SlideShare a Scribd company logo
FORENSIC CIVIL ENGINEERING SEMINAR
ForCES ‘18
29th & 30th Oct. 2018
utm kuala lumpur
MAY 2017
THE ASSESSEMENT OF PILE GROUP
INTEGRITY DUE TO PILE
ECCENTRICITIES & FAILURES
ir azhar ahmad school of civil engineering
Email: azharahmad@utm.my
MAY 2017
The following course notes are specifically for
use in ‘Assessment of Pile Group Integrity due
to Pile Eccentricities & Failures’ only. Any
reproduction or public display of the contents
beyond this short course is prohibited without
prior consent of the author.
ABSTRACT
ABSTRACT
 The mode of driving precast reinforced concrete piles on site
is without doubt among the most ‘error prone’ trades of a
construction process. The short comings of driving pre
designated piles at pin point accuracy at exactly the correct
position on the ground has given rise to the caption of ‘pile
eccentricity’ of nearly all individual piles within a pile group.
 This then raises questions of integrity or how safe and
reliable are pile caps that has been designed earlier with zero
pile eccentricities. Questions of how much an eccentricity
limit can be allowed for each pile or rather pile group
arrangements such that previous pile cap designs are still safe
and applicable has to be addressed.
5
 Thus one of the aims of this study is to evaluate the
maximum allowable eccentricity of several common pile
group arrangements. Results of this study indicates that the
norm of adopting a maximum allowable eccentricity value of
75 mm for each individual pile irrespective of pile size, pile
working load, pile spacing & column loads is quite misleading
and may result in an unsafe pile group performance!
6
ABSTRACT
Rather, results from this study suggests that the critical factor is
not the eccentricity of individual piles but the overall net pile
group eccentricity. This causes eccentric moments to act in the
pile group which in turn governs the redistributed load to each
individual pile within the pile group. This redistributed loads are
then compared to the pile safe working load to establish a
‘Pass-Fail’ criteria.
< Pile Safe Working Load
Fp: Redistributed Loads to each individual pile kN
N : Net Column Service Load kN (incl self weight of pile cap)
n : Pile Safe Working Load kN
7
ABSTRACT
8
Pile Group Centroid after ecc
ABSTRACT
X Axis
YAxis
Mx
My
+Ymm
+ X mm
 Moreover this study has shown that
i. the ratio of net column service load over pile safe working
load (N/n Ratio)
ii. the centre to centre pile spacing (K Factor)
both have significant impact on the net pile group
eccentricity limits.
9
ABSTRACT
ACKNOWLEDGEMENT
Tasnim Arif
Heart felt gratitude and appreciation to all my
‘Undergraduate Students’ that have toiled and given
their upmost effort in completing this research
work….may Allah bestow His blessings onto each
and every one of you……ameenn
ACKNOWLEDGEMENT
N.Syafa Izzatie
Aziz KaplanAbdul Aziz Jeddawy
ACKNOWLEDGEMENT
Nadzirah Fozi Hafizah Hambali
Wan Rasydan
Norsharizal Sahlan Irmawaty Ahmad Mohd Rizal Deris
ACKNOWLEDGEMENT
ACKNOWLEDGEMENT
Nor Syahida Nur Shamsul Bariah Azmazanzan Arshad Sharifudin
ACKNOWLEDGEMENT
Sufi Syahirah Haifa Fakhira Fardah Manirah Siti Zahri’iyah Nor Ainsha
PART 1: EXECUTIVE SUMMARY
17
EXECUTIVE SUMMARY
1.0 The development of a Net Pile Group
Eccentricity Limit Chart. These charts can
be referred to evaluate the safety and
reliability of pile caps that has been designed
earlier by ignoring pile eccentricities against
actual pile eccentricities recorded on site.
18
0, 268
268, 0
0, 268
-268, 0
0, -268
268, 0
0, -268
-268, 0
-300
-200
-100
0
100
200
300
-300 -200 -100 0 100 200 300
4 PILE GROUP : NET PILE GROUP
ECCENTRICITY LIMIT CHART
N/n=3.50
Eccentricity(+Y
mm)
Eccentricity (-X mm)
Eccentricity(-Y
mm)
Eccentricity (+X mm)
EXECUTIVE SUMMARY
19
EXECUTIVE SUMMARY
0, 420
420, 0
0, 420
-420, 0
0, -420
420, 0
0, -420
-420, 0
0, 268
268, 0
0, 268
-268, 0
0, -268
268, 0
0, -268
-268, 0
0, 136
136, 0
0, 136
-136, 0
0, -136
136, 0
0, -136
-136, 0
-500
-400
-300
-200
-100
0
100
200
300
400
500
-500 -400 -300 -200 -100 0 100 200 300 400 500
4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT CHART
(250mm Square Pile @ 175 kN Working Load)
N/n=3.25 N/n=3.50 N/n=3.75
Eccentricity(+Ymm)
Eccentricity (-X mm)
Eccentricity(-Ymm)
Eccentricity (+X mm)
20
2.0 The development of an Optimum Add-On
Pile Location Chart. Where eccentricities
beyond ‘allowable’ limits occur, this will
render pile groups and the subsequent pile
caps as ‘unsafe’ to sustain column loads due
to eccentric moments which causes loads
distributed to piles to be greater than the pile
working load capacities! The most practical
solution usually adopted on site to rectify this
problem is by installing additional or ‘add-on’
pile/s.
EXECUTIVE SUMMARY
21
-1,000
-800
-600
-400
-200
0
200
400
600
800
1,000
-250 -200 -150 -100 -50 0 50 100 150 200 250
4 PILE GROUP CENTROID PRIOR TO 'ADD-ON' PILE
4 PILE GROUP: OPTIMUM POSITION OF
'ADD-ON' SINGLE PILE
250 mm Square RC Pile
ADD-ONPILECOORDINATE
EXECUTIVE SUMMARY
22
3.0 The development of an Optimum
Replacement Pile Location Chart. Where
pile failure occurs during driving, this will
render pile groups and the subsequent pile
caps as ‘unsafe’ to sustain column loads due
to eccentric moments which causes loads
distributed to piles to be greater than the pile
working load capacities! The most practical
solution usually adopted on site to rectify this
problem is by installing replacement pile/s.
EXECUTIVE SUMMARY
23
-375
-450
-525
-600
-675
-300
-225
-150
-75
0
375
300
225
150
75
450
525
600
675
750
-800
-600
-400
-200
0
200
400
600
800
1000
-500 -400 -300 -200 -100 0 100 200 300 400
4 PILE GROUP: OPTIMUM NET COORDINATES OF
REPLACEMENT PILE RP1 & RP2 (PILE FAILURE @ P#1)
OPTIMUM X @P1 FAIL OPTIMUM Y @P1 FAIL
REPLACEMENTPILECOORDINATE
NET ECCENTRICITY OF PILE GROUP (BEFORE PILE REPLACEMENT)
EXECUTIVE SUMMARY
PART 2: PILE ECCENTRICITY
CHECK
25
+Ymm
+ X mm
PILE ECCENTRICITY CHECK
Pile P#1 Y = 33 mm
Net X
ecc
Net Y
ecc
X = -28 mm(mm) (mm)
-41 140
Pile P#2 Y = 77 mm
X = 101 mm
Pile P#3 Y = 83 mm
X = -97 mm
Pile P#4 Y = -53 mm
X = -17 mm
26
Pile Details:
Pile Size : 250 x 250 mm RC Pile
Pile Spacing : 3 x Pile Dim. (750 mm)
Pile Working Load : 175 kN
N = Total Column Service Load (Incl. self wt. of Pile
Cap 610 Kn)
n = Single Pile Working Load (175 kN)
N/n Ratio = 3.5
PILE ECCENTRICITY CHECK
27
Position of pile without eccentricity
pile 1 pile 2 pile 3 pile 4
x coor -375 375 -375 375
y coor 375 375 -375 -375
Position of pile with eccentricity
pile 1 pile 2 pile 3 pile 4
x coor -403 476 -472 358
y coor 408 452 -292 -428
Pile Group Centroid before pile ecc
A Y AY A X AX
P1 62500.0 375 23437500 62500.0 -375 -23437500
P2 62500.0 375 23437500 62500.0 375 23437500
P3 62500.0 -375 -23437500 62500.0 -375 -23437500
P4 62500.0 -375 -23437500 62500.0 375 23437500
Total 250000 0 250000 0
Centroid Y = 0.00 mm Centroid X = 0.00 mm
Pile Group Centroid after pile ecc
A Y AY A X AX
P1 62500 408 25500000 62500 -403 -25187500
P2 62500 452 28250000 62500 476 29750000
P3 62500 -292 -18250000 62500 -472 -29500000
P4 62500 -428 -26750000 62500 358 22375000
Total 250000 8750000 250000 -2562500
Centroid Y = 35.00 mm Centroid X = -10.25 mm
PILE ECCENTRICITY CHECK
28
Pile Group Centroid after ecc
(-10.25 mm,+35 mm)
X Axis
YAxis
Mx=21.34kNm
My=6.25kNm
+Ymm
+ X mm
PILE ECCENTRICITY CHECK
(0 mm,0 mm)
29
Iy = 0.74
Ix = 0.63
Pile Group Centroid After Pile Failure (Before Pile Add-On)
ex = -10.25 mm
ey = 35.00 mm
moment due to eccentricity
My = 6.25 kNm
Mx = 21.34 kNm
PILE ECCENTRICITY CHECK
30
Checking for pile
capacity
Fpile 1 =
152.41 - 3.32 - 12.55 = 136.54 KN < 175.0 OK!
Fpile 2 =
152.41 - 4.11 + 14.03 = 142.49 KN < 175.0 OK!
Fpile 3 =
152.41 + 3.90 - 11.00 = 159.51 KN < 175.0 OK!
Fpile 4 =
152.41 + 3.11 + 15.57 = 171.10 KN < 175.0 OK!
609.64 609.64
PILE ECCENTRICITY CHECK
31
Summary:
Note that even though the eccentricity of individual piles P#2 &
P#3 exceeds the norm allowable eccentricity of 75 mm in both
directions, the load distributed to all piles < pile working load
capacity 175 kN !!!
Pile P#1 Y = 33 mm
Net X
ecc
Net Y
ecc
X = -28 mm (mm) (mm)
-41 140
Pile P#2 Y = 77 mm
X = 101 mm
Pile P#3 Y = 83 mm
X = -97 mm
Pile P#4 Y = -53 mm
X = -17 mm
Thus
The Pass/Fail criteria or the integrity
of the pile group should rather be
based on the comparison between
redistributed pile loads (due to net
pile group ecc.) and pile working
loads
PILE ECCENTRICITY CHECK
32
Alternatively
A series of ‘Net Pile Group Eccentricity Limit Charts’
can be generated as a quick & ready reference on site.
It can be readily utilized to check and ascertain the
integrity of individual pile groups based on the
summation or net eccentricity of all piles
PILE ECCENTRICITY CHECK
33
(-41,+140)`
0, 208
208, 0
0, 208
-208, 0
0, -208
208, 0
0, -208
-208, 0
-250
-200
-150
-100
-50
0
50
100
150
200
250
-250 -200 -150 -100 -50 0 50 100 150 200 250
4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT
CHART (250mm Square Pile @ 175 kN Working Load)
N/n=3.50
Eccentricity(+Ymm)
Eccentricity (-X mm)
Eccentricity(-Ymm)
Eccentricity (+X mm)
Eccentricity(+Ymm)
Eccentricity (-X mm)
Eccentricity(-Ymm)
Eccentricity (+X mm)
Eccentricity(+Ymm)
Eccentricity (-X mm)
Eccentricity(-Ymm)
Eccentricity (+X mm)
PILE ECCENTRICITY CHECK
Net Pile Group Ecc
(-41 mm,+140 mm)
34
If on the other hand the value of Nsls is increased from 610 kN to 656 kN
