z
FORMAL LOGIC
Discrete Structures I
FOR-IAN V. SANDOVAL
z
Lesson 4
TAUTOLOGY, CONTRADICTION
AND CONTINGENCY
Source: Google Images
z
LEARNING OBJECTIVES
❑ Distinguish classes of compound statement
z
TAUTOLOGY
❑ a compound statement that is true for all possible
combination of the truth values of the propositional
variables also called logically true.
❑ i.e. (~p ^ q ) → q
p q ~p ~p ^ q (~p ^ q ) → q
T T F F T
T F F F T
F T T T T
F F T F T
z
CONTRADICTION
❑ a compound statement that is false for all possible
combination of the truth values of the propositional
variables also called logically false or absurdity.
❑ i.e. (~ p v q ) ⊕ (p → q )
p q ~p ~ p v q p → q (~ p v q ) ⊕ (p → q )
T T F T T F
T F F F F F
F T T T T F
F F T T T F
z
CONTINGENCY
❑ a compound statement that can be either true of false,
depending on the truth values of the propositional variables
are neither a tautology nor a contradiction. .
❑ i.e. (p → q ) ^ (p → ~q )
p q p → q ~q p → ~q (p → q ) ^ (p → ~q )
T T T F F F
T F F T T F
F T T F T T
F F T T T T
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
❑ Enrichment Exercise
Construct the truth table of the following and
determine whether the compound statement is a tautology,
contradiction and contingency.
1. p ⊕ (~p ↔ q)
2. [r ^ (p →q)] →q
3. p → (q → r )
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
1. p ⊕ (~p ↔ q)
p q
T T
T F
F T
F F
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
1. p ⊕ (~p ↔ q)
p q ~p
T T F
T F F
F T T
F F T
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
1. p ⊕ (~p ↔ q)
p q ~p (~p ↔ q)
T T F F
T F F T
F T T T
F F T F
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
1. p ⊕ (~p ↔ q)
p q ~p (~p ↔ q) p ⊕ (~p ↔ q)
T T F F T
T F F T F
F T T T T
F F T F F
Therefore, p ⊕ (~p ↔ q) is contingency.
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
2. [r ^ (p →q)] →q
p q r
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
2. [r ^ (p →q)] →q
p q r p →q
T T T T
T T F T
T F T F
T F F F
F T T T
F T F T
F F T T
F F F T
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
2. [r ^ (p →q)] →q
p q r p →q r ^ (p →q)
T T T T T
T T F T F
T F T F F
T F F F F
F T T T T
F T F T F
F F T T T
F F F T F
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
2. [r ^ (p →q)] →q
p q r p →q r ^ (p →q) [r ^ (p →q)] →q
T T T T T T
T T F T F T
T F T F F T
T F F F F T
F T T T T T
F T F T F T
F F T T T F
F F F T F T
Therefore, [r ^ (p →q)] →q is contingency.
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
3. p → (q → r )
p q r
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
3. p → (q → r )
p q r q → r
T T T T
T T F F
T F T T
T F F T
F T T T
F T F F
F F T T
F F F T
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
3. p → (q → r )
p q r q → r p → (q → r )
T T T T T
T T F F F
T F T T T
T F F T T
F T T T T
F T F F T
F F T T T
F F F T T
Therefore, [p → (q → r ) is contingency.
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
4. [p ^ (p →q)] →q
p q r
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
4. [p ^ (p →q)] →q
p q r p →q
T T T T
T T F T
T F T F
T F F F
F T T T
F T F T
F F T T
F F F T
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
4. [p ^ (p →q)] →q
p q r p →q p ^ (p →q)
T T T T T
T T F T T
T F T F F
T F F F F
F T T T F
F T F T F
F F T T F
F F F T f
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
4. [p ^ (p →q)] →q
p q r p →q p ^ (p →q) [p^ (p →q)] →q
T T T T T T
T T F T T T
T F T F F T
T F F F F T
F T T T F T
F T F T F T
F F T T F T
F F F T f T
Therefore, [p ^ (p →q)] →q is tautology.
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
5. p → ( p ↔ r )
p q r
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
5. p → ( p ↔ r )
p q r p ↔ r
T T T T
T T F F
T F T T
T F F F
F T T F
F T F T
F F T F
F F F T
z
TAUTOLOGY, CONTRADICTION & CONTINGENCY
5. p → ( p ↔ r )
p q r p ↔ r p → (p ↔ r )
T T T T T
T T F F F
T F T T T
T F F F F
F T T F T
F T F T T
F F T F T
F F F T T
Therefore, p → ( p ↔ r ) is contingency.
z
• Levin, O. (2019). Discrete Mathematics: An Open Introduction 3rd Edition. Colorado: School of Mathematics Science
University of Colorado.
• Aslam, A. (2016). Proposition in Discrete Mathematics retrieved from https://www.slideshare.net/AdilAslam4/chapter-1-
propositions-in-discrete-mathematics
• Operator Precedence retrieved from http://intrologic.stanford.edu/glossary/operator_precedence.html
REFERENCES

Formal Logic - Lesson 4 - Tautology, Contradiction and Contingency

  • 1.
