PREPOSITIONal

   LOGIC
A statement is a declaratory sentence which is true or
false but not both. In other words , a statement is a
declarative sentence which has a definate truth table.
Logical connectives or sentence
connectives
    These are the words or symbols used to combine
 two sentence to form a compound statement.


        logic        Name           rank
           ~          Negation        1

           ^        Conjunction       2

           V         Disjunction      3

          =>         Conditional      4

                   Biconditional     5
A   B   ^   V   ~A   =>      NOR   NAND   XOR   EX-
                                                 NOR
T   T   T   T   F    T    T    F     F      F     T

T   F   F   T   F    F    F    F     T      T     F

F   T   F   T   T    T    F    F     T      T     F

F   F   F   F   T    T    T    T     T      F     T
TAUTOLOGY
i. A TAUTOLOGY IS A PREPOSITION WHICH IS
    TRUE FOR ALL TRUTH VALUES OF ITS SUB-
    PREPOSITIONS OR COMPONENTS.
ii. A TAUTOLOGY IS ALSO CALLED LOGICALLY
    VALID OR LOGICALLY TRUE.
iii. ALL ENTRIES IN THE COLUMN OF
    TAUTOLOGY ARE TRUE.
For example:
          p^q=>q


P   q     p^q     q    p^q=>
                         q
T   T      T      T      T
T   F      F      F      T
F   T      F      T      T
F   F      F      F      T
Contradiction
 CONTRADICTION IS A PREPOSITION WHICH IS
 ALWAYS FALSE FOR ALL TRUTH VALUES OF ITS
 SUB-PREPOSITIONS OR COMPONENTS.

 A CONTRADICTION IS ALSO CALLED LOGICALLY
 INVALID OR LOGICALLY FALSE

 ALL ENTRIES IN THE COLUMN OF
 CONTRADICTION ARE FALSE.
FOR EXAMPLE
        (P v Q)^(~P)^(~Q)

P   Q     PVQ   ~P   ~Q   (P v Q)^(~P)^(~Q)

T   T      T    F    F           F
T   F      T    F    T           F
F   T      T    T    F           F
F   F      F    T    T           F
Contingency
 It is a preposition which is either true or
false depending on the truth value of its
         components or preposition..
FOR EXAMPLE
      ~p ^ ~q

p   q    ~p   ~q   ~p ^ ~q
T   T    F    F       F
T   F    F    T       F
F   T    T    F       F
F   F    T    T       T
Logical equivalence
Two statements are called logically equivalent if the truth
values of both the statements are always identical..

 For example:
 If we take two statements p=>q and ~q =>~p , then there
truth table values must be equal to satisfy the condition of
logical equivalence..
p     q     ~p    ~q    p=>q   ~q=>~p
  T     T      F     F     T       T
  T     F      F     T     F       F
  F     T      T     F     T       T
  F     F      T     T     T       T




 SINCE,THE TRUTH TABLE VALUES OF BOTH
   STATEMENTS IS SAME. THUS, THE TWO
STATEMENTS ARE LOGICALLY EQUIVALENT..
LOGICAL IMPLICATIONS

 DIRECT IMPLICATION                (p=>q)
 CONVERSE IMPLICATION              (q=>p)
 INVERSE OR OPPOSITE IMPLICATION   (~p=>~q)
 CONTRAPOSITIVE IMPLICATION        (~q=>~p)
Algebra of
     preposition
1)   Commutative law
2)   Associative law
3)   Distributive law
4)   De Morgan’s law
5)   Idempotent law
6)   Identity law
Idempotent law
          1.       pVpp
          2.       p^pp




p   p      pvp       p v pp   p^p   p^ pp

T   T          T        T      T       T

F   F          F        F      F       F
Commutative law
               • pvq=qvp
               • p^q=q^p

p   q     pvq     qvp   p^q   q^p
T   T      T       T    T     T
T   F      T       T    F     F
F   T      T       T    F     F
F   F      F       F    F     F
Associative law
• (p v q) v r  p v (q v r)
• (p ^ q) ^ r  p ^ (q ^ r)