For N/n = 656 kN / 175 kN = 3.75
From chart, the net pile group ecc. point (-41mm, +140 mm) lies outside the
safe zone for N/n = 3.75……….. KO !!
Therefore need additional pile to reduce load on all piles.
PILE ECCENTRICITY CHECK
35
(-41,+140)`
PILE ECCENTRICITY CHECK
0, 100
100, 0
0, 100
-100, 0
0, -100
100, 0
0, -100
-100, 0
-150
-100
-50
0
50
100
150
-150 -100 -50 0 50 100 150
4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT
CHART (250mm Square Pile @ 175 kN Working Load)
N/n=3.75
Eccentricity(+Y
mm)
Eccentricity (-X mm)
Eccentricity(-Y
mm)
Eccentricity (+X mm)
Eccentricity(+Y
mm)
Eccentricity (-X mm)
Eccentricity(-Y
mm)
Eccentricity (+X mm)
Eccentricity(+Y
mm)
Eccentricity (-X mm)
Eccentricity(-Y
mm)
Eccentricity (+X mm)
Eccentricity(+Y
mm)
Eccentricity (-X mm)
Eccentricity(-Y
mm)
Eccentricity (+X mm)
36
Checking for pile capacity
Fpile 1 =
164.02 - 3.57 - 13.50 = 146.94 KN < 175.0 OK!
Fpile 2 =
164.02 - 4.42 + 15.10 = 153.34 KN < 175.0 OK!
Fpile 3 =
164.02 + 4.20 - 11.84 = 171.65 KN < 175.0 OK!
Fpile 4 =
164.02 + 3.35 + 16.76 = 184.13 KN > 175.0 FAIL!
656.06 656.06
PILE ECCENTRICITY CHECK
37
Referring to the following calculation, the optimum
location of additional pile will be at position (+41 mm, -
140 mm)
Note pile load carrying capacity has been reduced to
148.75 kN (less 15%) due to spacing of piles < 3xpile
dim.
PILE ECCENTRICITY CHECK
38
Pile Group Centroid : ex ey
(after pile failure due to excessive ecc)
(mm) (mm)
-10.25 35.00
Ultimate Column Load = 883
RECOMMENDED NET ADD-ON PILE COORDINATES
Total Service Load (Incl. self wt pilecap) = 656.06
Total Service Load / n = 3.75
Nos of Replacement Pile = 1 X Coord. Y Coord.
Replacent pile position X Coord. Y Coord.
41 -140
REPLACEMENT PILE #1 41 -140
REPLACEMENT PILE #2 0 0
NET COORDINATE 41 -140
Reduction Factor for pile group Efficiency
(%)
15.00
Pile Group Centroid : ex ey
(after replacement pile) (mm) (mm)
0.00 0.00
Reduced Pile Working Load (kN) 148.75
Nos of Replacement Piles required 0.41
PILE ECCENTRICITY CHECK
Recommended Optimum Add-
OnPile Coord. (+41 mm, -140
mm)
39
Moment of inertia (with Add-On pile)
Iy = 0.74
Ix = 0.66
Moment Due to eccentricity
Pile Group Centroid
ex = 0.00
ey = 0.00
moment due to the
eccentricity
My = 0
Mx = 0
PILE LOAD REDISTRIBUTION (with Add-On pile)
Fpile 1 = 131.21 - 0.00 - 0.00 = 131.21 KN < 140 OK!
Fpile 2 = 131.21 - 0.00 + 0.00 = 131.21 KN < 140 OK!
Fpile 3 = 131.21 + 0.00 - 0.00 = 131.21 KN < 140 OK!
Fpile 4 = 131.21 + 0.00 + 0.00 = 131.21 KN < 140 OK!
F Add-On pile RP1 = 131.21 0.00 0.00 = 131.21 KN < 140 OK!
Total 656.06 656.06
PILE ECCENTRICITY CHECK
40
P1, -403, 408
P2, 476, 452
P3, -472, -292
P4, 358, -428
RP#1, 41, -140
-500
-400
-300
-200
-100
0
100
200
300
400
500
-600 -400 -200 0 200 400 600
YCOORDINATE(mm)
X COORDINATE (mm)
4 PILE GROUP: OVERALL PILE LOCATION (INCL. ADD-ON PILE RP1)
P1 P2 P3 P4 RP#1
PILE ECCENTRICITY CHECK
41
Again alternatively
A series of ‘Optimum Position of Add-On Pile Chart’
can be generated as a quick & ready reference on site.
It can be readily utilized to ascertain the optimum
add-on pile location in cases where excessive
eccentricity occur for any particular pile group
PILE ECCENTRICITY CHECK
42
-300
-200
-100
0
100
200
300
-150 -100 -50 0 50 100 150
4 PILE GROUP CENTROID PRIOR TO 'ADD-ON' PILE
4 PILE GROUP: OPTIMUM POSITION OF 'ADD-ON'
SINGLE PILE
250 mm Square RC Pile
ADD-ONPILECOORDINATE
+35mm
-140mm
PILE ECCENTRICITY CHECK
-10.25mm
+41mm
Part 3: Pile Failure Check
44
PILE FAILURE CHECK
+Ymm
+ X mm
Pile P#1 Y = Fail
Net X
ecc
Net Y
ecc
X = Fail (mm) (mm)
-13 107
Pile P#2 Y = 77 mm
X = 101 mm
Pile P#3 Y = 83 mm
X = -97 mm
Pile P#4 Y = -53 mm
X = -17 mm
45
PILE FAILURE CHECK
Pile Details:
Pile Size : 250 x 250 mm RC Pile
Pile Spacing : 3 x Pile Dim. (750 mm)
Pile Working Load : 175 kN
N = Total Column Service Load (Incl. self wt. of Pile
Cap 610 Kn)
n = Single Pile Working Load (175 kN)
N/n Ratio = 3.5
46
LOAD DETAILS
Ultimate Axial Load kN 818.00
Calculated Self Weight of Pile Cap kN 25.35
Net Service Load kN 609.64
Nos of Piles Required 3.48 4
Pile P#1 y = 1000
x = 1000
Pile P#2 y = 77
x = 101
Pile P#3 y = 83
x = -97
Pile P#4 y = -53
x = -17
NET Y COORDINATE (After Pile Failure) 107
NET X COORDINATE (After Pile Failure) -13
Ultimate Column Load = 818.0
Total Service Load (Incl. self wt pilecap) = 609.64
Total Service Load / n = 3.48
PILE FAILURE CHECK
47
Position of pile without eccentricity
pile 1 pile 2 pile 3 pile 4
x coor -375 375 -375 375
y coor 375 375 -375 -375
Position of pile with eccentricity
pile 1 pile 2 pile 3 pile 4
x coor FAIL 476 -472 358
y coor FAIL 452 -292 -428
Centroid before pile ecc/pile failure
A Y AY A X AX
P1 62500.0 375 23437500 62500.0 -375 -23437500
P2 62500.0 375 23437500 62500.0 375 23437500
P3 62500.0 -375 -23437500 62500.0 -375 -23437500
P4 62500.0 -375 -23437500 62500.0 375 23437500
Total 250000 0 250000 0
Centroid Y = 0.00 mm Centroid X = 0.00 mm
Centroid after pile ecc/pile failure
A Y AY A X AX
P1 FAIL FAIL FAIL FAIL FAIL FAIL
P2 62500 452 28250000 62500 476 29750000
P3 62500 -292 -18250000 62500 -472 -29500000
P4 62500 -428 -26750000 62500 358 22375000
Total 187500 -16750000 187500 22625000
Centroid Y = -89.33 mm Centroid X = 120.67 mm
PILE FAILURE CHECK
48
Moment of inertia with
pile eccentricity
Iy = 0.53
Ix = 0.45
Pile Group Centroid After Pile Failure (Before Pile Add-
On/Pile Replacement)
ex = 120.67
ey = -89.33
moment due to eccentricity
My = -73.56
Mx = -54.46
Checking for pile capacity
Fpile 1 =
FAIL - FAIL - FAIL = FAIL KN > 175.0 FAIL!
Fpile 2 =
203.21 - -48.96 + -65.69 = 219.94 KN > 175.0 FAIL!
Fpile 3 =
203.21 + -81.67 - -24.59 = 260.29 KN > 175.0 FAIL!
Fpile 4 =
203.21 + -32.70 + -41.10 = 129.41 KN < 175.0 OK!
609.64 609.64
PILE FAILURE CHECK
49
PILE ADD-ON/PILE REPLACEMENT PROCEDURE
Pile Group Centroid : ex ey
(after pile failure & before replacement pile)
(mm) (mm)
120.67 -89.33
Ultimate Column Load = 818
RECOMMENDED NET REPLACEMENT PILE
COORDINATES
Total Service Load (Incl. self wt pilecap) = 609.64
Total Service Load / n = 3.48
Nos of Replacement Pile = 2 X Coord. Y Coord.
Replacent pile position X Coord. Y Coord.
-362 268
REPLACEMENT PILE #1 -362 0
REPLACEMENT PILE #2 0 268
NET COORDINATE -362 268
Reduction Factor for pile group
Efficiency (%)
15.00
Pile Group Centroid : ex ey
(after replacement pile) (mm) (mm)
0.00 0.00
Reduced Pile Working Load (kN) 148.75
Nos of Replacement Piles required 1.10
PILE FAILURE CHECK
Recommended Optimum Replacement
Pile Coord. (-362 mm, +268 mm)
50
Position of pile with eccentricity
(With Replacement Pile)
coor pile 1 pile 2 pile 3 pile 4 Rep. PILE #1 Rep. PILE #2
x FAIL 476 -472 358 -362 0
y FAIL 452 -292 -428 0 268
Centroid With Replacement Pile
A Y AY A X AX
P1 FAIL FAIL FAIL FAIL FAIL FAIL
P2 62500 452 28250000 62500 476 29750000
P3 62500 -292 -18250000 62500 -472 -29500000
P4 62500 -428 -26750000 62500 358 22375000
REPLACEMENT PILE #1 62500 0 0 62500 -362 -22625000
REPLACEMENT PILE #2 62500 268 16750000 62500 0 0
Total
312500 0 312500 0
Centroid Y
= 0.00 mm
Centroid X
= 0.00 mm
PILE FAILURE CHECK
51
Moment of inertia (with replacement pile)
Iy = 0.71
Ix = 0.54
Moment Due to eccentricity
Pile Group Centroid
ex = 0.00
ey = 0.00
moment due to the eccentricity
My = 0
Mx = 0
PILE LOAD REDISTRIBUTION (with Add-On/Replacement Pile)
Fpile 1 = FAIL - FAIL - FAIL = FAIL
Fpile 2 = 121.93 - 0.00 + 0.00 = 121.93
Fpile 3 = 121.93 + 0.00 - 0.00 = 121.93
Fpile 4 = 121.93 + 0.00 + 0.00 = 121.93
F replacement pile RP1 = 121.93 0.00 0.00 = 121.93
F replacement pile RP2 121.93 0.00 0.00 = 121.93
Total 609.64 609.64
PILE FAILURE CHECK
52
P1, -375, 325 P2, 375, 325
P3, -375, -375
P4, 375, -425
RP#1, 0, 375
RP#2, -375, 0
-500
-400
-300
-200
-100
0
100
200
300
400
500
-500 -400 -300 -200 -100 0 100 200 300 400 500
YCOORDINATE(mm)
X COORDINATE (mm)
4 PILE GROUP: OVERALL PILE LOCATION
FAILED PILE
REPLACEMENT PILE
REPLACEMENT PILE
PILE FAILURE CHECK
53
Again alternatively
A series of ‘Optimum Position of Replacement Pile
Chart’ can be generated as a quick & ready reference
on site. It can be readily utilized to ascertain the
optimum replacement pile location in cases where pile
failure occur for any particular pile within the pile
group
PILE FAILURE CHECK
54
PILE FAILURE CHECK
-375
-450
-300
-225
-150
-75
375
300
225
150
75
450
-500
-400
-300
-200
-100
0
100
200
300
400
500
-300 -200 -100 0 100 200 300
4 PILE GROUP: OPTIMUM NET COORDINATES OF
REPLACEMENTPILE RP1 & RP2 (PILE FAILURE @ P#1)
OPTIMUM X@P1 FAIL OPTIMUM Y @P1 FAIL
REPLACEMENTPILECOORDINATE
NET ECCENTRICITY OF PILE GROUP (BEFORE PILE REPLACEMENT)
-13mm
-362mm
+107mm
+268mm
PART 4: PILE SPACING FACTOR
(K FACTOR)
56
K FACTOR
The spacing of pile centre to centre or the
K Factor also has a direct impact to the
permissible net pile group eccentricity
limit.
57
0, 208
208, 0
0, 208
-208, 0
0, -208
208, 0
0, -208
-208, 0
0, 240
240, 0
0, 240
-240, 0
0, -240
240, 0
0, -240
-240, 0
-250
-200
-150
-100
-50
0
50
100
150
200
250
-250 -200 -150 -100 -50 0 50 100 150 200 250
4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT CHART (250mm Square Pile @
175 kN Working Load and with a N/n Ratio=3.5)
k=3.0 k=3.50
Eccentricity(+Ymm)
Eccentricity (-X mm)
Eccentricity(-Ymm)
Eccentricity (+X mm)
K=Pile Spacing
K FACTOR
PART 5: CONCLUSION &
RECOMMENDATION
59
CONCLUSION
1.0 This study has shown that the norm of
adopting an eccentricity limit of 75mm
