BANGLADESH-INDIA FRIENDSHIP POWER COMPANY (PVT.)
LIMITED
2X660MW MAITREE SUPER THERMAL POWER PROJECT
RAMPAL, BANGLADESH
OWNER’S CONSULTANT:
M/s FICHTNER GmbH & Co KG.
STUTTGART, GERMANY
DESIGN OF PRECAST DRIVEN PILES
DIMENSION: 450mmX450mm & LENGTH: 26m
BHARAT HEAVY ELECTRICALS LIMITED
PROJECT ENGINEERING MANAGEMENT
NOIDA-201301
DOC NO: MAITREE-00-UMA-LC-421607C009PEM
DESIGN & ANALYSIS OF PRECAST DRIVEN PILE (450mm X 450mm SQ)
PROJECT TITLE: 2X660MW MAITREE SUPER THERMAL POWER PROJECT.
LOCATION:RAMPAL, BAGERHAT, BANGLADESH.
PAGE 1 OF 4
TABLE OF CONTENTS
 1.0 CHECK FOR DRIVING STRESS ------------------------------------------------------------- 2
 2.0 CHECK FOR LIFTING & PITCHING STRESS ------------------------------------------------- 2
 3.0 CHECK FOR AXIAL STRESS ---------------------------------------------------------------- 3
 4.0 CHECK FOR UPLIFT CAPACITY ------------------------------------------------------------ 3
 5.0 CHECK FOR LATERAL CAPACITY---------------------------------------------------------- 3
 6.0 EVALUATION OF POINT OF FIXITY OF PILE------------------------------------------------ 4
 RECOMMENDATIONS-------------------------------------------------------------------------- 4
DESIGN & ANALYSIS OF PRECAST DRIVEN PILE (450mm X 450mm SQ)
PROJECT TITLE: 2X660MW MAITREE SUPER THERMAL POWER PROJECT.
LOCATION:RAMPAL, BAGERHAT, BANGLADESH.
PAGE 2 OF 4
1.0 CHECK FOR DRIVING STRESS
Formula for use with Hydraulic Hammer:
Ru= [12efEn/ (s+0.5(C1+C2+C3)] x [(Wr+e Wp) / (Wr+Wp)] --------- (I)
Where,
 Ru = ultimate carrying capacity of pile
(considered as ultimate resistance to
driving)
 Wr= weight of falling mass, lb
 En=Rated energy per blow, ft-lb
 ef= hammer efficiency =100 percent for
hydraulic hammer.
 Wp= weight of pile
 L = length of pile, inch.
 e = coefficient of restitution
 s = set value
 C1= temporary compression allowance
for pile head and cap.
 C2= temporary compression of pile, inch.
= Ru L/ AE
 C3= temporary compression allowance
for quake of ground
 A= average cross section of pile, Sq.inch
 E= modulus of elasticity for pile
material=57000√ f’c
Using the above equation,
Developed Stress on Concrete during driving = = 19.50 Mpa < 40 Mpa
[REFERENCE: APPENDIX-A]
HENCE SAFE FOR CONCRETE COMPRESSIVE STRENGTH AT DRIVING.
2.0 CHECK FOR LIFTING & PITCHING STRESS
Total dead weight of pile, W ' =[0.45x0.45x25x15] kN= 75.9375kN
Factored Dead Weight of Pile, W =1.4 x 81= 106.3125 kN [ACI-318-14: TABLE 5.3.1]
2.0.1. DURING PITCHING
For one point pitching at 3L/10, maximum developed moment = WL/22 ………… (II)
=106.3125 X 15/22 = 82.47 kN-m
Maximum Developed Moment, Mu=82.47 kN-m
2.0.1.1 MOMENT CAPACITY OF REINFORCED CONCRETE SECTION
Using 4 Nos 32mm-φ bar,
Moment Capacity of the section, Mc = 247.10 kN-m > 82.47 kN-m.
[APPENDIX-B –ANALYSIS ON SECTION CAPACITY.]
DESIGN & ANALYSIS OF PRECAST DRIVEN PILE (450mm X 450mm SQ)
PROJECT TITLE: 2X660MW MAITREE SUPER THERMAL POWER PROJECT.
LOCATION:RAMPAL, BAGERHAT, BANGLADESH.
PAGE 3 OF 4
HENCE SAFE FOR ONE POINT PITCHING (AT 0.3 L).
 2.0.2 DURING LIFTING
For two point lifting at L/5, maximum developed moment = WL/40 < WL/22
HENCE SAFE FOR TWO-POINT LIFTING (AT 0.2 L).
3.0 CHECK FOR AXIAL STRESS
According to ACI-318-14-10.3.6 & ACI-318-14-22.4.2,
Axial Capacity of Pile with Lateral Ties:
φPn = 0.80 φ [0.85 fC’(Ag-Ast) + fyAst]
φPn = 0.80 X 0.65 X [0.85 X40 X (202500-3216.99) +500 X 3216.99)]
= 4359.741 kN = 435.9 TON
4.0 CHECK FOR UPLIFT CAPACITY
According to ACI 543-R-4.3.3.1, the uplift capacity of the section can be determined from the
following equation,
Pup =0.5 x fy x Ast
Pup =0.5 x 500 x 3216.99=804.247 kN. = 80.43 Ton
5.0 CHECK FOR LATERAL CAPACITY
Here Vu=70 kN≈ 15.75 Kip (Design Maximum Lateral Load at Fixed Head Condition)
f’c=40 MPa=5800 psi
fy=500 MPa=72000 psi
According to ACI-318-14, lateral capacity of the section,
φVc= φ2√ f’c bw d
= (0.75×2√5800×17.71×15.12)/1000 [φ = 0.75 (ACI-318-14-21.2.1)]
=30.59 Kips>Vu
Smax =3 inches (ACI 318-02, Section 7.10.4.3)
Smin =1 inches (ACI 318-02, Section 7.10.4.3)
HENCE, PROVIDE 10 mm DIA BAR @ 75 mm C/C.
