
Apache Impalaパフォーマンスチューニング #dbts2018Apache Impalaパフォーマンスチューニング #dbts2018
Apache Impalaパフォーマンスチューニング #dbts2018
Cloudera Japan
 
Apache Hadoop YARNとマルチテナントにおけるリソース管理
Apache Hadoop YARNとマルチテナントにおけるリソース管理Apache Hadoop YARNとマルチテナントにおけるリソース管理
Apache Hadoop YARNとマルチテナントにおけるリソース管理
Cloudera Japan
 
HBase Across the World #LINE_DM
HBase Across the World #LINE_DMHBase Across the World #LINE_DM
HBase Across the World #LINE_DM
Cloudera Japan
 
Apache Kuduは何がそんなに「速い」DBなのか? #dbts2017
Apache Kuduは何がそんなに「速い」DBなのか? #dbts2017Apache Kuduは何がそんなに「速い」DBなのか? #dbts2017
Apache Kuduは何がそんなに「速い」DBなのか? #dbts2017
Cloudera Japan
 
Cloudera Data Science WorkbenchとPySparkで 好きなPythonライブラリを 分散で使う #cadeda
Cloudera Data Science WorkbenchとPySparkで 好きなPythonライブラリを 分散で使う #cadedaCloudera Data Science WorkbenchとPySparkで 好きなPythonライブラリを 分散で使う #cadeda
Cloudera Data Science WorkbenchとPySparkで 好きなPythonライブラリを 分散で使う #cadeda
Cloudera Japan
 
Cloud Native Hadoop #cwt2016
Cloud Native Hadoop #cwt2016Cloud Native Hadoop #cwt2016
Cloud Native Hadoop #cwt2016
Cloudera Japan
 
大規模データに対するデータサイエンスの進め方 #CWT2016
大規模データに対するデータサイエンスの進め方 #CWT2016大規模データに対するデータサイエンスの進め方 #CWT2016
大規模データに対するデータサイエンスの進め方 #CWT2016
Cloudera Japan
 
#cwt2016 Apache Kudu 構成とテーブル設計
#cwt2016 Apache Kudu 構成とテーブル設計#cwt2016 Apache Kudu 構成とテーブル設計
#cwt2016 Apache Kudu 構成とテーブル設計
Cloudera Japan
 
#cwt2016 Cloudera Managerを用いた Hadoop のトラブルシューティング
#cwt2016 Cloudera Managerを用いた Hadoop のトラブルシューティング #cwt2016 Cloudera Managerを用いた Hadoop のトラブルシューティング
#cwt2016 Cloudera Managerを用いた Hadoop のトラブルシューティング
Cloudera Japan
 
Ibis: すごい pandas ⼤規模データ分析もらっくらく #summerDS
Ibis: すごい pandas ⼤規模データ分析もらっくらく #summerDSIbis: すごい pandas ⼤規模データ分析もらっくらく #summerDS
Ibis: すごい pandas ⼤規模データ分析もらっくらく #summerDS
Cloudera Japan
 
クラウド上でHadoopを構築できる Cloudera Director 2.0 の紹介 #dogenzakalt
クラウド上でHadoopを構築できる Cloudera Director 2.0 の紹介 #dogenzakaltクラウド上でHadoopを構築できる Cloudera Director 2.0 の紹介 #dogenzakalt
クラウド上でHadoopを構築できる Cloudera Director 2.0 の紹介 #dogenzakalt
Cloudera Japan
 
MapReduceを置き換えるSpark 〜HadoopとSparkの統合〜 #cwt2015
MapReduceを置き換えるSpark 〜HadoopとSparkの統合〜 #cwt2015MapReduceを置き換えるSpark 〜HadoopとSparkの統合〜 #cwt2015
MapReduceを置き換えるSpark 〜HadoopとSparkの統合〜 #cwt2015
Cloudera Japan
 
PCIコンプライアンスに向けたビジネス指針〜MasterCardの事例〜 #cwt2015
PCIコンプライアンスに向けたビジネス指針〜MasterCardの事例〜 #cwt2015PCIコンプライアンスに向けたビジネス指針〜MasterCardの事例〜 #cwt2015
PCIコンプライアンスに向けたビジネス指針〜MasterCardの事例〜 #cwt2015
Cloudera Japan
 