for each individual pile in a pile group
as a ‘Pass-Fail’ criteria irrespective of
pile dimensions, intensity of column
service load, pile working load and pile
spacing is unsatisfactory (see pg 32).
60
Pile
P#1 Y = 33 mm
Net X
ecc
Net Y
ecc
X = -28 mm (mm) (mm)
-41 140
Pile
P#2 Y = 77 mm
X = 101 mm
Pile
P#3 Y = 83 mm
X = -97 mm
Pile
P#4 Y = -53 mm
X = -17 mm
Checking for pile
capacity
Fpile 1 =
152.41 - 3.32 - 12.55 = 136.54 KN < 175.0 OK!
Fpile 2 =
152.41 - 4.11 + 14.03 = 142.49 KN < 175.0 OK!
Fpile 3 =
152.41 + 3.90 - 11.00 = 159.51 KN < 175.0 OK!
Fpile 4 =
152.41 + 3.11 + 15.57 = 171.10 KN < 175.0 OK!
609.64 609.64
CONCLUSION
61
2.0 The intensity of column service loads has a
direct impact to the permissible net pile group
eccentricity limit.
CONCLUSION
62
0, 420
420, 0
0, 420
-420, 0
0, -420
420, 0
0, -420
-420, 0
0, 268
268, 0
0, 268
-268, 0
0, -268
268, 0
0, -268
-268, 0
0, 136
136, 0
0, 136
-136, 0
0, -136
136, 0
0, -136
-136, 0
-500
-400
-300
-200
-100
0
100
200
300
400
500
-500 -400 -300 -200 -100 0 100 200 300 400 500
4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT
CHART (250mm Square Pile @ 175 kN Working Load)
N/n=3.25 N/n=3.50 N/n=3.75
Eccentricity(+Ymm)
Eccentricity (-X mm)
Eccentricity(-Ymm)
Eccentricity (+X mm)
Nult 760 kN Nult 818 kN Nult 883 kN
(N/n=3.25) (N/n=3.5) (N/n=3.75)
X ecc Y ecc X ecc Y ecc X ecc Y ecc
0 340 0 208 0 100
170 170 104 104 50 50
340 0 208 0 100 0
0 340 0 208 0 100
-170 170 -104 104 -50 50
-340 0 -208 0 -100 0
0 -340 0 -208 0 -100
170 -170 104 -104 50 -50
340 0 208 0 100 0
0 -340 0 -208 0 -100
-170 -170 -104 -104 -50 -50
-340 0 -208 0 -100 0
N=Column Service Load kN
n=Pile Working Load kN
CONCLUSION
63
3.0 The spacing of pile centre to centre also has
a direct impact to the permissible net pile
group eccentricity limit.
CONCLUSION
64
0, 208
208, 0
0, 208
-208, 0
0, -208
208, 0
0, -208
-208, 0
0, 240
240, 0
0, 240
-240, 0
0, -240
240, 0
0, -240
-240, 0
-250
-200
-150
-100
-50
0
50
100
150
200
250
-250 -200 -150 -100 -50 0 50 100 150 200 250
4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT CHART
(250mm Square Pile @ 175 kN Working Load)
k=3.0 k=3.50
Eccentricity(+Ymm)
Eccentricity (-X mm)
Eccentricity(-Ymm)
Eccentricity (+X mm)
Nult 818 kN Nult 818 kN
(K=3.0) (K3.50)
X ecc Y ecc X ecc Y ecc
0 208 0 240
104 104 120 120
208 0 240 0
0 208 0 240
-104 104 -120 120
-208 0 -240 0
0 -208 0 -240
104 -104 120 -120
208 0 240 0
0 -208 0 -240
-104 -104 -120 -120
-208 0 -240 0
K=Pile Spacing
CONCLUSION
65
4.0 For pile failure during driving, the required
number of Replacement Pile/s & the
location/coordinate of these piles can be
evaluated.
CONCLUSION
66
PILE ADD-ON/PILE REPLACEMENT PROCEDURE
Pile Group Centroid : ex ey
(after pile failure & before replacement pile)
(mm) (mm)
120.67 -89.33
Ultimate Column Load = 818
RECOMMENDED NET REPLACEMENT PILE
COORDINATES
Total Service Load (Incl. self wt pilecap) = 609.64
Total Service Load / n = 3.48
Nos of Replacement Pile = 2 X Coord. Y Coord.
Replacent pile position X Coord. Y Coord.
-362 268
REPLACEMENT PILE #1 -362 0
REPLACEMENT PILE #2 0 268
NET COORDINATE -362 268
Reduction Factor for pile group
Efficiency (%)
15.00
Pile Group Centroid : ex ey
(after replacement pile) (mm) (mm)
0.00 0.00
Reduced Pile Working Load (kN) 148.75
Nos of Replacement Piles required 1.10
CONCLUSION
67
P1, -375, 375
P2, 476, 452
P3, -472, -292
P4, 358, -428
RP#1, -362, 0
RP#2, 0, 268
-500
-400
-300
-200
-100
0
100
200
300
400
500
-600 -400 -200 0 200 400 600
YCOORDINATE(mm)
X COORDINATE (mm)
4 PILE GROUP: OVERALL PILE LOCATION (INCL. RP1 & RP2)
P1 P2 P3 P4 RP#1 RP#2
CONCLUSION
68
-375
-450
-300
-225
-150
-75
375
300
225
150
75
450
-500
-400
-300
-200
-100
0
100
200
300
400
500
-300 -200 -100 0 100 200 300
4 PILE GROUP: OPTIMUM NET COORDINATES OF
REPLACEMENTPILE RP1 & RP2 (PILE FAILURE @ P#1)
OPTIMUM X@P1 FAIL OPTIMUM Y @P1 FAIL
REPLACEMENTPILECOORDINATE
NET ECCENTRICITY OF PILE GROUP (BEFORE PILE REPLACEMENT)
-13mm
-362mm
+107mm
+268mm
CONCLUSION
69
RECOMMENDATION
The ‘Pass-Fail’ criteria for a particular Pile Group
Arrangement should be based on the comparison between
Redistributed Loads (individual pile) and the Pile Safe Working
Load. These redistributed loads arise from eccentric moments
induced into the pile group due to either pile eccentricity or pile
failure conditions.
> Pile Safe Working Load
Fp: Redistributed Loads to each individual pile kN
N : Net Column Service Load kN (incl self weight of pile cap)
n : Pile Safe Working Load kN
70
RECOMMENDATION
This criteria can then be translated into graphical form for a
specific value of:
i. Pile dimensions
ii. Pile spacing
iii. Pile working loads
iv. Range of column service loads
0, 420
420, 0
0, 420
-420, 0
0, -420
420, 0
0, -420
-420, 0
0, 268
268, 0
0, 268
-268, 0
0, -268
268, 0
0, -268
-268, 0
0, 136
136, 0
0, 136
-136, 0
0, -136
136, 0
0, -136
-136, 0
-500
-400
-300
-200
-100
0
100
200
300
400
500
-600 -400 -200 0 200 400 600
4 PILE GROUP : NET PILE GROUP ECCENTRICITY
LIMIT CHART (250mm Square Pile @ 175 kN Working
Load)
N/n=3.25 N/n=3.50 N/n=3.75
Eccentricity(+Y
mm)
Eccentricity (-X mm)
Eccentricity(-Y
mm)
Eccentricity (+X mm)
APPENDIX: Example of 4 Pile
Group Excel Sheet
72
PILE DETAILS
Pile Size mm 250.0
Pile Working Load (kN) 175.0
PILE CAP DETAILS
Pile Spacing K Factor (3 to 5) 3.00 B mm 1300.0
Calculated Pile Cap Overall Depth mm 600.0 600 W mm 1300.0
Minimum Setback Pile Edge mm 150.0 150 H mm 600.0
Cover mm 100.0
LOAD DETAILS
Ultimate Axial Load kN 818.00
Calculated Self Weight of Pile Cap kN 25.35
Net Service Load kN 609.64
Nos of Piles Required 3.48 4
Pile P#1 y = 1000 mm 0
x = 1000 mm
Pile P#2 y = 77 mm 1
x = 101 mm
Pile P#3 y = 83 mm 1
x = -97 mm
Pile P#4 y = -53 mm 1
x = -17 mm
3
NET Y COORDINATE (After Pile Failure) 107
NET X COORDINATE (After Pile Failure) -13
Ultimate Column Load = 818.0
Total Service Load (Incl. self wt pilecap) = 609.64
Total Service Load / n = 3.48
Position of pile without eccentricity
pile 1 pile 2 pile 3 pile 4
x coor -375 375 -375 375
y coor 375 375 -375 -375
Position of pile with eccentricity
pile 1 pile 2 pile 3 pile 4
x coor FAIL 476 -472 358
y coor FAIL 452 -292 -428
Centroid before pile ecc/pile failure
A Y AY A X AX
P1 62500.0 375 23437500 62500.0 -375 -23437500
P2 62500.0 375 23437500 62500.0 375 23437500
P3 62500.0 -375 -23437500 62500.0 -375 -23437500
P4 62500.0 -375 -23437500 62500.0 375 23437500
Total 250000 0 250000 0
Centroid Y = 0.00 mm Centroid X = 0.00 mm
APPENDIX
73
Centroid after pile ecc/pile failure
Iy Ix
A Y AY A X AX
P1 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
P2 62500 452 28250000 62500
476
29750000 126261.7778 293041.7778
P3 62500 -292 -18250000 62500
-472
-29500000 351253.7778 41073.77778
P4 62500 -428 -26750000 62500
358
22375000 56327.11111 114695.1111
Total
187500 -16750000
187500 22625000
533842.6667 448810.6667
Centroid Y =
-89.33
mm Centroid X =
120.67
mm
Moment of inertia with pile eccentricity
Iy =
0.53
Ix =
0.45
Pile Group Centroid After Pile Failure (Before Pile Add-On/Pile Replacement)
ex = 120.67
ey = -89.33
moment due to eccentricity
My = -73.56
Mx = -54.46
Checking for pile capacity
F =
Fpile 1 =
FAIL - FAIL - FAIL = FAIL KN > 175.0 FAIL!
Fpile 2 =
203.21 - -48.96 + -65.69 = 219.94 KN > 175.0 FAIL!
Fpile 3 =
203.21 + -81.67 - -24.59 = 260.29 KN > 175.0 FAIL!
Fpile 4 =
203.21 + -32.70 + -41.10 = 129.41 KN < 175.0 OK!
609.64 609.64
APPENDIX
74
PILE ADD-ON/PILE REPLACEMENT PROCEDURE
Pile Group Centroid : ex ey
(after pile failure & before replacement pile)
(mm) (mm)
120.67 -89.33
Ultimate Column Load = 818
RECOMMENDED NET REPLACEMENT PILE COORDINATES
Total Service Load (Incl. self wt pilecap) = 609.64
Total Service Load / n = 3.48
Nos of Replacement Pile = 2 X Coord. Y Coord.
Replacent pile position X Coord. Y Coord.
-362 268
REPLACEMENT PILE #1 -362 0
REPLACEMENT PILE #2 0 268
NET COORDINATE -362 268
Reduction Factor for pile group
Efficiency (%)
15.00
Pile Group Centroid : ex ey
(after replacement pile) (mm) (mm)
0.00 0.00
Reduced Pile Working Load (kN) 148.75
Nos of Replacement Piles required 1.10
Position of pile with eccentricity
(With Replacement Pile)
coor pile 1 pile 2 pile 3 pile 4 Rep. PILE #1 Rep. PILE #2
x FAIL 476 -472 358 -362 0
y FAIL 452 -292 -428 0 268
Centroid With Replacement Pile
A Y AY A X AX Iy Ix
P1 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
P2 62500 452 28250000 62500 476 29750000 226576 204304
P3 62500 -292 -18250000 62500 -472 -29500000 222784 85264
P4 62500 -428 -26750000 62500 358 22375000 128164 183184
REPLACEMENT PILE #1 62500 0 0 62500 -362 -22625000 131044 0
REPLACEMENT PILE #2 62500 268 16750000 62500 0 0 0 71824
Total 312500 0 312500 0
Centroid Y = 0.00 mm Centroid X = 0.00 mm 708568 544576
Moment of inertia (with replacement pile)
Iy = 0.71
Ix = 0.54
Moment Due to eccentricity
Pile Group Centroid
ex = 0.00
ey = 0.00
moment due to the eccentricity
My = 0
Mx = 0
PILE LOAD REDISTRIBUTION (with Add-On/Replacement Pile)
F =
Fpile 1 = FAIL - FAIL - FAIL = FAIL KN > 140 FAIL!
Fpile 2 = 121.93 - 0.00 + 0.00 = 121.93 KN < 140 OK!
Fpile 3 = 121.93 + 0.00 - 0.00 = 121.93 KN < 140 OK!
Fpile 4 = 121.93 + 0.00 + 0.00 = 121.93 KN < 140 OK!
F replacement pile RP1 = 121.93 0.00 0.00 = 121.93 KN < 140 OK!
F replacement pile RP2 121.93 0.00 0.00 = 121.93 KN < 140 OK!
Total 609.64 609.64
APPENDIX
FORENSIC CIVIL ENGINEERING SEMINAR
ForCES ’18
29th & 30th Oct. 2018 utm kuala lumpur
THANK YOU
MAY 2017