DESIGN & ANALYSIS OF PRECAST DRIVEN PILE (450mm X 450mm SQ)
PROJECT TITLE: 2X660MW MAITREE SUPER THERMAL POWER PROJECT.
LOCATION:RAMPAL, BAGERHAT, BANGLADESH.
PAGE 4 OF 4
6.0 EVALUATION OF POINT OF FIXITY OF PILE
Considering Clayey Strata:
1.4 [Ep lw / Es] 0.25
= 1.4 x [4340.59 x 0.399/2.08]0.25
= 7.52 ft = 2.3m
Where,
Es = soil modulus for clays=2.08 [Ref: Table: C10.4.6.3-1, AASHTO- 2010]
Hence critical value of point of fixity at 2.30 m from top of pile has been
considered.
Maximum Bending Moment due to Lateral Load,
Mf = 138.00 kN-m.
RECOMMENDATIONS
From the above moment analysis, it is visible that, during 1-point pitching (at 0.3L
distance) the developed moment along pile, is higher than the moment developed during 2-
point lifting and shifting (at 0.2 L distance).
Hence although during lifting, the developed moment is less than the moment
developed during pitching, it is recommended to consider the developed moment during
pitching as the ultimate developed moment for safe lifting transferring, pitching and driving
of the pile.
2.30m
70 kN
0.2L 0.2L
Lifting & shifting technique Pitching technique
23.70m
www.priodeep.weebly.com
GRADE (MPA) GRADE (psi)
m m
PILE SIZE 0.45 0.45
LENGTH 11 m 500 72519
10000.00 lb
59000.00 lb-ft
100.00 %
12519.11
432.96 inches.
0.25 inches.
0.10
3.179E-07 X Ru
0.10
313.71 Sq.inches
4341559.45 psi
8.472E-08 X Ru
2
+ 0.35 = 0
= lbs
= N
19.50 MPa HENCE OK!!
3948147.426
Stress on concrete during driving(Ru/A) =
E= modulus of elasticity for pile material=57000√ f’c
So, placing the values in equation -I,
Ru -377375.7314
Solving the equation above:
Ru 887543.54
s = set value(minimum penetration for each blow)
C1= temporary compression allowance for pile head and cap
C2= temporary compression of pile, in= Ru L/ AE
C3= temporary compression allowance for quake of ground
A= average cross section of pile
Wr= weight of falling mass
En=Rated energy per blow
ef= hammer efficiency
Wp= weight of pile
L = length of pile
e = coefficient of restitution * 0.40
*[Pile Top Covered by steel plate during driving.]
Check for Driving Stress
Formula for use with HYDRAULIC HAMMER:
Ru= [12efEn/ (s+0.5(C1+C2+C3)] x [(Wr+e2
Wp) / (Wr+Wp)] ---------(I)
Ru = ultimate carrying capacity of pile (ultimate resistance to driving) TO BE CALCULATED
PILE SPECIFICATIONS MATERIAL STRENGTH PROPERTIES
CONCRETE CYLINDRICAL CRASHING STRENGTH, fc'
(28 days)
40 5802
YIELD STRNGTH OF STEEL,fy
ANALYSIS ON PRE-CAST DRIVEN PILE FOR DRIVING STRESS
1 1/1/2018
Job Name:
Job Number:
Beam or Slab Section? Beam
Exterior or Interior Exposure? Exterior
Reinforcing Yield Strength, fy = 72 ksi
Concrete Comp. Strength, f 'c = 5.8 ksi h d
Beam Width, b = 17.717 in.
Depth to Tension Reinforcing, d = 14.63 in.
Total Beam Depth, h = 17.717 in.
Tension Reinforcing, As = 2.480 in.^2
No. of Tension Bars in Beam, Nb = 2.000
Tension Reinf. Bar Spacing, s1 = 12.000 in. d'=2.71''
Clear Cover to Tension Reinf., Cc = 2.710 in.
Depth to Compression Reinf., d' = 2.710 in.
Compression Reinforcing, A's = 2.480 in.^2 =2.48
Working Stress Moment, Ma = 103.00 ft-kips h=17.7165354330709'' d=14.6315354330709''
Ultimate Design Moment, Mu = 103.00 ft-kips
Ultimate Design Shear, Vu = 15.73 kips
Total Stirrup Area, Av(stirrup) = 0.220 in.^2 As=2.48
Tie/Stirrup Spacing, s2 = 3.0000 in.
Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.):
b1 = 0.76 Per ACI 318-14 Code:
c = 0.000 in. Es = 29000 ksi
a = 0.000 in. Ec = 4341 ksi
rb = 0.02847 n = 6.68
r = 0.00957 fs = 37.84 ksi
r(min) = 0.00317 fs(used) = 37.84 ksi
As(min) = 0.823 in.^2 <= As = 2.48 in.^2, O.K. s1(max) = 22.71 in. >= s1 = 12 in., O.K.
ρ(temp) = N.A. (total for section)
As(temp) = N.A. in.^2 (total) Per ACI 318-95 Code (for reference only):
ρ(max) = 0.02230 dc = 3.0850 in.
As(max) = 5.781 in.^2 >= As = 2.48 in.^2, O.K. z = 209.03 k/in.
e's = -0.00001 z(allow) = 319.00 k/in. >= z = 209.03 k/in.,
f's = N.A. ksi (A's does not yield) O.K.
et = 0.01332 >= 0.005, Tension-controlled
f = 0.900
ΦMn = 182.26 ft-k O.K.