   p    q    r   pvq   ( p v q) v r   qVr   p v (q v r)
   T    T    T    T         T          T        T
   T    T    F    T         T          T        T
   T    F    T    T         T          T        T
   T    F    F    T         T          F        T
   F    T    T    T         T          T        T
   F    T    F    T         T          T        T
   F    F    T    F         T          T        T
   F    F    F    F         F          F        F
Distributive law
• p ^ (q v r)  (p ^ q) v (p ^ r)
• p ^ (q v r)  (p ^ q) v (p ^ r)
 p    q     r   qvr   p^(q v r)   p^q   p^r (p^q)v(p^r)
  T   T     T    T       T          T   T        T
  T   T     F    T       T          T   F        T
  T   F     T    T       T          F   T        T
  T   F     F    F       F          F   F        F
  F   T     T    T       F          F   F        F
  F   T     F    T       F          F   F        F
  F   F     T    T       F          F   F        F
  F   F     F    F       F          F   F        F
De Morgan’s law
• ~(p v q)  ~p ^ ~q
• ~(p ^ q)  ~p v ~q

     p    q   (p v q)   ~(p v q)   ~p   ~q   ~p ^ ~q
     T    T      T         F       F    F       F

     T    F      T         F       F    T       F

     F    T      T         F       T    F       F

     F    F      F         T       T    T       T
Identity law
1) p ^ T  p       2) T ^ p  p
3) p v F  p       4) F v p  p

P     T    P^T        P     F     P v F
T     T        T      T     F       T

F     T        F      F     F       F
TRANSITIVE RULE

            pq
            qr
      --------------
            pr

Rule of detachment
           P
            Pq
       ----------
           q
EXAMPLE
   TEST THE VALIDITY OF THE FOLLOWING
   ARGUMENT….
     IF A MAN IS A BACHELOR,HE IS WORRIED(A PREMISE)
       IF A MAN IS WORRIED,HE DIES YOUNG(A PREMISE)
-----------------------------------------------------------------------------------------------------
                      BACHELORS DIE YOUNG(CONCLUSION)

                                      P: A man is a bachelor
                                      Q:he is worried
                                      R: he dies young
The given argument in symbolic form can be
written as:
             pq   (a premise)
             qr   (a premise)
          --------------------
            pr      (conclusion)

        The given argument is true by law of
syllogism(law of transitive)…
p   q   r   pq   qr   pr   pq ^ qr   (pq) ^ (qr)
                                             => pr