More Related Content

What's hot

23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
Hossam Shafiq II
 
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8 ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
Eur Ing Valentinos Neophytou BEng (Hons), MSc, CEng MICE
 
Design calculations of raft foundation
Design calculations of raft foundationDesign calculations of raft foundation
Design calculations of raft foundation
Shahzad Ali
 
seismic ubc -97
seismic ubc -97seismic ubc -97
seismic ubc -97
CADCONEngineers
 
Design of pile foundation
Design of pile foundationDesign of pile foundation
Design of pile foundation
Priodeep Chowdhury
 
Design notes for seismic design of building accordance to Eurocode 8
Design notes for seismic design of building accordance to Eurocode 8 Design notes for seismic design of building accordance to Eurocode 8
Design notes for seismic design of building accordance to Eurocode 8
Eur Ing Valentinos Neophytou BEng (Hons), MSc, CEng MICE
 
Lecture 1 design loads
Lecture 1   design loadsLecture 1   design loads
Lecture 1 design loads
Morsaleen Chowdhury
 
Earthquake Load Calculation (base shear method)
Earthquake Load Calculation (base shear method)Earthquake Load Calculation (base shear method)
Earthquake Load Calculation (base shear method)
Shekh Muhsen Uddin Ahmed
 
09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)
09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)
09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)
Hossam Shafiq II
 
Lecture 2 bearing capacity
Lecture 2 bearing capacityLecture 2 bearing capacity
Lecture 2 bearing capacity
Dr.Abdulmannan Orabi
 
Pile foundation
Pile foundationPile foundation
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Muhammad Irfan
 
Design of columns biaxial bending as per IS 456-2000
Design of columns  biaxial bending as per IS 456-2000Design of columns  biaxial bending as per IS 456-2000
Design of columns biaxial bending as per IS 456-2000
PraveenKumar Shanmugam
 
Question on pile capacity (usefulsearch.org) (useful search)
Question on pile capacity (usefulsearch.org) (useful search)Question on pile capacity (usefulsearch.org) (useful search)
Question on pile capacity (usefulsearch.org) (useful search)
Make Mannan
 
Direct Shear Test
Direct Shear TestDirect Shear Test
Direct Shear Test
Abhinav Kumar
 
Wind loading
Wind loadingWind loading
Wind loading
Deepak Kumar
 
BIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGNBIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGNshawon_sb
 
4. Shallow Foundations
4. Shallow Foundations4. Shallow Foundations
4. Shallow Foundations
Godbless I Kedes
 
Influence Line of Beams And Determinate Structures
Influence Line of Beams And Determinate StructuresInfluence Line of Beams And Determinate Structures
Influence Line of Beams And Determinate StructuresAnas Share
 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdf
Robin Arthur Flores
 

What's hot (20)

23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
 
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8 ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
 
Design calculations of raft foundation
Design calculations of raft foundationDesign calculations of raft foundation
Design calculations of raft foundation
 
seismic ubc -97
seismic ubc -97seismic ubc -97
seismic ubc -97
 
Design of pile foundation
Design of pile foundationDesign of pile foundation
Design of pile foundation
 
Design notes for seismic design of building accordance to Eurocode 8
Design notes for seismic design of building accordance to Eurocode 8 Design notes for seismic design of building accordance to Eurocode 8
Design notes for seismic design of building accordance to Eurocode 8
 
Lecture 1 design loads
Lecture 1   design loadsLecture 1   design loads
Lecture 1 design loads
 
Earthquake Load Calculation (base shear method)
Earthquake Load Calculation (base shear method)Earthquake Load Calculation (base shear method)
Earthquake Load Calculation (base shear method)
 
09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)
09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)
09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)
 
Lecture 2 bearing capacity
Lecture 2 bearing capacityLecture 2 bearing capacity
Lecture 2 bearing capacity
 
Pile foundation
Pile foundationPile foundation
Pile foundation
 
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
 
Design of columns biaxial bending as per IS 456-2000
Design of columns  biaxial bending as per IS 456-2000Design of columns  biaxial bending as per IS 456-2000
Design of columns biaxial bending as per IS 456-2000
 
Question on pile capacity (usefulsearch.org) (useful search)
Question on pile capacity (usefulsearch.org) (useful search)Question on pile capacity (usefulsearch.org) (useful search)
Question on pile capacity (usefulsearch.org) (useful search)
 
Direct Shear Test
Direct Shear TestDirect Shear Test
Direct Shear Test
 
Wind loading
Wind loadingWind loading
Wind loading
 
BIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGNBIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGN
 
4. Shallow Foundations
4. Shallow Foundations4. Shallow Foundations
4. Shallow Foundations
 
Influence Line of Beams And Determinate Structures
Influence Line of Beams And Determinate StructuresInfluence Line of Beams And Determinate Structures
Influence Line of Beams And Determinate Structures
 
Ref F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdfRef F2F Week 4 - Solution_unlocked.pdf
Ref F2F Week 4 - Solution_unlocked.pdf
 

Similar to Forces2018 Presentation:The Assessment Of Pile Group Integrity Due To Pile Eccentricities & Failures

The static loading test bengt h. fellenius
The  static loading test   bengt h. felleniusThe  static loading test   bengt h. fellenius
The static loading test bengt h. fellenius
cfpbolivia
 
Design And Analysis of Test Rig for Rudder Pedal
Design And Analysis of Test Rig for Rudder PedalDesign And Analysis of Test Rig for Rudder Pedal
Design And Analysis of Test Rig for Rudder Pedal
IRJET Journal
 