「新製品 Kudu 及び RecordServiceの概要」 #cwt2015
「新製品 Kudu 及び RecordServiceの概要」 #cwt2015「新製品 Kudu 及び RecordServiceの概要」 #cwt2015
「新製品 Kudu 及び RecordServiceの概要」 #cwt2015
Cloudera Japan
 
基調講演: 「データエコシステムへの挑戦」 #cwt2015
基調講演: 「データエコシステムへの挑戦」 #cwt2015基調講演: 「データエコシステムへの挑戦」 #cwt2015
基調講演: 「データエコシステムへの挑戦」 #cwt2015
Cloudera Japan
 
基調講演:「ビッグデータのセキュリティとガバナンス要件」 #cwt2015
基調講演:「ビッグデータのセキュリティとガバナンス要件」 #cwt2015基調講演:「ビッグデータのセキュリティとガバナンス要件」 #cwt2015
基調講演:「ビッグデータのセキュリティとガバナンス要件」 #cwt2015
Cloudera Japan
 
基調講演: 「パーペイシブ分析を目指して」#cwt2015
基調講演: 「パーペイシブ分析を目指して」#cwt2015基調講演: 「パーペイシブ分析を目指して」#cwt2015
基調講演: 「パーペイシブ分析を目指して」#cwt2015
Cloudera Japan
 

More from Cloudera Japan (20)

Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)
Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)
Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)
 
機械学習の定番プラットフォームSparkの紹介
機械学習の定番プラットフォームSparkの紹介機械学習の定番プラットフォームSparkの紹介
機械学習の定番プラットフォームSparkの紹介
 
HDFS Supportaiblity Improvements
HDFS Supportaiblity ImprovementsHDFS Supportaiblity Improvements
HDFS Supportaiblity Improvements
 
Apache Impalaパフォーマンスチューニング #dbts2018
Apache Impalaパフォーマンスチューニング #dbts2018Apache Impalaパフォーマンスチューニング #dbts2018
Apache Impalaパフォーマンスチューニング #dbts2018
 
Apache Hadoop YARNとマルチテナントにおけるリソース管理
Apache Hadoop YARNとマルチテナントにおけるリソース管理Apache Hadoop YARNとマルチテナントにおけるリソース管理
Apache Hadoop YARNとマルチテナントにおけるリソース管理
 
HBase Across the World #LINE_DM
HBase Across the World #LINE_DMHBase Across the World #LINE_DM
HBase Across the World #LINE_DM
 
Apache Kuduは何がそんなに「速い」DBなのか? #dbts2017
Apache Kuduは何がそんなに「速い」DBなのか? #dbts2017Apache Kuduは何がそんなに「速い」DBなのか? #dbts2017
Apache Kuduは何がそんなに「速い」DBなのか? #dbts2017
 
Cloudera Data Science WorkbenchとPySparkで 好きなPythonライブラリを 分散で使う #cadeda
Cloudera Data Science WorkbenchとPySparkで 好きなPythonライブラリを 分散で使う #cadedaCloudera Data Science WorkbenchとPySparkで 好きなPythonライブラリを 分散で使う #cadeda
Cloudera Data Science WorkbenchとPySparkで 好きなPythonライブラリを 分散で使う #cadeda
 
Cloud Native Hadoop #cwt2016
Cloud Native Hadoop #cwt2016Cloud Native Hadoop #cwt2016
Cloud Native Hadoop #cwt2016
 
大規模データに対するデータサイエンスの進め方 #CWT2016
大規模データに対するデータサイエンスの進め方 #CWT2016大規模データに対するデータサイエンスの進め方 #CWT2016
大規模データに対するデータサイエンスの進め方 #CWT2016
 
#cwt2016 Apache Kudu 構成とテーブル設計
#cwt2016 Apache Kudu 構成とテーブル設計#cwt2016 Apache Kudu 構成とテーブル設計
#cwt2016 Apache Kudu 構成とテーブル設計
 
#cwt2016 Cloudera Managerを用いた Hadoop のトラブルシューティング
#cwt2016 Cloudera Managerを用いた Hadoop のトラブルシューティング #cwt2016 Cloudera Managerを用いた Hadoop のトラブルシューティング
#cwt2016 Cloudera Managerを用いた Hadoop のトラブルシューティング
 
Ibis: すごい pandas ⼤規模データ分析もらっくらく #summerDS
Ibis: すごい pandas ⼤規模データ分析もらっくらく #summerDSIbis: すごい pandas ⼤規模データ分析もらっくらく #summerDS
Ibis: すごい pandas ⼤規模データ分析もらっくらく #summerDS
 