ΦMn =
Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection:
fVc = 29.61 kips fr = 0.571 ksi
fVs = 57.94 kips kd = 4.1577 in.
fVn = 87.55 kips >= Vu = 15.73 kips, O.K. Ig = 8209.83 in.^4
fVs(max) = 118.45 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 44.11 ft-k
Av(prov) = 0.220 in.^2 = Av(stirrup) Icr = 2271.46 in.^4
Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.22 in.^2, O.K. Ie = 2738.00 in.^4 (for deflection)
Av(min) = 0.042 in.^2 <= Av(prov) = 0.22 in.^2, O.K.
s2(max) = 7.316 in. >= s2 = 3 in., O.K.
A's
Doubly Reinforced Section
Results:
247.1033 kN.m
b=17.7165354330709''
As
PRECAST DRIVEN PILE SECTION ANALYSIS
Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections
Per ACI 318-14 Code
PRECAST DRIVEN PILE-450mmX450 mm Subject: SECTIONAL ANALYSIS OF PILE
MAITREE 2X660MW-STPP-RAMPAL Originator: PRIODEEP CHOWDHURY
Input Data:
b
Singly Reinforced Section
1 of 1 1/1/2018 12:06 PM
LATERALLY LOADED ELASTIC PILES ON
ELASTO-PLASTIC NODAL SPRINGS
 Constant pile EI
 Constant soil stiffness in each element
 Constant element subdivision length
 Loads and restraints on top node
Description
DRIVEN PRECAST PILE: 450 mm X 450 mm
PROJECT: MAITREE 2X660MW-STPP-RAMPAL
LOCATION: RAMPAL, BANGLADESH
GENERAL PARAMETERS
 Pile length 26 m
 Epile 2.97E+07 kPa
 Ipile 3.42E-03 m4
 Elements 52
 Element length 0.5 m
 Load steps 26
 Max. iterations/step 30
TOP NODE MOMENT RESTRAINT (q=0:FIXED; q=1:FREE)
Node ux q
1 1 0
TOP NODE LOADS
Node
Fh M Top node reaction
[kNm][kN] [kNm]
1 70 0 138.80
0 5000 10000 15000 20000
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
SOIL STIFFNESS/ELEMENT
[KN/M2]
-30.00 -20.00 -10.00 0.00 10.00
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
AVERAGE SPRING FORCES
IN ELEMENTS [KN/M]
-21.00
-16.00
-11.00
-6.00
-1.00-0.002 0.000 0.002 0.004 0.006 0.008
HORIZONTAL
DISPLACEMENT [M]
-21.00
-16.00
-11.00
-6.00
-1.00
-50.0 0.0 50.0 100.0 150.0
BENDING MOMENT [KNM]
-21.00
-16.00
-11.00
-6.00
-1.00-20.0 0.0 20.0 40.0 60.0 80.0
SHEAR FORCE [KN]
0
0.2
0.4
0.6
0.8
1
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
LOAD FACTOR VS DISPLACEMENT OF TOP NODE
[M]
0
0.2
0.4
0.6
0.8
1
0.000 20.000 40.000 60.000 80.000 100.000 120.000 140.000 160.000
LOAD FACTOR VS MAX. BENDING MOMENT [KNM]
Soil properties Spring forces (last step) Pile forces (last step) Pile displacement and rotation (last step) Step-by-step results
k_soil F_max F_soil z F_soil z V M z ux q Fhstep ux,top |Mmax| NL Springs Iterations
Element [kN/m2
] [kN/m] Element [kNm] [m] [kN] [m] [kN] [kNm] [m] [m] [rad] Step [kN] [m] [kNm]
1 5000 5.0 1 -5.00 0.00 -1.3 0.00 70.0 138.8 0.00 0.007 0.0000 0.038462 2.69 0.0 4.023 12.0 2
2 5000 10.0 2 -10.00 -0.50 -3.8 -0.50 68.8 104.4 -0.50 0.007 -0.0006 0.076923 5.38 0.0 8.045 12.0 1
3 5000 15.0 3 -15.00 -1.00 -6.3 -1.00 65.0 71.9 -1.00 0.006 -0.0010 0.115385 8.08 0.0 12.068 12.0 1
4 5000 20.0 4 -20.00 -1.50 -8.8 -1.50 58.8 42.5 -1.50 0.006 -0.0013 0.153846 10.77 0.0 16.091 12.0 1
5 5000 25.0 5 -22.37 -2.00 -11.3 -2.00 50.0 17.5 -2.00 0.005 -0.0015 0.192308 13.46 0.0 20.114 12.0 1
6 5000 30.0 6 -20.38 -2.50 -11.1 -2.50 38.8 -1.8 -2.50 0.004 -0.0015 0.230769 16.15 0.0 24.290 13.0 2
7 5000 35.0 7 -16.76 -3.00 -9.3 -3.00 27.6 -15.6 -3.00 0.004 -0.0015 0.269231 18.85 0.0 28.678 13.0 1
8 5000 40.0 8 -13.38 -3.50 -7.5 -3.50 18.4 -24.8 -3.50 0.003 -0.0014 0.307692 21.54 0.0 33.065 13.0 1
9 5000 45.0 9 -10.33 -4.00 -5.9 -4.00 10.9 -30.3 -4.00 0.002 -0.0012 0.346154 24.23 0.0 37.903 14.0 2
10 5000 50.0 10 -7.67 -4.50 -4.4 -4.50 5.0 -32.8 -4.50 0.002 -0.0011 0.384615 26.92 0.0 42.965 14.0 1