Caeser II manual
Caeser II manualCaeser II manual
Caeser II manual
Somesh Angle
 
Precast driven pile 450 x450
Precast driven pile 450 x450Precast driven pile 450 x450
Precast driven pile 450 x450
Priodeep Chowdhury
 
BENDING STRESS IN A BEAMS
BENDING STRESS IN A BEAMSBENDING STRESS IN A BEAMS
BENDING STRESS IN A BEAMS
Vj NiroSh
 
IRJET-Fatigue Analysis of Crawler Chassis
IRJET-Fatigue Analysis of Crawler ChassisIRJET-Fatigue Analysis of Crawler Chassis
IRJET-Fatigue Analysis of Crawler Chassis
IRJET Journal
 
Portofolio jacket platform dynamic analysis
Portofolio jacket platform dynamic analysisPortofolio jacket platform dynamic analysis
Portofolio jacket platform dynamic analysis
KristoforusAnggara
 
Passive Cooling Design Feature for Energy Efficient in PERI Auditorium
Passive Cooling Design Feature for Energy Efficient in PERI AuditoriumPassive Cooling Design Feature for Energy Efficient in PERI Auditorium
Passive Cooling Design Feature for Energy Efficient in PERI Auditorium
IRJET Journal
 
IRJET- Regenerative Suspension System
IRJET- Regenerative Suspension SystemIRJET- Regenerative Suspension System
IRJET- Regenerative Suspension System
IRJET Journal
 
Design of bala school
Design of bala schoolDesign of bala school
Design of bala school
civilengineeringfreedownload
 
Analysis of Lifting Machine
Analysis of Lifting MachineAnalysis of Lifting Machine
Analysis of Lifting Machine
Ahsen Parwez
 
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALOmar Latifi
 
Guntry girder
Guntry girderGuntry girder
Guntry girder
kajol panchal
 
Engineering plant facilities 15 mechanics welding
Engineering plant facilities 15 mechanics weldingEngineering plant facilities 15 mechanics welding
Engineering plant facilities 15 mechanics welding
Luis Cabrera
 
Slope project daniel
Slope project danielSlope project daniel
Slope project daniel
Daniel Jalili
 
Study of Viscous Fluid Damper 6 Different Pattern on 12 Story Structure And C...
Study of Viscous Fluid Damper 6 Different Pattern on 12 Story Structure And C...Study of Viscous Fluid Damper 6 Different Pattern on 12 Story Structure And C...
Study of Viscous Fluid Damper 6 Different Pattern on 12 Story Structure And C...
IRJET Journal
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)sufiyan shaikh
 
CIVE702 Midterm Report Combined
CIVE702 Midterm Report CombinedCIVE702 Midterm Report Combined
CIVE702 Midterm Report CombinedCyle Teal
 

Similar to Forces2018 Presentation:The Assessment Of Pile Group Integrity Due To Pile Eccentricities & Failures (20)

The static loading test bengt h. fellenius
The  static loading test   bengt h. felleniusThe  static loading test   bengt h. fellenius
The static loading test bengt h. fellenius
 
CTA - LST - AZIMUTH SYSTEM 20160607
CTA - LST - AZIMUTH SYSTEM 20160607CTA - LST - AZIMUTH SYSTEM 20160607
CTA - LST - AZIMUTH SYSTEM 20160607
 
Design And Analysis of Test Rig for Rudder Pedal
Design And Analysis of Test Rig for Rudder PedalDesign And Analysis of Test Rig for Rudder Pedal
Design And Analysis of Test Rig for Rudder Pedal
 
Caeser II manual
Caeser II manualCaeser II manual
Caeser II manual
 
Precast driven pile 450 x450
Precast driven pile 450 x450Precast driven pile 450 x450
Precast driven pile 450 x450
 
BENDING STRESS IN A BEAMS
BENDING STRESS IN A BEAMSBENDING STRESS IN A BEAMS
BENDING STRESS IN A BEAMS
 
IRJET-Fatigue Analysis of Crawler Chassis
IRJET-Fatigue Analysis of Crawler ChassisIRJET-Fatigue Analysis of Crawler Chassis
IRJET-Fatigue Analysis of Crawler Chassis
 
Portofolio jacket platform dynamic analysis
Portofolio jacket platform dynamic analysisPortofolio jacket platform dynamic analysis
Portofolio jacket platform dynamic analysis
 
Project 2b (1) (2)
Project 2b  (1) (2)Project 2b  (1) (2)
Project 2b (1) (2)
 
Passive Cooling Design Feature for Energy Efficient in PERI Auditorium
Passive Cooling Design Feature for Energy Efficient in PERI AuditoriumPassive Cooling Design Feature for Energy Efficient in PERI Auditorium
Passive Cooling Design Feature for Energy Efficient in PERI Auditorium
 
IRJET- Regenerative Suspension System
IRJET- Regenerative Suspension SystemIRJET- Regenerative Suspension System
IRJET- Regenerative Suspension System
 
Design of bala school
Design of bala schoolDesign of bala school
Design of bala school
 
Analysis of Lifting Machine
Analysis of Lifting MachineAnalysis of Lifting Machine
Analysis of Lifting Machine
 
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
 
Guntry girder
Guntry girderGuntry girder
Guntry girder
 
Engineering plant facilities 15 mechanics welding
Engineering plant facilities 15 mechanics weldingEngineering plant facilities 15 mechanics welding
Engineering plant facilities 15 mechanics welding
 
Slope project daniel
Slope project danielSlope project daniel
Slope project daniel
 
Study of Viscous Fluid Damper 6 Different Pattern on 12 Story Structure And C...
Study of Viscous Fluid Damper 6 Different Pattern on 12 Story Structure And C...Study of Viscous Fluid Damper 6 Different Pattern on 12 Story Structure And C...
Study of Viscous Fluid Damper 6 Different Pattern on 12 Story Structure And C...
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)
 
CIVE702 Midterm Report Combined
CIVE702 Midterm Report CombinedCIVE702 Midterm Report Combined
CIVE702 Midterm Report Combined
 

Recently uploaded

Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
Kamal Acharya
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
abh.arya
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 

Recently uploaded (20)

Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 

Forces2018 Presentation:The Assessment Of Pile Group Integrity Due To Pile Eccentricities & Failures