  • 2.
    z Lesson 4 TAUTOLOGY, CONTRADICTION ANDCONTINGENCY Source: Google Images
  • 3.
    z LEARNING OBJECTIVES ❑ Distinguishclasses of compound statement
  • 4.
    z TAUTOLOGY ❑ a compoundstatement that is true for all possible combination of the truth values of the propositional variables also called logically true. ❑ i.e. (~p ^ q ) → q p q ~p ~p ^ q (~p ^ q ) → q T T F F T T F F F T F T T T T F F T F T
  • 5.
    z CONTRADICTION ❑ a compoundstatement that is false for all possible combination of the truth values of the propositional variables also called logically false or absurdity. ❑ i.e. (~ p v q ) ⊕ (p → q ) p q ~p ~ p v q p → q (~ p v q ) ⊕ (p → q ) T T F T T F T F F F F F F T T T T F F F T T T F
  • 6.
    z CONTINGENCY ❑ a compoundstatement that can be either true of false, depending on the truth values of the propositional variables are neither a tautology nor a contradiction. . ❑ i.e. (p → q ) ^ (p → ~q ) p q p → q ~q p → ~q (p → q ) ^ (p → ~q ) T T T F F F T F F T T F F T T F T T F F T T T T
  • 7.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY ❑ Enrichment Exercise Construct the truth table of the following and determine whether the compound statement is a tautology, contradiction and contingency. 1. p ⊕ (~p ↔ q) 2. [r ^ (p →q)] →q 3. p → (q → r )
  • 8.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 1. p ⊕ (~p ↔ q) p q T T T F F T F F
  • 9.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 1. p ⊕ (~p ↔ q) p q ~p T T F T F F F T T F F T
  • 10.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 1. p ⊕ (~p ↔ q) p q ~p (~p ↔ q) T T F F T F F T F T T T F F T F
  • 11.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 1. p ⊕ (~p ↔ q) p q ~p (~p ↔ q) p ⊕ (~p ↔ q) T T F F T T F F T F F T T T T F F T F F Therefore, p ⊕ (~p ↔ q) is contingency.
  • 12.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 2. [r ^ (p →q)] →q p q r T T T T T F T F T T F F F T T F T F F F T F F F
  • 13.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 2. [r ^ (p →q)] →q p q r p →q T T T T T T F T T F T F T F F F F T T T F T F T F F T T F F F T
  • 14.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 2. [r ^ (p →q)] →q p q r p →q r ^ (p →q) T T T T T T T F T F T F T F F T F F F F F T T T T F T F T F F F T T T F F F T F
  • 15.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 2. [r ^ (p →q)] →q p q r p →q r ^ (p →q) [r ^ (p →q)] →q T T T T T T T T F T F T T F T F F T T F F F F T F T T T T T F T F T F T F F T T T F F F F T F T Therefore, [r ^ (p →q)] →q is contingency.
  • 16.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 3. p → (q → r ) p q r T T T T T F T F T T F F F T T F T F F F T F F F
  • 17.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 3. p → (q → r ) p q r q → r T T T T T T F F T F T T T F F T F T T T F T F F F F T T F F F T
  • 18.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 3. p → (q → r ) p q r q → r p → (q → r ) T T T T T T T F F F T F T T T T F F T T F T T T T F T F F T F F T T T F F F T T Therefore, [p → (q → r ) is contingency.
  • 19.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 4. [p ^ (p →q)] →q p q r T T T T T F T F T T F F F T T F T F F F T F F F
  • 20.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 4. [p ^ (p →q)] →q p q r p →q T T T T T T F T T F T F T F F F F T T T F T F T F F T T F F F T
  • 21.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 4. [p ^ (p →q)] →q p q r p →q p ^ (p →q) T T T T T T T F T T T F T F F T F F F F F T T T F F T F T F F F T T F F F F T f
  • 22.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 4. [p ^ (p →q)] →q p q r p →q p ^ (p →q) [p^ (p →q)] →q T T T T T T T T F T T T T F T F F T T F F F F T F T T T F T F T F T F T F F T T F T F F F T f T Therefore, [p ^ (p →q)] →q is tautology.
  • 23.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 5. p → ( p ↔ r ) p q r T T T T T F T F T T F F F T T F T F F F T F F F
  • 24.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 5. p → ( p ↔ r ) p q r p ↔ r T T T T T T F F T F T T T F F F F T T F F T F T F F T F F F F T
  • 25.
    z TAUTOLOGY, CONTRADICTION &CONTINGENCY 5. p → ( p ↔ r ) p q r p ↔ r p → (p ↔ r ) T T T T T T T F F F T F T T T T F F F F F T T F T F T F T T F F T F T F F F T T Therefore, p → ( p ↔ r ) is contingency.
  • 26.
    z • Levin, O.(2019). Discrete Mathematics: An Open Introduction 3rd Edition. Colorado: School of Mathematics Science University of Colorado. • Aslam, A. (2016). Proposition in Discrete Mathematics retrieved from https://www.slideshare.net/AdilAslam4/chapter-1- propositions-in-discrete-mathematics • Operator Precedence retrieved from http://intrologic.stanford.edu/glossary/operator_precedence.html REFERENCES