11 5000 50.0 11 -5.40 -5.00 -3.2 -5.00 0.5 -33.0 -5.00 0.001 -0.0009 0.423077 29.62 0.0 48.026 14.0 1
12 5000 50.0 12 -3.53 -5.50 -2.2 -5.50 -2.7 -31.7 -5.50 0.001 -0.0007 0.461538 32.31 0.0 53.087 14.0 1
13 5000 50.0 13 -2.04 -6.00 -1.3 -6.00 -4.9 -29.3 -6.00 0.001 -0.0006 0.5 35.00 0.0 58.149 14.0 1
14 5000 50.0 14 -0.88 -6.50 -0.7 -6.50 -6.2 -26.2 -6.50 0.000 -0.0005 0.538462 37.69 0.0 63.602 15.0 2
15 5000 50.0 15 -0.02 -7.00 -0.2 -7.00 -6.9 -22.7 -7.00 0.000 -0.0003 0.576923 40.38 0.0 69.336 15.0 1
16 5000 50.0 16 0.57 -7.50 0.2 -7.50 -7.1 -19.2 -7.50 0.000 -0.0002 0.615385 43.08 0.0 75.070 15.0 1
17 5000 50.0 17 0.96 -8.00 0.4 -8.00 -6.9 -15.7 -8.00 0.000 -0.0002 0.653846 45.77 0.0 80.805 15.0 1
18 5000 50.0 18 1.17 -8.50 0.6 -8.50 -6.5 -12.4 -8.50 0.000 -0.0001 0.692308 48.46 0.0 86.539 15.0 1
19 5000 50.0 19 1.24 -9.00 0.6 -9.00 -6.0 -9.5 -9.00 0.000 0.0000 0.730769 51.15 0.0 92.562 16.0 2
20 5000 50.0 20 1.21 -9.50 0.6 -9.50 -5.3 -6.8 -9.50 0.000 0.0000 0.769231 53.85 0.0 98.969 16.0 1
21 5000 50.0 21 1.44 -10.00 0.6 -10.00 -4.7 -4.4 -10.00 0.000 0.0000 0.807692 56.54 0.0 105.376 16.0 1
22 11000 50.0 22 1.84 -10.50 0.8 -10.50 -4.1 -2.4 -10.50 0.000 0.0001 0.846154 59.2308 0.005456 111.8 16.0 1
23 11000 50.0 23 1.80 -11.00 1.0 -11.00 -3.3 -0.7 -11.00 0.000 0.0001 0.884615 61.9231 0.005813 118.2 16.0 1
24 11000 50.0 24 1.45 -11.50 0.8 -11.50 -2.3 0.4 -11.50 0.000 0.0001 0.923077 64.6154 0.006175 124.6 17.0 2
25 11000 50.0 25 1.11 -12.00 0.6 -12.00 -1.5 1.2 -12.00 0.000 0.0001 0.961538 67.3077 0.006615 131.7 17.0 1
26 11000 50.0 26 0.81 -12.50 0.5 -12.50 -0.8 1.6 -12.50 0.000 0.0001 1 70.0000 0.007055 138.8 17.0 1
27 11000 50.0 27 0.60 -13.00 0.3 -13.00 -0.4 1.8 -13.00 0.000 0.0000
28 15000 50.0 28 0.44 -13.50 0.3 -13.50 0.0 1.8 -13.50 0.000 0.0000
29 15000 50.0 29 0.26 -14.00 0.2 -14.00 0.2 1.7 -14.00 0.000 0.0000
30 15000 50.0 30 0.10 -14.50 0.1 -14.50 0.4 1.5 -14.50 0.000 0.0000
31 15000 50.0 31 -0.02 -15.00 0.0 -15.00 0.5 1.2 -15.00 0.000 0.0000
32 15000 50.0 32 -0.09 -15.50 0.0 -15.50 0.5 1.0 -15.50 0.000 0.0000
33 15000 50.0 33 -0.13 -16.00 -0.1 -16.00 0.5 0.7 -16.00 0.000 0.0000
34 15000 50.0 34 -0.15 -16.50 -0.1 -16.50 0.4 0.5 -16.50 0.000 0.0000
35 15000 50.0 35 -0.14 -17.00 -0.1 -17.00 0.3 0.4 -17.00 0.000 0.0000
36 15000 50.0 36 -0.13 -17.50 -0.1 -17.50 0.3 0.2 -17.50 0.000 0.0000
37 15000 50.0 37 -0.11 -18.00 -0.1 -18.00 0.2 0.1 -18.00 0.000 0.0000
38 15000 50.0 38 -0.09 -18.50 -0.1 -18.50 0.1 0.1 -18.50 0.000 0.0000
39 15000 50.0 39 -0.07 -19.00 0.0 -19.00 0.1 0.0 -19.00 0.000 0.0000
40 15000 50.0 40 -0.04 -19.50 0.0 -19.50 0.0 0.0 -19.50 0.000 0.0000
41 18000 41 -0.02 -20.00 0.0 -20.00 0.0 0.0 -20.00 0.000 0.0000
42 18000 42 0.00 -20.50 0.000 -20.50 0.0 0.0 -20.5000 1.2E-07 0.00
43 18000 43 0.00 -21.00 0.000 -21.00 0.0 0.0 -21.0000 -1.6E-06 0.00
44 18000 44 0.00 -21.50 0.00000 -21.50 0.0 0.0 -21.5000 -3.3E-06 0.00
45 18000 45 0.00 -22.00 0.000 -22.00 0.0 0.0 -22.0000 -5.1E-06 0.00
46 18000 46 0.00 -22.50 0.000 -22.50 0.0 0.0 -22.5000 -6.8E-06 0.00
47 18000 47 0.00 -23.00 0.000 -23.00 0.0 0.0 -23.0000 -8.5E-06 0.00
48 18000 48 0.00 -23.50 0.000 -23.50 0.0 0.0 -23.5000 -1E-05 0.00
49 18000 49 0.00 -24.00 0.000 -24.00 0.0 0.0 -24.0000 -1.2E-05 0.00
50 18000 50 0.00 -24.50 0.000 -24.50 0.0 0.0 -24.5000 -1.4E-05 0.00
51 18000 51 0.00 -25.00 0.000 -25.00 0.0 0.0 -25.0000 -1.5E-05 0.00
52 18000 52 0.00 -25.50 0.000 -25.50 0.0 0.0 -25.5000 -1.7E-05 0.00
-26.00 0.000 -26.00 0.0 0.0 -26.0000 -1.9E-05 0.00
Fhstep/ Fh
Job Name: Subject:
Job Number: Originator:
Input Data:
Lx=17.7165354330709
Reinforcing Yield Strength, fy = 72 ksi.