  • 1. FORENSIC CIVIL ENGINEERING SEMINAR ForCES ‘18 29th & 30th Oct. 2018 utm kuala lumpur MAY 2017
  • 2. THE ASSESSEMENT OF PILE GROUP INTEGRITY DUE TO PILE ECCENTRICITIES & FAILURES ir azhar ahmad school of civil engineering Email: azharahmad@utm.my MAY 2017
  • 3. The following course notes are specifically for use in ‘Assessment of Pile Group Integrity due to Pile Eccentricities & Failures’ only. Any reproduction or public display of the contents beyond this short course is prohibited without prior consent of the author.
  • 5. ABSTRACT  The mode of driving precast reinforced concrete piles on site is without doubt among the most ‘error prone’ trades of a construction process. The short comings of driving pre designated piles at pin point accuracy at exactly the correct position on the ground has given rise to the caption of ‘pile eccentricity’ of nearly all individual piles within a pile group.  This then raises questions of integrity or how safe and reliable are pile caps that has been designed earlier with zero pile eccentricities. Questions of how much an eccentricity limit can be allowed for each pile or rather pile group arrangements such that previous pile cap designs are still safe and applicable has to be addressed. 5
  • 6.  Thus one of the aims of this study is to evaluate the maximum allowable eccentricity of several common pile group arrangements. Results of this study indicates that the norm of adopting a maximum allowable eccentricity value of 75 mm for each individual pile irrespective of pile size, pile working load, pile spacing & column loads is quite misleading and may result in an unsafe pile group performance! 6 ABSTRACT
  • 7. Rather, results from this study suggests that the critical factor is not the eccentricity of individual piles but the overall net pile group eccentricity. This causes eccentric moments to act in the pile group which in turn governs the redistributed load to each individual pile within the pile group. This redistributed loads are then compared to the pile safe working load to establish a ‘Pass-Fail’ criteria. < Pile Safe Working Load Fp: Redistributed Loads to each individual pile kN N : Net Column Service Load kN (incl self weight of pile cap) n : Pile Safe Working Load kN 7 ABSTRACT
  • 8. 8 Pile Group Centroid after ecc ABSTRACT X Axis YAxis Mx My +Ymm + X mm
  • 9.  Moreover this study has shown that i. the ratio of net column service load over pile safe working load (N/n Ratio) ii. the centre to centre pile spacing (K Factor) both have significant impact on the net pile group eccentricity limits. 9 ABSTRACT
  • 10. ACKNOWLEDGEMENT Tasnim Arif Heart felt gratitude and appreciation to all my ‘Undergraduate Students’ that have toiled and given their upmost effort in completing this research work….may Allah bestow His blessings onto each and every one of you……ameenn
  • 13. Norsharizal Sahlan Irmawaty Ahmad Mohd Rizal Deris ACKNOWLEDGEMENT
  • 14. ACKNOWLEDGEMENT Nor Syahida Nur Shamsul Bariah Azmazanzan Arshad Sharifudin
  • 15. ACKNOWLEDGEMENT Sufi Syahirah Haifa Fakhira Fardah Manirah Siti Zahri’iyah Nor Ainsha
  • 16. PART 1: EXECUTIVE SUMMARY
  • 17. 17 EXECUTIVE SUMMARY 1.0 The development of a Net Pile Group Eccentricity Limit Chart. These charts can be referred to evaluate the safety and reliability of pile caps that has been designed earlier by ignoring pile eccentricities against actual pile eccentricities recorded on site.
  • 18. 18 0, 268 268, 0 0, 268 -268, 0 0, -268 268, 0 0, -268 -268, 0 -300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300 4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT CHART N/n=3.50 Eccentricity(+Y mm) Eccentricity (-X mm) Eccentricity(-Y mm) Eccentricity (+X mm) EXECUTIVE SUMMARY
  • 19. 19 EXECUTIVE SUMMARY 0, 420 420, 0 0, 420 -420, 0 0, -420 420, 0 0, -420 -420, 0 0, 268 268, 0 0, 268 -268, 0 0, -268 268, 0 0, -268 -268, 0 0, 136 136, 0 0, 136 -136, 0 0, -136 136, 0 0, -136 -136, 0 -500 -400 -300 -200 -100 0 100 200 300 400 500 -500 -400 -300 -200 -100 0 100 200 300 400 500 4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT CHART (250mm Square Pile @ 175 kN Working Load) N/n=3.25 N/n=3.50 N/n=3.75 Eccentricity(+Ymm) Eccentricity (-X mm) Eccentricity(-Ymm) Eccentricity (+X mm)
  • 20. 20 2.0 The development of an Optimum Add-On Pile Location Chart. Where eccentricities beyond ‘allowable’ limits occur, this will render pile groups and the subsequent pile caps as ‘unsafe’ to sustain column loads due to eccentric moments which causes loads distributed to piles to be greater than the pile working load capacities! The most practical solution usually adopted on site to rectify this problem is by installing additional or ‘add-on’ pile/s. EXECUTIVE SUMMARY
  • 21. 21 -1,000 -800 -600 -400 -200 0 200 400 600 800 1,000 -250 -200 -150 -100 -50 0 50 100 150 200 250 4 PILE GROUP CENTROID PRIOR TO 'ADD-ON' PILE 4 PILE GROUP: OPTIMUM POSITION OF 'ADD-ON' SINGLE PILE 250 mm Square RC Pile ADD-ONPILECOORDINATE EXECUTIVE SUMMARY
  • 22. 22 3.0 The development of an Optimum Replacement Pile Location Chart. Where pile failure occurs during driving, this will render pile groups and the subsequent pile caps as ‘unsafe’ to sustain column loads due to eccentric moments which causes loads distributed to piles to be greater than the pile working load capacities! The most practical solution usually adopted on site to rectify this problem is by installing replacement pile/s. EXECUTIVE SUMMARY
  • 23. 23 -375 -450 -525 -600 -675 -300 -225 -150 -75 0 375 300 225 150 75 450 525 600 675 750 -800 -600 -400 -200 0 200 400 600 800 1000 -500 -400 -300 -200 -100 0 100 200 300 400 4 PILE GROUP: OPTIMUM NET COORDINATES OF REPLACEMENT PILE RP1 & RP2 (PILE FAILURE @ P#1) OPTIMUM X @P1 FAIL OPTIMUM Y @P1 FAIL REPLACEMENTPILECOORDINATE NET ECCENTRICITY OF PILE GROUP (BEFORE PILE REPLACEMENT) EXECUTIVE SUMMARY
  • 24. PART 2: PILE ECCENTRICITY CHECK
  • 25. 25 +Ymm + X mm PILE ECCENTRICITY CHECK Pile P#1 Y = 33 mm Net X ecc Net Y ecc X = -28 mm(mm) (mm) -41 140 Pile P#2 Y = 77 mm X = 101 mm Pile P#3 Y = 83 mm X = -97 mm Pile P#4 Y = -53 mm X = -17 mm
  • 26. 26 Pile Details: Pile Size : 250 x 250 mm RC Pile Pile Spacing : 3 x Pile Dim. (750 mm) Pile Working Load : 175 kN N = Total Column Service Load (Incl. self wt. of Pile Cap 610 Kn) n = Single Pile Working Load (175 kN) N/n Ratio = 3.5 PILE ECCENTRICITY CHECK
  • 27. 27 Position of pile without eccentricity pile 1 pile 2 pile 3 pile 4 x coor -375 375 -375 375 y coor 375 375 -375 -375 Position of pile with eccentricity pile 1 pile 2 pile 3 pile 4 x coor -403 476 -472 358 y coor 408 452 -292 -428 Pile Group Centroid before pile ecc A Y AY A X AX P1 62500.0 375 23437500 62500.0 -375 -23437500 P2 62500.0 375 23437500 62500.0 375 23437500 P3 62500.0 -375 -23437500 62500.0 -375 -23437500 P4 62500.0 -375 -23437500 62500.0 375 23437500 Total 250000 0 250000 0 Centroid Y = 0.00 mm Centroid X = 0.00 mm Pile Group Centroid after pile ecc A Y AY A X AX P1 62500 408 25500000 62500 -403 -25187500 P2 62500 452 28250000 62500 476 29750000 P3 62500 -292 -18250000 62500 -472 -29500000 P4 62500 -428 -26750000 62500 358 22375000 Total 250000 8750000 250000 -2562500 Centroid Y = 35.00 mm Centroid X = -10.25 mm PILE ECCENTRICITY CHECK
  • 28. 28 Pile Group Centroid after ecc (-10.25 mm,+35 mm) X Axis YAxis Mx=21.34kNm My=6.25kNm +Ymm + X mm PILE ECCENTRICITY CHECK (0 mm,0 mm)
  • 29. 29 Iy = 0.74 Ix = 0.63 Pile Group Centroid After Pile Failure (Before Pile Add-On) ex = -10.25 mm ey = 35.00 mm moment due to eccentricity My = 6.25 kNm Mx = 21.34 kNm PILE ECCENTRICITY CHECK
  • 30. 30 Checking for pile capacity Fpile 1 = 152.41 - 3.32 - 12.55 = 136.54 KN < 175.0 OK! Fpile 2 = 152.41 - 4.11 + 14.03 = 142.49 KN < 175.0 OK! Fpile 3 = 152.41 + 3.90 - 11.00 = 159.51 KN < 175.0 OK! Fpile 4 = 152.41 + 3.11 + 15.57 = 171.10 KN < 175.0 OK! 609.64 609.64 PILE ECCENTRICITY CHECK
  • 31. 31 Summary: Note that even though the eccentricity of individual piles P#2 & P#3 exceeds the norm allowable eccentricity of 75 mm in both directions, the load distributed to all piles < pile working load capacity 175 kN !!! Pile P#1 Y = 33 mm Net X ecc Net Y ecc X = -28 mm (mm) (mm) -41 140 Pile P#2 Y = 77 mm X = 101 mm Pile P#3 Y = 83 mm X = -97 mm Pile P#4 Y = -53 mm X = -17 mm Thus The Pass/Fail criteria or the integrity of the pile group should rather be based on the comparison between redistributed pile loads (due to net pile group ecc.) and pile working loads PILE ECCENTRICITY CHECK
  • 32. 32 Alternatively A series of ‘Net Pile Group Eccentricity Limit Charts’ can be generated as a quick & ready reference on site. It can be readily utilized to check and ascertain the integrity of individual pile groups based on the summation or net eccentricity of all piles PILE ECCENTRICITY CHECK
  • 33. 33 (-41,+140)` 0, 208 208, 0 0, 208 -208, 0 0, -208 208, 0 0, -208 -208, 0 -250 -200 -150 -100 -50 0 50 100 150 200 250 -250 -200 -150 -100 -50 0 50 100 150 200 250 4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT CHART (250mm Square Pile @ 175 kN Working Load) N/n=3.50 Eccentricity(+Ymm) Eccentricity (-X mm) Eccentricity(-Ymm) Eccentricity (+X mm) Eccentricity(+Ymm) Eccentricity (-X mm) Eccentricity(-Ymm) Eccentricity (+X mm) Eccentricity(+Ymm) Eccentricity (-X mm) Eccentricity(-Ymm) Eccentricity (+X mm) PILE ECCENTRICITY CHECK Net Pile Group Ecc (-41 mm,+140 mm)