T   T   T   T     T     T        T              T

T   T   F   T     F     F        F              T

T   F   T   F     T     T        F              T

T   F   F   F     T     F        F              T

F   T   T   T     T     T        T              T

F   T   F   T     F     T        F              T

F   F   T   T     T     T        T              T

F   F   F   T     T     T        T              T
PRESENTATION BY :
  ASHWINI VIPAT

Propositional logic

  • 1.
  • 2.
    A statement isa declaratory sentence which is true or false but not both. In other words , a statement is a declarative sentence which has a definate truth table.
  • 3.
    Logical connectives orsentence connectives These are the words or symbols used to combine two sentence to form a compound statement. logic Name rank ~ Negation 1 ^ Conjunction 2 V Disjunction 3 => Conditional 4  Biconditional 5
  • 4.
    A B ^ V ~A =>  NOR NAND XOR EX- NOR T T T T F T T F F F T T F F T F F F F T T F F T F T T T F F T T F F F F F T T T T T F T
  • 5.
    TAUTOLOGY i. A TAUTOLOGYIS A PREPOSITION WHICH IS TRUE FOR ALL TRUTH VALUES OF ITS SUB- PREPOSITIONS OR COMPONENTS. ii. A TAUTOLOGY IS ALSO CALLED LOGICALLY VALID OR LOGICALLY TRUE. iii. ALL ENTRIES IN THE COLUMN OF TAUTOLOGY ARE TRUE.
  • 6.
    For example: p^q=>q P q p^q q p^q=> q T T T T T T F F F T F T F T T F F F F T
  • 7.
    Contradiction  CONTRADICTION ISA PREPOSITION WHICH IS ALWAYS FALSE FOR ALL TRUTH VALUES OF ITS SUB-PREPOSITIONS OR COMPONENTS.  A CONTRADICTION IS ALSO CALLED LOGICALLY INVALID OR LOGICALLY FALSE  ALL ENTRIES IN THE COLUMN OF CONTRADICTION ARE FALSE.
  • 8.
    FOR EXAMPLE (P v Q)^(~P)^(~Q) P Q PVQ ~P ~Q (P v Q)^(~P)^(~Q) T T T F F F T F T F T F F T T T F F F F F T T F
  • 9.
    Contingency It isa preposition which is either true or false depending on the truth value of its components or preposition..
  • 10.
    FOR EXAMPLE ~p ^ ~q p q ~p ~q ~p ^ ~q T T F F F T F F T F F T T F F F F T T T
  • 11.
    Logical equivalence Two statementsare called logically equivalent if the truth values of both the statements are always identical.. For example: If we take two statements p=>q and ~q =>~p , then there truth table values must be equal to satisfy the condition of logical equivalence..
  • 12.
    p q ~p ~q p=>q ~q=>~p T T F F T T T F F T F F F T T F T T F F T T T T SINCE,THE TRUTH TABLE VALUES OF BOTH STATEMENTS IS SAME. THUS, THE TWO STATEMENTS ARE LOGICALLY EQUIVALENT..
  • 13.
    LOGICAL IMPLICATIONS  DIRECTIMPLICATION (p=>q)  CONVERSE IMPLICATION (q=>p)  INVERSE OR OPPOSITE IMPLICATION (~p=>~q)  CONTRAPOSITIVE IMPLICATION (~q=>~p)
  • 14.
    Algebra of preposition 1) Commutative law 2) Associative law 3) Distributive law 4) De Morgan’s law 5) Idempotent law 6) Identity law
  • 15.
    Idempotent law 1. pVpp 2. p^pp p p pvp p v pp p^p p^ pp T T T T T T F F F F F F
  • 16.
    Commutative law • pvq=qvp • p^q=q^p p q pvq qvp p^q q^p T T T T T T T F T T F F F T T T F F F F F F F F
  • 17.
    Associative law • (pv q) v r  p v (q v r) • (p ^ q) ^ r  p ^ (q ^ r) p q r pvq ( p v q) v r qVr p v (q v r) T T T T T T T T T F T T T T T F T T T T T T F F T T F T F T T T T T T F T F T T T T F F T F T T T F F F F F F F
  • 18.
    Distributive law • p^ (q v r)  (p ^ q) v (p ^ r) • p ^ (q v r)  (p ^ q) v (p ^ r) p q r qvr p^(q v r) p^q p^r (p^q)v(p^r) T T T T T T T T T T F T T T F T T F T T T F T T T F F F F F F F F T T T F F F F F T F T F F F F F F T T F F F F F F F F F F F F
  • 19.
    De Morgan’s law •~(p v q)  ~p ^ ~q • ~(p ^ q)  ~p v ~q p q (p v q) ~(p v q) ~p ~q ~p ^ ~q T T T F F F F T F T F F T F F T T F T F F F F F T T T T
  • 20.
    Identity law 1) p^ T  p 2) T ^ p  p 3) p v F  p 4) F v p  p P T P^T P F P v F T T T T F T F T F F F F
  • 21.
    TRANSITIVE RULE pq qr -------------- pr Rule of detachment P Pq ---------- q
  • 22.
    EXAMPLE TEST THE VALIDITY OF THE FOLLOWING ARGUMENT…. IF A MAN IS A BACHELOR,HE IS WORRIED(A PREMISE) IF A MAN IS WORRIED,HE DIES YOUNG(A PREMISE) ----------------------------------------------------------------------------------------------------- BACHELORS DIE YOUNG(CONCLUSION) P: A man is a bachelor Q:he is worried R: he dies young
  • 23.
    The given argumentin symbolic form can be written as: pq (a premise) qr (a premise) -------------------- pr (conclusion) The given argument is true by law of syllogism(law of transitive)…
  • 24.
    p q r pq qr pr pq ^ qr (pq) ^ (qr) => pr T T T T T T T T T T F T F F F T T F T F T T F T T F F F T F F T F T T T T T T T F T F T F T F T F F T T T T T T F F F T T T T T
  • 25.
    PRESENTATION BY : ASHWINI VIPAT