Concrete Comp. Strength, f 'c = 5.8 ksi
Total Member Width, Lx = 17.717 in.
Total Member Depth, Ly = 17.717 in.
Distance to Long. Reinforcing, d' = 2.710 in. Ly=17.7165354330709 Ntb=4
Ultimate Design Axial Load, Pu = 191.09 kips Nsb=0
Ultimate Design Moment, Mux = 101.84 ft-kips
Total Top/Bot. Long. Bars, Ntb = 4
Top/Bot. Longitudinal Bar Size = 10 d'=2.71 (typ.)
Total Side Long. Bars, Nsb = 0 Member Section
Side Longitudinal Bar Size = 10
Results:
X-axis Flexure and Axial Load Interaction Diagram Points
Location ΦPnx (k) ΦMnx (ft-k) ey (in.) Comments
Point #1 1279.01 0.00 0.00 Nom. max. compression = ΦPo
Point #2 1023.21 0.00 0.00 Allowable fPn(max) = 0.8*fPo
Point #3 1023.21 124.64 1.46 Min. eccentricity
Point #4 795.21 235.73 3.56 0% rebar tension = 0 ksi
Point #5 668.83 263.46 4.73 25% rebar tension = 15 ksi
Point #6 567.55 279.87 5.92 50% rebar tension = 30 ksi
Point #7 372.77 309.13 9.95 100% rebar tension = 60 ksi
Point #8 182.05 224.00 14.77 ΦPn = 0.1*f'c*Ag Inter
Point #9 0.00 191.39 (Infinity) Pure moment capacity
Point #10 -329.18 0.00 0.00 Pure axial tension capacity
Gross Reinforcing Ratio Provided:
rg = 0.01618
Member Uniaxial Capacity at Design Eccentricity:
Interpolated Results from Above:
fPnx (k) fMnx (ft-k) ey (in.)
531.62 283.34 6.40
Effective Length Criteria for "Short" Column:
k*Lu <= 9.74 ft. (for k*Lu/r(min) <= 22)
k*Lu <= 17.72 ft. (for k*Lu/r(min) <= 40)
Pure Axial Compression Capacity without Reinforcing:
fPn = 866.55 kips
Tie Minimum Size and Maximum Spacing:
#3@18''
RECTANGULAR CONCRETE PRECAST SECTION ANALYSIS
PRECAST DRIVEN PILE-350mmX350 mm
2X660 MW MAITREE STPP. PRIODEEP
Uniaxial Bending Check
For X-Axis Flexure with Axial Compression or Tension Load
Assuming "Short", Non-Slender Member with Symmetric Reinforcing
-600
-400
-200
0
200
400
600
800
1000
1200
1400
0 100 200 300 400
ΦPnx(k)
ΦMnx (ft-k)
X-AXIS INTERACTION
DIAGRAM
X
Y
1 of 1
Job Name: Subject:
Job Number: Originator:
Input Data:
Lx=17.7165354330709
Reinforcing Yield Strength, fy = 72 ksi.
Concrete Comp. Strength, f 'c = 5.8 ksi
Total Member Width, Lx = 17.717 in.
Total Member Depth, Ly = 17.717 in.
Distance to Long. Reinforcing, d' = 2.710 in. Ly=17.7165354330709 Ntb=4
Ultimate Design Axial Load, Pu = -56.20 kips Nsb=0
Ultimate Design Moment, Mux = 101.84 ft-kips
Total Top/Bot. Long. Bars, Ntb = 4
Top/Bot. Longitudinal Bar Size = 10 d'=2.71 (typ.)
Total Side Long. Bars, Nsb = 0 Member Section
Side Longitudinal Bar Size = 10
Results:
X-axis Flexure and Axial Load Interaction Diagram Points
Location ΦPnx (k) ΦMnx (ft-k) ey (in.) Comments
Point #1 1279.01 0.00 0.00 Nom. max. compression = ΦPo
Point #2 1023.21 0.00 0.00 Allowable fPn(max) = 0.8*fPo
Point #3 1023.21 124.64 1.46 Min. eccentricity
Point #4 795.21 235.73 3.56 0% rebar tension = 0 ksi
Point #5 668.83 263.46 4.73 25% rebar tension = 15 ksi
Point #6 567.55 279.87 5.92 50% rebar tension = 30 ksi
Point #7 372.77 309.13 9.95 100% rebar tension = 60 ksi
Point #8 182.05 224.00 14.77 ΦPn = 0.1*f'c*Ag Inter
Point #9 0.00 191.39 (Infinity) Pure moment capacity
Point #10 -329.18 0.00 0.00 Pure axial tension capacity
Gross Reinforcing Ratio Provided:
rg = 0.01618
Member Uniaxial Capacity at Design Eccentricity:
Interpolated Results from Above:
fPnx (k) fMnx (ft-k) ey (in.)