  • 34. 34 If on the other hand the value of Nsls is increased from 610 kN to 656 kN For N/n = 656 kN / 175 kN = 3.75 From chart, the net pile group ecc. point (-41mm, +140 mm) lies outside the safe zone for N/n = 3.75……….. KO !! Therefore need additional pile to reduce load on all piles. PILE ECCENTRICITY CHECK
  • 35. 35 (-41,+140)` PILE ECCENTRICITY CHECK 0, 100 100, 0 0, 100 -100, 0 0, -100 100, 0 0, -100 -100, 0 -150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150 4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT CHART (250mm Square Pile @ 175 kN Working Load) N/n=3.75 Eccentricity(+Y mm) Eccentricity (-X mm) Eccentricity(-Y mm) Eccentricity (+X mm) Eccentricity(+Y mm) Eccentricity (-X mm) Eccentricity(-Y mm) Eccentricity (+X mm) Eccentricity(+Y mm) Eccentricity (-X mm) Eccentricity(-Y mm) Eccentricity (+X mm) Eccentricity(+Y mm) Eccentricity (-X mm) Eccentricity(-Y mm) Eccentricity (+X mm)
  • 36. 36 Checking for pile capacity Fpile 1 = 164.02 - 3.57 - 13.50 = 146.94 KN < 175.0 OK! Fpile 2 = 164.02 - 4.42 + 15.10 = 153.34 KN < 175.0 OK! Fpile 3 = 164.02 + 4.20 - 11.84 = 171.65 KN < 175.0 OK! Fpile 4 = 164.02 + 3.35 + 16.76 = 184.13 KN > 175.0 FAIL! 656.06 656.06 PILE ECCENTRICITY CHECK
  • 37. 37 Referring to the following calculation, the optimum location of additional pile will be at position (+41 mm, - 140 mm) Note pile load carrying capacity has been reduced to 148.75 kN (less 15%) due to spacing of piles < 3xpile dim. PILE ECCENTRICITY CHECK
  • 38. 38 Pile Group Centroid : ex ey (after pile failure due to excessive ecc) (mm) (mm) -10.25 35.00 Ultimate Column Load = 883 RECOMMENDED NET ADD-ON PILE COORDINATES Total Service Load (Incl. self wt pilecap) = 656.06 Total Service Load / n = 3.75 Nos of Replacement Pile = 1 X Coord. Y Coord. Replacent pile position X Coord. Y Coord. 41 -140 REPLACEMENT PILE #1 41 -140 REPLACEMENT PILE #2 0 0 NET COORDINATE 41 -140 Reduction Factor for pile group Efficiency (%) 15.00 Pile Group Centroid : ex ey (after replacement pile) (mm) (mm) 0.00 0.00 Reduced Pile Working Load (kN) 148.75 Nos of Replacement Piles required 0.41 PILE ECCENTRICITY CHECK Recommended Optimum Add- OnPile Coord. (+41 mm, -140 mm)
  • 39. 39 Moment of inertia (with Add-On pile) Iy = 0.74 Ix = 0.66 Moment Due to eccentricity Pile Group Centroid ex = 0.00 ey = 0.00 moment due to the eccentricity My = 0 Mx = 0 PILE LOAD REDISTRIBUTION (with Add-On pile) Fpile 1 = 131.21 - 0.00 - 0.00 = 131.21 KN < 140 OK! Fpile 2 = 131.21 - 0.00 + 0.00 = 131.21 KN < 140 OK! Fpile 3 = 131.21 + 0.00 - 0.00 = 131.21 KN < 140 OK! Fpile 4 = 131.21 + 0.00 + 0.00 = 131.21 KN < 140 OK! F Add-On pile RP1 = 131.21 0.00 0.00 = 131.21 KN < 140 OK! Total 656.06 656.06 PILE ECCENTRICITY CHECK
  • 40. 40 P1, -403, 408 P2, 476, 452 P3, -472, -292 P4, 358, -428 RP#1, 41, -140 -500 -400 -300 -200 -100 0 100 200 300 400 500 -600 -400 -200 0 200 400 600 YCOORDINATE(mm) X COORDINATE (mm) 4 PILE GROUP: OVERALL PILE LOCATION (INCL. ADD-ON PILE RP1) P1 P2 P3 P4 RP#1 PILE ECCENTRICITY CHECK
  • 41. 41 Again alternatively A series of ‘Optimum Position of Add-On Pile Chart’ can be generated as a quick & ready reference on site. It can be readily utilized to ascertain the optimum add-on pile location in cases where excessive eccentricity occur for any particular pile group PILE ECCENTRICITY CHECK
  • 42. 42 -300 -200 -100 0 100 200 300 -150 -100 -50 0 50 100 150 4 PILE GROUP CENTROID PRIOR TO 'ADD-ON' PILE 4 PILE GROUP: OPTIMUM POSITION OF 'ADD-ON' SINGLE PILE 250 mm Square RC Pile ADD-ONPILECOORDINATE +35mm -140mm PILE ECCENTRICITY CHECK -10.25mm +41mm
  • 43. Part 3: Pile Failure Check
  • 44. 44 PILE FAILURE CHECK +Ymm + X mm Pile P#1 Y = Fail Net X ecc Net Y ecc X = Fail (mm) (mm) -13 107 Pile P#2 Y = 77 mm X = 101 mm Pile P#3 Y = 83 mm X = -97 mm Pile P#4 Y = -53 mm X = -17 mm
  • 45. 45 PILE FAILURE CHECK Pile Details: Pile Size : 250 x 250 mm RC Pile Pile Spacing : 3 x Pile Dim. (750 mm) Pile Working Load : 175 kN N = Total Column Service Load (Incl. self wt. of Pile Cap 610 Kn) n = Single Pile Working Load (175 kN) N/n Ratio = 3.5
  • 46. 46 LOAD DETAILS Ultimate Axial Load kN 818.00 Calculated Self Weight of Pile Cap kN 25.35 Net Service Load kN 609.64 Nos of Piles Required 3.48 4 Pile P#1 y = 1000 x = 1000 Pile P#2 y = 77 x = 101 Pile P#3 y = 83 x = -97 Pile P#4 y = -53 x = -17 NET Y COORDINATE (After Pile Failure) 107 NET X COORDINATE (After Pile Failure) -13 Ultimate Column Load = 818.0 Total Service Load (Incl. self wt pilecap) = 609.64 Total Service Load / n = 3.48 PILE FAILURE CHECK
  • 47. 47 Position of pile without eccentricity pile 1 pile 2 pile 3 pile 4 x coor -375 375 -375 375 y coor 375 375 -375 -375 Position of pile with eccentricity pile 1 pile 2 pile 3 pile 4 x coor FAIL 476 -472 358 y coor FAIL 452 -292 -428 Centroid before pile ecc/pile failure A Y AY A X AX P1 62500.0 375 23437500 62500.0 -375 -23437500 P2 62500.0 375 23437500 62500.0 375 23437500 P3 62500.0 -375 -23437500 62500.0 -375 -23437500 P4 62500.0 -375 -23437500 62500.0 375 23437500 Total 250000 0 250000 0 Centroid Y = 0.00 mm Centroid X = 0.00 mm Centroid after pile ecc/pile failure A Y AY A X AX P1 FAIL FAIL FAIL FAIL FAIL FAIL P2 62500 452 28250000 62500 476 29750000 P3 62500 -292 -18250000 62500 -472 -29500000 P4 62500 -428 -26750000 62500 358 22375000 Total 187500 -16750000 187500 22625000 Centroid Y = -89.33 mm Centroid X = 120.67 mm PILE FAILURE CHECK
  • 48. 48 Moment of inertia with pile eccentricity Iy = 0.53 Ix = 0.45 Pile Group Centroid After Pile Failure (Before Pile Add- On/Pile Replacement) ex = 120.67 ey = -89.33 moment due to eccentricity My = -73.56 Mx = -54.46 Checking for pile capacity Fpile 1 = FAIL - FAIL - FAIL = FAIL KN > 175.0 FAIL! Fpile 2 = 203.21 - -48.96 + -65.69 = 219.94 KN > 175.0 FAIL! Fpile 3 = 203.21 + -81.67 - -24.59 = 260.29 KN > 175.0 FAIL! Fpile 4 = 203.21 + -32.70 + -41.10 = 129.41 KN < 175.0 OK! 609.64 609.64 PILE FAILURE CHECK
  • 49. 49 PILE ADD-ON/PILE REPLACEMENT PROCEDURE Pile Group Centroid : ex ey (after pile failure & before replacement pile) (mm) (mm) 120.67 -89.33 Ultimate Column Load = 818 RECOMMENDED NET REPLACEMENT PILE COORDINATES Total Service Load (Incl. self wt pilecap) = 609.64 Total Service Load / n = 3.48 Nos of Replacement Pile = 2 X Coord. Y Coord. Replacent pile position X Coord. Y Coord. -362 268 REPLACEMENT PILE #1 -362 0 REPLACEMENT PILE #2 0 268 NET COORDINATE -362 268 Reduction Factor for pile group Efficiency (%) 15.00 Pile Group Centroid : ex ey (after replacement pile) (mm) (mm) 0.00 0.00 Reduced Pile Working Load (kN) 148.75 Nos of Replacement Piles required 1.10 PILE FAILURE CHECK Recommended Optimum Replacement Pile Coord. (-362 mm, +268 mm)
  • 50. 50 Position of pile with eccentricity (With Replacement Pile) coor pile 1 pile 2 pile 3 pile 4 Rep. PILE #1 Rep. PILE #2 x FAIL 476 -472 358 -362 0 y FAIL 452 -292 -428 0 268 Centroid With Replacement Pile A Y AY A X AX P1 FAIL FAIL FAIL FAIL FAIL FAIL P2 62500 452 28250000 62500 476 29750000 P3 62500 -292 -18250000 62500 -472 -29500000 P4 62500 -428 -26750000 62500 358 22375000 REPLACEMENT PILE #1 62500 0 0 62500 -362 -22625000 REPLACEMENT PILE #2 62500 268 16750000 62500 0 0 Total 312500 0 312500 0 Centroid Y = 0.00 mm Centroid X = 0.00 mm PILE FAILURE CHECK
  • 51. 51 Moment of inertia (with replacement pile) Iy = 0.71 Ix = 0.54 Moment Due to eccentricity Pile Group Centroid ex = 0.00 ey = 0.00 moment due to the eccentricity My = 0 Mx = 0 PILE LOAD REDISTRIBUTION (with Add-On/Replacement Pile) Fpile 1 = FAIL - FAIL - FAIL = FAIL Fpile 2 = 121.93 - 0.00 + 0.00 = 121.93 Fpile 3 = 121.93 + 0.00 - 0.00 = 121.93 Fpile 4 = 121.93 + 0.00 + 0.00 = 121.93 F replacement pile RP1 = 121.93 0.00 0.00 = 121.93 F replacement pile RP2 121.93 0.00 0.00 = 121.93 Total 609.64 609.64 PILE FAILURE CHECK
  • 52. 52 P1, -375, 325 P2, 375, 325 P3, -375, -375 P4, 375, -425 RP#1, 0, 375 RP#2, -375, 0 -500 -400 -300 -200 -100 0 100 200 300 400 500 -500 -400 -300 -200 -100 0 100 200 300 400 500 YCOORDINATE(mm) X COORDINATE (mm) 4 PILE GROUP: OVERALL PILE LOCATION FAILED PILE REPLACEMENT PILE REPLACEMENT PILE PILE FAILURE CHECK
  • 53. 53 Again alternatively A series of ‘Optimum Position of Replacement Pile Chart’ can be generated as a quick & ready reference on site. It can be readily utilized to ascertain the optimum replacement pile location in cases where pile failure occur for any particular pile within the pile group PILE FAILURE CHECK
  • 54. 54 PILE FAILURE CHECK -375 -450 -300 -225 -150 -75 375 300 225 150 75 450 -500 -400 -300 -200 -100 0 100 200 300 400 500 -300 -200 -100 0 100 200 300 4 PILE GROUP: OPTIMUM NET COORDINATES OF REPLACEMENTPILE RP1 & RP2 (PILE FAILURE @ P#1) OPTIMUM X@P1 FAIL OPTIMUM Y @P1 FAIL REPLACEMENTPILECOORDINATE NET ECCENTRICITY OF PILE GROUP (BEFORE PILE REPLACEMENT) -13mm -362mm +107mm +268mm
  • 55. PART 4: PILE SPACING FACTOR (K FACTOR)
  • 56. 56 K FACTOR The spacing of pile centre to centre or the K Factor also has a direct impact to the permissible net pile group eccentricity limit.
  • 57. 57 0, 208 208, 0 0, 208 -208, 0 0, -208 208, 0 0, -208 -208, 0 0, 240 240, 0 0, 240 -240, 0 0, -240 240, 0 0, -240 -240, 0 -250 -200 -150 -100 -50 0 50 100 150 200 250 -250 -200 -150 -100 -50 0 50 100 150 200 250 4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT CHART (250mm Square Pile @ 175 kN Working Load and with a N/n Ratio=3.5) k=3.0 k=3.50 Eccentricity(+Ymm) Eccentricity (-X mm) Eccentricity(-Ymm) Eccentricity (+X mm) K=Pile Spacing K FACTOR
  • 58. PART 5: CONCLUSION & RECOMMENDATION