クラウド上でHadoopを構築できる Cloudera Director 2.0 の紹介 #dogenzakalt
クラウド上でHadoopを構築できる Cloudera Director 2.0 の紹介 #dogenzakaltクラウド上でHadoopを構築できる Cloudera Director 2.0 の紹介 #dogenzakalt
クラウド上でHadoopを構築できる Cloudera Director 2.0 の紹介 #dogenzakalt
 
MapReduceを置き換えるSpark 〜HadoopとSparkの統合〜 #cwt2015
MapReduceを置き換えるSpark 〜HadoopとSparkの統合〜 #cwt2015MapReduceを置き換えるSpark 〜HadoopとSparkの統合〜 #cwt2015
MapReduceを置き換えるSpark 〜HadoopとSparkの統合〜 #cwt2015
 
PCIコンプライアンスに向けたビジネス指針〜MasterCardの事例〜 #cwt2015
PCIコンプライアンスに向けたビジネス指針〜MasterCardの事例〜 #cwt2015PCIコンプライアンスに向けたビジネス指針〜MasterCardの事例〜 #cwt2015
PCIコンプライアンスに向けたビジネス指針〜MasterCardの事例〜 #cwt2015
 
「新製品 Kudu 及び RecordServiceの概要」 #cwt2015
「新製品 Kudu 及び RecordServiceの概要」 #cwt2015「新製品 Kudu 及び RecordServiceの概要」 #cwt2015
「新製品 Kudu 及び RecordServiceの概要」 #cwt2015
 
基調講演: 「データエコシステムへの挑戦」 #cwt2015
基調講演: 「データエコシステムへの挑戦」 #cwt2015基調講演: 「データエコシステムへの挑戦」 #cwt2015
基調講演: 「データエコシステムへの挑戦」 #cwt2015
 
基調講演:「ビッグデータのセキュリティとガバナンス要件」 #cwt2015
基調講演:「ビッグデータのセキュリティとガバナンス要件」 #cwt2015基調講演:「ビッグデータのセキュリティとガバナンス要件」 #cwt2015
基調講演:「ビッグデータのセキュリティとガバナンス要件」 #cwt2015
 
基調講演: 「パーペイシブ分析を目指して」#cwt2015
基調講演: 「パーペイシブ分析を目指して」#cwt2015基調講演: 「パーペイシブ分析を目指して」#cwt2015
基調講演: 「パーペイシブ分析を目指して」#cwt2015
 

Recently uploaded

artificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptxartificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptx
GauravCar
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
VANDANAMOHANGOUDA
 
Design and optimization of ion propulsion drone
Design and optimization of ion propulsion droneDesign and optimization of ion propulsion drone
Design and optimization of ion propulsion drone
bjmsejournal
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
ecqow
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
LAXMAREDDY22
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
Data Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptxData Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptx
ramrag33
 
Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...
bijceesjournal
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
Divyanshu
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...
IJECEIAES
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 
Certificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi AhmedCertificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi Ahmed
Mahmoud Morsy
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
Nada Hikmah
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
ydzowc
 

Recently uploaded (20)

artificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptxartificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptx
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
 
Design and optimization of ion propulsion drone
Design and optimization of ion propulsion droneDesign and optimization of ion propulsion drone
Design and optimization of ion propulsion drone
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
Data Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptxData Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptx
 
Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 
Certificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi AhmedCertificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi Ahmed
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
 

