The document discusses heteroscedasticity, which occurs when the variance of the error term is not constant. It defines heteroscedasticity and provides potential causes, such as errors increasing with an independent variable or model misspecification. Consequences are that OLS estimates are no longer BLUE and standard errors are biased. Several tests for detecting heteroscedasticity are outlined, including Park, Glejser, Spearman rank correlation, and Goldfeld-Quandt tests. The Goldfeld-Quandt test involves dividing data into groups and comparing regression sum of squares to test if error variance differs between groups.