-79.96 144.90 21.74
Effective Length Criteria for "Short" Column:
k*Lu <= 9.74 ft. (for k*Lu/r(min) <= 22)
k*Lu <= 17.72 ft. (for k*Lu/r(min) <= 40)
Pure Axial Compression Capacity without Reinforcing:
fPn = 866.55 kips
Tie Minimum Size and Maximum Spacing:
#3@18''
RECTANGULAR CONCRETE PRECAST SECTION ANALYSIS
PRECAST DRIVEN PILE-350mmX350 mm Uniaxial Bending Check
2X660 MW MAITREE STPP. PRIODEEP
For X-Axis Flexure with Axial Compression or Tension Load
Assuming "Short", Non-Slender Member with Symmetric Reinforcing
-600
-400
-200
0
200
400
600
800
1000
1200
1400
0 100 200 300 400
ΦPnx(k)
ΦMnx (ft-k)
X-AXIS INTERACTION
DIAGRAM
X
Y
1 of 1 1/1/2018 12:12 PM
Job Name: Subject: COMBINED ACTION CHECK.
Job Number: 2X660 MW MAITREE STPP. Originator:
Input Data:
Lx=17.7165354330709
Reinforcing Yield Strength, fy = 72 ksi.
Concrete Comp. Strength, f 'c = 5.8 ksi
Total Member Width, Lx = 17.717 in.
Total Member Depth, Ly = 17.717 in.
Distance to Long. Reinforcing, d' = 2.710 in. Ly=17.7165354330709 Ntb=4
Ultimate Design Axial Load, Pu = 191.09 kips Nsb=0
Ultimate Design Moment, Mux = 101.84 ft-kips
Ultimate Design Moment, Muy = 101.84 ft-kips
Total Top/Bot. Long. Bars, Ntb = 4 d'=2.71 (typ.)
Top/Bot. Longitudinal Bar Size = 6
Total Side Long. Bars, Nsb = 0 Member Section
Side Longitudinal Bar Size = 6
Results:
Gross reinforcing ratio provided:
rg = 0.00561
X-axis Flexure and Axial Load Interaction Diagram Points Y-axis Flexure and Axial Load Interaction Diagram Points
Location fPnx (k) fMnx (ft-k) ey (in.) Comments Location fPny (k) fMny (ft-k) ex (in.) Comments
Point #1 1151.03 0.00 0.00 Nom. max. compression = fPo Point #1 1151.03 0.00 0.00 Nom. max. compression = fPo
Point #2 920.82 0.00 0.00 Allowable fPn(max) = 0.8*fPo Point #2 920.82 0.00 0.00 Allowable fPn(max) = 0.8*fPo
Point #3 920.82 110.50 1.44 Min. eccentricity Point #3 920.82 110.50 1.44 Min. eccentricity
Point #4 731.22 201.51 3.31 0% rebar tension = 0 ksi Point #4 731.22 201.51 3.31 0% rebar tension = 0 ksi
Point #5 622.27 220.71 4.26 25% rebar tension = 15 ksi Point #5 622.27 220.71 4.26 25% rebar tension = 15 ksi
Point #6 538.42 228.49 5.09 50% rebar tension = 30 ksi Point #6 538.42 228.49 5.09 50% rebar tension = 30 ksi
Point #7 378.50 226.33 7.18 100% rebar tension = 60 ksi Point #7 378.50 226.33 7.18 100% rebar tension = 60 ksi
Point #8 182.05 130.48 8.60 fPn = 0.1*f'c*Ag Point #8 182.05 130.48 8.60 fPn = 0.1*f'c*Ag
Point #9 0.00 69.59 (Infinity ) Pure moment capacity Point #9 0.00 69.59 (Infinity ) Pure moment capacity
Point #10 -114.05 0.00 0.00 Pure axial tension capacity Point #10 -114.05 0.00 0.00 Pure axial tension capacity
Member Uniaxial Capacity at Design Eccentricity, ey: Member Uniaxial Capacity at Design Eccentricity, ex:
Interpolated Results from Above: Interpolated Results from Above:
fPnx (k) fMnx (ft-k) ey (in.) fPny (k) fMny (ft-k) ex (in.)
426.18 227.14 6.40 426.18 227.14 6.40
Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: Effective Length Criteria for "Short" Column:
fPn = N.A. kips fPn = 1/(1/fPnx + 1/fPny -1/fPo) <= 1.0 k*Lu <= 9.74 ft. (for k*Lu/r(min) <= 22)
S.R. = N.A. S.R. = Pu/fPn <= 1.0 k*Lu <= 17.72 ft. (for k*Lu/r(min) <= 40)
Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: Pure Axial Compression Capacity w/o Reinf.: Tie Min. Size & Max. Spac.:
S.R. = N.A. S.R. = (Mux/fMnx)^1.15 + (Muy/fMny)^1.15 <= 1.0 fPn = 866.55 kips fPn = 0.80*0.70*(0.85*f'c*Ag) #3@12''
PRECAST-CONCRETE DRIVEN PILE ANALYSIS FOR COMBINED BIAXIAL FLEXURE WITH AXIAL STRESS
For Biaxial Flexure with Axial Compression or Tension Load
Assuming "Short", Non-Slender Member with Symmetric Reinforcing
PRIODEEP
PRECAST DRIVEN PILE-350mmX350 mm
-200
0
200
400
600
800
1000
1200
1400
0 100 200 300
ΦPnx(k)
ΦMnx (ft-k)
X-AXIS INTERACTION
DIAGRAM
X
Y
-200
0
200
400
600
800
1000
1200
1400
0 100 200 300
ΦPny(k)
ΦMny (ft-k)
Y-AXIS INTERACTION
DIAGRAM
1 of 1 1/1/2018 12:17 PM
Job Name: Subject: COMBINED ACTION CHECK.