  • 59. 59 CONCLUSION 1.0 This study has shown that the norm of adopting an eccentricity limit of 75mm for each individual pile in a pile group as a ‘Pass-Fail’ criteria irrespective of pile dimensions, intensity of column service load, pile working load and pile spacing is unsatisfactory (see pg 32).
  • 60. 60 Pile P#1 Y = 33 mm Net X ecc Net Y ecc X = -28 mm (mm) (mm) -41 140 Pile P#2 Y = 77 mm X = 101 mm Pile P#3 Y = 83 mm X = -97 mm Pile P#4 Y = -53 mm X = -17 mm Checking for pile capacity Fpile 1 = 152.41 - 3.32 - 12.55 = 136.54 KN < 175.0 OK! Fpile 2 = 152.41 - 4.11 + 14.03 = 142.49 KN < 175.0 OK! Fpile 3 = 152.41 + 3.90 - 11.00 = 159.51 KN < 175.0 OK! Fpile 4 = 152.41 + 3.11 + 15.57 = 171.10 KN < 175.0 OK! 609.64 609.64 CONCLUSION
  • 61. 61 2.0 The intensity of column service loads has a direct impact to the permissible net pile group eccentricity limit. CONCLUSION
  • 62. 62 0, 420 420, 0 0, 420 -420, 0 0, -420 420, 0 0, -420 -420, 0 0, 268 268, 0 0, 268 -268, 0 0, -268 268, 0 0, -268 -268, 0 0, 136 136, 0 0, 136 -136, 0 0, -136 136, 0 0, -136 -136, 0 -500 -400 -300 -200 -100 0 100 200 300 400 500 -500 -400 -300 -200 -100 0 100 200 300 400 500 4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT CHART (250mm Square Pile @ 175 kN Working Load) N/n=3.25 N/n=3.50 N/n=3.75 Eccentricity(+Ymm) Eccentricity (-X mm) Eccentricity(-Ymm) Eccentricity (+X mm) Nult 760 kN Nult 818 kN Nult 883 kN (N/n=3.25) (N/n=3.5) (N/n=3.75) X ecc Y ecc X ecc Y ecc X ecc Y ecc 0 340 0 208 0 100 170 170 104 104 50 50 340 0 208 0 100 0 0 340 0 208 0 100 -170 170 -104 104 -50 50 -340 0 -208 0 -100 0 0 -340 0 -208 0 -100 170 -170 104 -104 50 -50 340 0 208 0 100 0 0 -340 0 -208 0 -100 -170 -170 -104 -104 -50 -50 -340 0 -208 0 -100 0 N=Column Service Load kN n=Pile Working Load kN CONCLUSION
  • 63. 63 3.0 The spacing of pile centre to centre also has a direct impact to the permissible net pile group eccentricity limit. CONCLUSION
  • 64. 64 0, 208 208, 0 0, 208 -208, 0 0, -208 208, 0 0, -208 -208, 0 0, 240 240, 0 0, 240 -240, 0 0, -240 240, 0 0, -240 -240, 0 -250 -200 -150 -100 -50 0 50 100 150 200 250 -250 -200 -150 -100 -50 0 50 100 150 200 250 4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT CHART (250mm Square Pile @ 175 kN Working Load) k=3.0 k=3.50 Eccentricity(+Ymm) Eccentricity (-X mm) Eccentricity(-Ymm) Eccentricity (+X mm) Nult 818 kN Nult 818 kN (K=3.0) (K3.50) X ecc Y ecc X ecc Y ecc 0 208 0 240 104 104 120 120 208 0 240 0 0 208 0 240 -104 104 -120 120 -208 0 -240 0 0 -208 0 -240 104 -104 120 -120 208 0 240 0 0 -208 0 -240 -104 -104 -120 -120 -208 0 -240 0 K=Pile Spacing CONCLUSION
  • 65. 65 4.0 For pile failure during driving, the required number of Replacement Pile/s & the location/coordinate of these piles can be evaluated. CONCLUSION
  • 66. 66 PILE ADD-ON/PILE REPLACEMENT PROCEDURE Pile Group Centroid : ex ey (after pile failure & before replacement pile) (mm) (mm) 120.67 -89.33 Ultimate Column Load = 818 RECOMMENDED NET REPLACEMENT PILE COORDINATES Total Service Load (Incl. self wt pilecap) = 609.64 Total Service Load / n = 3.48 Nos of Replacement Pile = 2 X Coord. Y Coord. Replacent pile position X Coord. Y Coord. -362 268 REPLACEMENT PILE #1 -362 0 REPLACEMENT PILE #2 0 268 NET COORDINATE -362 268 Reduction Factor for pile group Efficiency (%) 15.00 Pile Group Centroid : ex ey (after replacement pile) (mm) (mm) 0.00 0.00 Reduced Pile Working Load (kN) 148.75 Nos of Replacement Piles required 1.10 CONCLUSION
  • 67. 67 P1, -375, 375 P2, 476, 452 P3, -472, -292 P4, 358, -428 RP#1, -362, 0 RP#2, 0, 268 -500 -400 -300 -200 -100 0 100 200 300 400 500 -600 -400 -200 0 200 400 600 YCOORDINATE(mm) X COORDINATE (mm) 4 PILE GROUP: OVERALL PILE LOCATION (INCL. RP1 & RP2) P1 P2 P3 P4 RP#1 RP#2 CONCLUSION
  • 68. 68 -375 -450 -300 -225 -150 -75 375 300 225 150 75 450 -500 -400 -300 -200 -100 0 100 200 300 400 500 -300 -200 -100 0 100 200 300 4 PILE GROUP: OPTIMUM NET COORDINATES OF REPLACEMENTPILE RP1 & RP2 (PILE FAILURE @ P#1) OPTIMUM X@P1 FAIL OPTIMUM Y @P1 FAIL REPLACEMENTPILECOORDINATE NET ECCENTRICITY OF PILE GROUP (BEFORE PILE REPLACEMENT) -13mm -362mm +107mm +268mm CONCLUSION
  • 69. 69 RECOMMENDATION The ‘Pass-Fail’ criteria for a particular Pile Group Arrangement should be based on the comparison between Redistributed Loads (individual pile) and the Pile Safe Working Load. These redistributed loads arise from eccentric moments induced into the pile group due to either pile eccentricity or pile failure conditions. > Pile Safe Working Load Fp: Redistributed Loads to each individual pile kN N : Net Column Service Load kN (incl self weight of pile cap) n : Pile Safe Working Load kN
  • 70. 70 RECOMMENDATION This criteria can then be translated into graphical form for a specific value of: i. Pile dimensions ii. Pile spacing iii. Pile working loads iv. Range of column service loads 0, 420 420, 0 0, 420 -420, 0 0, -420 420, 0 0, -420 -420, 0 0, 268 268, 0 0, 268 -268, 0 0, -268 268, 0 0, -268 -268, 0 0, 136 136, 0 0, 136 -136, 0 0, -136 136, 0 0, -136 -136, 0 -500 -400 -300 -200 -100 0 100 200 300 400 500 -600 -400 -200 0 200 400 600 4 PILE GROUP : NET PILE GROUP ECCENTRICITY LIMIT CHART (250mm Square Pile @ 175 kN Working Load) N/n=3.25 N/n=3.50 N/n=3.75 Eccentricity(+Y mm) Eccentricity (-X mm) Eccentricity(-Y mm) Eccentricity (+X mm)
  • 71. APPENDIX: Example of 4 Pile Group Excel Sheet
  • 72. 72 PILE DETAILS Pile Size mm 250.0 Pile Working Load (kN) 175.0 PILE CAP DETAILS Pile Spacing K Factor (3 to 5) 3.00 B mm 1300.0 Calculated Pile Cap Overall Depth mm 600.0 600 W mm 1300.0 Minimum Setback Pile Edge mm 150.0 150 H mm 600.0 Cover mm 100.0 LOAD DETAILS Ultimate Axial Load kN 818.00 Calculated Self Weight of Pile Cap kN 25.35 Net Service Load kN 609.64 Nos of Piles Required 3.48 4 Pile P#1 y = 1000 mm 0 x = 1000 mm Pile P#2 y = 77 mm 1 x = 101 mm Pile P#3 y = 83 mm 1 x = -97 mm Pile P#4 y = -53 mm 1 x = -17 mm 3 NET Y COORDINATE (After Pile Failure) 107 NET X COORDINATE (After Pile Failure) -13 Ultimate Column Load = 818.0 Total Service Load (Incl. self wt pilecap) = 609.64 Total Service Load / n = 3.48 Position of pile without eccentricity pile 1 pile 2 pile 3 pile 4 x coor -375 375 -375 375 y coor 375 375 -375 -375 Position of pile with eccentricity pile 1 pile 2 pile 3 pile 4 x coor FAIL 476 -472 358 y coor FAIL 452 -292 -428 Centroid before pile ecc/pile failure A Y AY A X AX P1 62500.0 375 23437500 62500.0 -375 -23437500 P2 62500.0 375 23437500 62500.0 375 23437500 P3 62500.0 -375 -23437500 62500.0 -375 -23437500 P4 62500.0 -375 -23437500 62500.0 375 23437500 Total 250000 0 250000 0 Centroid Y = 0.00 mm Centroid X = 0.00 mm APPENDIX
  • 73. 73 Centroid after pile ecc/pile failure Iy Ix A Y AY A X AX P1 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL P2 62500 452 28250000 62500 476 29750000 126261.7778 293041.7778 P3 62500 -292 -18250000 62500 -472 -29500000 351253.7778 41073.77778 P4 62500 -428 -26750000 62500 358 22375000 56327.11111 114695.1111 Total 187500 -16750000 187500 22625000 533842.6667 448810.6667 Centroid Y = -89.33 mm Centroid X = 120.67 mm Moment of inertia with pile eccentricity Iy = 0.53 Ix = 0.45 Pile Group Centroid After Pile Failure (Before Pile Add-On/Pile Replacement) ex = 120.67 ey = -89.33 moment due to eccentricity My = -73.56 Mx = -54.46 Checking for pile capacity F = Fpile 1 = FAIL - FAIL - FAIL = FAIL KN > 175.0 FAIL! Fpile 2 = 203.21 - -48.96 + -65.69 = 219.94 KN > 175.0 FAIL! Fpile 3 = 203.21 + -81.67 - -24.59 = 260.29 KN > 175.0 FAIL! Fpile 4 = 203.21 + -32.70 + -41.10 = 129.41 KN < 175.0 OK! 609.64 609.64 APPENDIX
  • 74. 74 PILE ADD-ON/PILE REPLACEMENT PROCEDURE Pile Group Centroid : ex ey (after pile failure & before replacement pile) (mm) (mm) 120.67 -89.33 Ultimate Column Load = 818 RECOMMENDED NET REPLACEMENT PILE COORDINATES Total Service Load (Incl. self wt pilecap) = 609.64 Total Service Load / n = 3.48 Nos of Replacement Pile = 2 X Coord. Y Coord. Replacent pile position X Coord. Y Coord. -362 268 REPLACEMENT PILE #1 -362 0 REPLACEMENT PILE #2 0 268 NET COORDINATE -362 268 Reduction Factor for pile group Efficiency (%) 15.00 Pile Group Centroid : ex ey (after replacement pile) (mm) (mm) 0.00 0.00 Reduced Pile Working Load (kN) 148.75 Nos of Replacement Piles required 1.10 Position of pile with eccentricity (With Replacement Pile) coor pile 1 pile 2 pile 3 pile 4 Rep. PILE #1 Rep. PILE #2 x FAIL 476 -472 358 -362 0 y FAIL 452 -292 -428 0 268 Centroid With Replacement Pile A Y AY A X AX Iy Ix P1 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL P2 62500 452 28250000 62500 476 29750000 226576 204304 P3 62500 -292 -18250000 62500 -472 -29500000 222784 85264 P4 62500 -428 -26750000 62500 358 22375000 128164 183184 REPLACEMENT PILE #1 62500 0 0 62500 -362 -22625000 131044 0 REPLACEMENT PILE #2 62500 268 16750000 62500 0 0 0 71824 Total 312500 0 312500 0 Centroid Y = 0.00 mm Centroid X = 0.00 mm 708568 544576 Moment of inertia (with replacement pile) Iy = 0.71 Ix = 0.54 Moment Due to eccentricity Pile Group Centroid ex = 0.00 ey = 0.00 moment due to the eccentricity My = 0 Mx = 0 PILE LOAD REDISTRIBUTION (with Add-On/Replacement Pile) F = Fpile 1 = FAIL - FAIL - FAIL = FAIL KN > 140 FAIL! Fpile 2 = 121.93 - 0.00 + 0.00 = 121.93 KN < 140 OK! Fpile 3 = 121.93 + 0.00 - 0.00 = 121.93 KN < 140 OK! Fpile 4 = 121.93 + 0.00 + 0.00 = 121.93 KN < 140 OK! F replacement pile RP1 = 121.93 0.00 0.00 = 121.93 KN < 140 OK! F replacement pile RP2 121.93 0.00 0.00 = 121.93 KN < 140 OK! Total 609.64 609.64 APPENDIX
  • 75. FORENSIC CIVIL ENGINEERING SEMINAR ForCES ’18 29th & 30th Oct. 2018 utm kuala lumpur THANK YOU MAY 2017