How to go into production your machine learning models? #CWT2017

  • 1. 1© Cloudera, Inc. All rights reserved. 機械学習システムのデプロイパターン Aki Ariga | Field Data Scientist
  • 2. 2© Cloudera, Inc. All rights reserved. • (Twitter/Github @chezou) • Field Data Scientist @ Cloudera • • NLP/ / • Rails • •
  • 3. 3© Cloudera, Inc. All rights reserved.
  • 4. 4© Cloudera, Inc. All rights reserved. 4 Artificial Intelligence ( ) Machine Learning by Splintax CC BY-SA 3.0 https://commons.wikimedia.org/wiki/File:IF- THEN-ELSE-END_flowchart.png Deep Learning Good to read: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep- learning-ai/
  • 5. 5© Cloudera, Inc. All rights reserved. ● ○ e.g.) , ● ○ e.g.) ● ○ e.g.) ● ○ e.g.) ● ○ e.g.) Amazon, Netflix ● ○ e.g.) Alpha-Go, ● etc…
  • 6. 6© Cloudera, Inc. All rights reserved. Non-Spam Spam
  • 7. 7© Cloudera, Inc. All rights reserved. [0, 1, 0, 2.5, 0, -1, ...] [1, 0.5, 0.1, -2, 3, 2, ...] [1, 0, 1.0, 1.1, 0, 0, ...] Logistic Regression, SVM, Random Forest, NN... w1=1, w2=- 1, w3=0 ... )
  • 8. 8© Cloudera, Inc. All rights reserved. From data to exploration to action Data Engineering Data Science (Exploratory) Production (Operational) Data Models Business ValuePredictions
  • 9. 9© Cloudera, Inc. All rights reserved.
  • 10. 10© Cloudera, Inc. All rights reserved. Reports Dashboards Scoring
  • 11. 11© Cloudera, Inc. All rights reserved.
  • 12. 12© Cloudera, Inc. All rights reserved. 1. REST API 2. DB 3. 4.
  • 13. 13© Cloudera, Inc. All rights reserved. Web DB / API REST API User ID/ Item ID Microservices architecture: Web ML REST (or gRPC) API ML ML
  • 14. 14© Cloudera, Inc. All rights reserved. DB Web API REST API User ID/ Item ID DB / ML
  • 15. 15© Cloudera, Inc. All rights reserved. REST API Web DB / API REST API User ID/ Item ID ML
  • 16. 16© Cloudera, Inc. All rights reserved.
  • 17. 17© Cloudera, Inc. All rights reserved. & / & PMML export Model building layer Predicting & serving layer CDSW HDFS
  • 18. 18© Cloudera, Inc. All rights reserved. & / & Model building layerPredicting & serving layer HDFS Docker image CDSW
  • 19. 19© Cloudera, Inc. All rights reserved. Demo: https://github.com/chezou/cdsw-serve-docker
  • 20. 20© Cloudera, Inc. All rights reserved. CDSW Amazon ECS Application Load Balancer Amazon S3 Docker HUBDocker image Source code Trained model Prediction request
  • 21. 21© Cloudera, Inc. All rights reserved. Cloudera Data Science Workbench(CDSW) エンタープライズのためのセルフサービスデータサイエンス基盤 - GPU - fork - Docker - Spark -
  • 22. 22© Cloudera, Inc. All rights reserved. ● Pros ○ Web ML ■ ■ ■ ○ ○ ○ A/B ○ ● Cons ○ API ○
  • 23. 23© Cloudera, Inc. All rights reserved. Web DB ML / DB : Web ML DB
  • 24. 24© Cloudera, Inc. All rights reserved. DB / Web DB ML /
  • 25. 25© Cloudera, Inc. All rights reserved. DB / DB Web / DB ML
  • 26. 26© Cloudera, Inc. All rights reserved. DB Web ML / DB
  • 27. 27© Cloudera, Inc. All rights reserved. Kudu/HBase / & Model building & predicting layerServing layer HDFS CDSW
  • 28. 28© Cloudera, Inc. All rights reserved. ● Pros ○ Web ML ■ ■ ■ ○ ○ : ○ ○ ● Cons ○ Web ○
  • 29. 29© Cloudera, Inc. All rights reserved. Web ML ( : Spark Streaming) & - - - Kafka MQ (:Kafka)
  • 30. 30© Cloudera, Inc. All rights reserved.
  • 31. 31© Cloudera, Inc. All rights reserved. ● Pros ○ ○ ○ ○ ● Cons ○ ■
  • 32. 32© Cloudera, Inc. All rights reserved. DB ML / / export/ DB &
  • 33. 33© Cloudera, Inc. All rights reserved. & / & /export Model building layer Predicting & serving layer HDFS CDSW
  • 34. 34© Cloudera, Inc. All rights reserved.
  • 35. 35© Cloudera, Inc. All rights reserved. ● ○ CDSW Job ● ○ NA ( ) ● ○ 1 ■ PMML export OpenScoring API ■ API Docker ■ API ○ 2 ■ CDSW HBase/Kudu/RDB ○ 3 ■ ○ 4 ■ TensorFlow export/CoreML
  • 36. 36© Cloudera, Inc. All rights reserved. Thank you Aki Ariga @chezou ariga@cloudera.com