Job Number: 2X660 MW MAITREE STPP. Originator:
Input Data:
Lx=17.7165354330709
Reinforcing Yield Strength, fy = 72 ksi.
Concrete Comp. Strength, f 'c = 5.8 ksi
Total Member Width, Lx = 17.717 in.
Total Member Depth, Ly = 17.717 in.
Distance to Long. Reinforcing, d' = 2.710 in. Ly=17.7165354330709 Ntb=4
Ultimate Design Axial Load, Pu = -56.20 kips Nsb=0
Ultimate Design Moment, Mux = 101.84 ft-kips
Ultimate Design Moment, Muy = 101.84 ft-kips
Total Top/Bot. Long. Bars, Ntb = 4 d'=2.71 (typ.)
Top/Bot. Longitudinal Bar Size = 10
Total Side Long. Bars, Nsb = 0 Member Section
Side Longitudinal Bar Size = 10
Results:
Gross reinforcing ratio provided:
rg = 0.01618
X-axis Flexure and Axial Load Interaction Diagram Points Y-axis Flexure and Axial Load Interaction Diagram Points
Location fPnx (k) fMnx (ft-k) ey (in.) Comments Location fPny (k) fMny (ft-k) ex (in.) Comments
Point #1 1279.01 0.00 0.00 Nom. max. compression = fPo Point #1 1279.01 0.00 0.00 Nom. max. compression = fPo
Point #2 1023.21 0.00 0.00 Allowable fPn(max) = 0.8*fPo Point #2 1023.21 0.00 0.00 Allowable fPn(max) = 0.8*fPo
Point #3 1023.21 124.64 1.46 Min. eccentricity Point #3 1023.21 124.64 1.46 Min. eccentricity
Point #4 795.21 235.73 3.56 0% rebar tension = 0 ksi Point #4 795.21 235.73 3.56 0% rebar tension = 0 ksi
Point #5 668.83 263.46 4.73 25% rebar tension = 15 ksi Point #5 668.83 263.46 4.73 25% rebar tension = 15 ksi
Point #6 567.55 279.87 5.92 50% rebar tension = 30 ksi Point #6 567.55 279.87 5.92 50% rebar tension = 30 ksi
Point #7 372.77 309.13 9.95 100% rebar tension = 60 ksi Point #7 372.77 309.13 9.95 100% rebar tension = 60 ksi
Point #8 182.05 224.00 14.77 fPn = 0.1*f'c*Ag Point #8 182.05 224.00 14.77 fPn = 0.1*f'c*Ag
Point #9 0.00 191.39 (Infinity ) Pure moment capacity Point #9 0.00 191.39 (Infinity ) Pure moment capacity
Point #10 -329.18 0.00 0.00 Pure axial tension capacity Point #10 -329.18 0.00 0.00 Pure axial tension capacity
Member Uniaxial Capacity at Design Eccentricity, ey: Member Uniaxial Capacity at Design Eccentricity, ex:
Interpolated Results from Above: Interpolated Results from Above:
fPnx (k) fMnx (ft-k) ey (in.) fPny (k) fMny (ft-k) ex (in.)
-79.96 144.90 21.74 -79.96 144.90 21.74
Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: Effective Length Criteria for "Short" Column:
fPn = N.A. kips fPn = 1/(1/fPnx + 1/fPny -1/fPo) <= 1.0 k*Lu <= 9.74 ft. (for k*Lu/r(min) <= 22)
S.R. = N.A. S.R. = Pu/fPn <= 1.0 k*Lu <= 17.72 ft. (for k*Lu/r(min) <= 40)
Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: Pure Axial Compression Capacity w/o Reinf.: Tie Min. Size & Max. Spac.:
S.R. = N.A. S.R. = (Mux/fMnx)^1.15 + (Muy/fMny)^1.15 <= 1.0 fPn = 866.55 kips fPn = 0.80*0.70*(0.85*f'c*Ag) #3@18''
PRECAST-CONCRETE DRIVEN PILE ANALYSIS FOR COMBINED BIAXIAL FLEXURE WITH AXIAL STRESS
For Biaxial Flexure with Axial Compression or Tension Load
Assuming "Short", Non-Slender Member with Symmetric Reinforcing
PRECAST DRIVEN PILE-350mmX350 mm
PRIODEEP
-600
-400
-200
0
200
400
600
800
1000
1200
1400
0 100 200 300 400
ΦPnx(k)
ΦMnx (ft-k)
X-AXIS INTERACTION
DIAGRAM
X
Y
-600
-400
-200
0
200
400
600
800
1000
1200
1400
0 100 200 300 400
ΦPny(k)
ΦMny (ft-k)
Y-AXIS INTERACTION
DIAGRAM
1 of 1 1/1/2018 12:18 PM

Precast driven pile 450 x450

  • 1.
    BANGLADESH-INDIA FRIENDSHIP POWERCOMPANY (PVT.) LIMITED 2X660MW MAITREE SUPER THERMAL POWER PROJECT RAMPAL, BANGLADESH OWNER’S CONSULTANT: M/s FICHTNER GmbH & Co KG. STUTTGART, GERMANY DESIGN OF PRECAST DRIVEN PILES DIMENSION: 450mmX450mm & LENGTH: 26m BHARAT HEAVY ELECTRICALS LIMITED PROJECT ENGINEERING MANAGEMENT NOIDA-201301 DOC NO: MAITREE-00-UMA-LC-421607C009PEM
  • 2.
    DESIGN & ANALYSISOF PRECAST DRIVEN PILE (450mm X 450mm SQ) PROJECT TITLE: 2X660MW MAITREE SUPER THERMAL POWER PROJECT. LOCATION:RAMPAL, BAGERHAT, BANGLADESH. PAGE 1 OF 4 TABLE OF CONTENTS  1.0 CHECK FOR DRIVING STRESS ------------------------------------------------------------- 2  2.0 CHECK FOR LIFTING & PITCHING STRESS ------------------------------------------------- 2  3.0 CHECK FOR AXIAL STRESS ---------------------------------------------------------------- 3  4.0 CHECK FOR UPLIFT CAPACITY ------------------------------------------------------------ 3  5.0 CHECK FOR LATERAL CAPACITY---------------------------------------------------------- 3  6.0 EVALUATION OF POINT OF FIXITY OF PILE------------------------------------------------ 4  RECOMMENDATIONS-------------------------------------------------------------------------- 4
  • 3.
    DESIGN & ANALYSISOF PRECAST DRIVEN PILE (450mm X 450mm SQ) PROJECT TITLE: 2X660MW MAITREE SUPER THERMAL POWER PROJECT. LOCATION:RAMPAL, BAGERHAT, BANGLADESH. PAGE 2 OF 4 1.0 CHECK FOR DRIVING STRESS Formula for use with Hydraulic Hammer: Ru= [12efEn/ (s+0.5(C1+C2+C3)] x [(Wr+e Wp) / (Wr+Wp)] --------- (I) Where,  Ru = ultimate carrying capacity of pile (considered as ultimate resistance to driving)  Wr= weight of falling mass, lb  En=Rated energy per blow, ft-lb  ef= hammer efficiency =100 percent for hydraulic hammer.  Wp= weight of pile  L = length of pile, inch.  e = coefficient of restitution  s = set value  C1= temporary compression allowance for pile head and cap.  C2= temporary compression of pile, inch. = Ru L/ AE  C3= temporary compression allowance for quake of ground  A= average cross section of pile, Sq.inch  E= modulus of elasticity for pile material=57000√ f’c Using the above equation, Developed Stress on Concrete during driving = = 19.50 Mpa < 40 Mpa [REFERENCE: APPENDIX-A] HENCE SAFE FOR CONCRETE COMPRESSIVE STRENGTH AT DRIVING. 2.0 CHECK FOR LIFTING & PITCHING STRESS Total dead weight of pile, W ' =[0.45x0.45x25x15] kN= 75.9375kN Factored Dead Weight of Pile, W =1.4 x 81= 106.3125 kN [ACI-318-14: TABLE 5.3.1] 2.0.1. DURING PITCHING For one point pitching at 3L/10, maximum developed moment = WL/22 ………… (II) =106.3125 X 15/22 = 82.47 kN-m Maximum Developed Moment, Mu=82.47 kN-m 2.0.1.1 MOMENT CAPACITY OF REINFORCED CONCRETE SECTION Using 4 Nos 32mm-φ bar, Moment Capacity of the section, Mc = 247.10 kN-m > 82.47 kN-m. [APPENDIX-B –ANALYSIS ON SECTION CAPACITY.]
  • 4.
    DESIGN & ANALYSISOF PRECAST DRIVEN PILE (450mm X 450mm SQ) PROJECT TITLE: 2X660MW MAITREE SUPER THERMAL POWER PROJECT. LOCATION:RAMPAL, BAGERHAT, BANGLADESH. PAGE 3 OF 4 HENCE SAFE FOR ONE POINT PITCHING (AT 0.3 L).  2.0.2 DURING LIFTING For two point lifting at L/5, maximum developed moment = WL/40 < WL/22 HENCE SAFE FOR TWO-POINT LIFTING (AT 0.2 L). 3.0 CHECK FOR AXIAL STRESS According to ACI-318-14-10.3.6 & ACI-318-14-22.4.2, Axial Capacity of Pile with Lateral Ties: φPn = 0.80 φ [0.85 fC’(Ag-Ast) + fyAst] φPn = 0.80 X 0.65 X [0.85 X40 X (202500-3216.99) +500 X 3216.99)] = 4359.741 kN = 435.9 TON 4.0 CHECK FOR UPLIFT CAPACITY According to ACI 543-R-4.3.3.1, the uplift capacity of the section can be determined from the following equation, Pup =0.5 x fy x Ast Pup =0.5 x 500 x 3216.99=804.247 kN. = 80.43 Ton 5.0 CHECK FOR LATERAL CAPACITY Here Vu=70 kN≈ 15.75 Kip (Design Maximum Lateral Load at Fixed Head Condition) f’c=40 MPa=5800 psi fy=500 MPa=72000 psi According to ACI-318-14, lateral capacity of the section, φVc= φ2√ f’c bw d = (0.75×2√5800×17.71×15.12)/1000 [φ = 0.75 (ACI-318-14-21.2.1)] =30.59 Kips>Vu Smax =3 inches (ACI 318-02, Section 7.10.4.3) Smin =1 inches (ACI 318-02, Section 7.10.4.3) HENCE, PROVIDE 10 mm DIA BAR @ 75 mm C/C.
  • 5.
    DESIGN & ANALYSISOF PRECAST DRIVEN PILE (450mm X 450mm SQ) PROJECT TITLE: 2X660MW MAITREE SUPER THERMAL POWER PROJECT. LOCATION:RAMPAL, BAGERHAT, BANGLADESH. PAGE 4 OF 4 6.0 EVALUATION OF POINT OF FIXITY OF PILE Considering Clayey Strata: 1.4 [Ep lw / Es] 0.25 = 1.4 x [4340.59 x 0.399/2.08]0.25 = 7.52 ft = 2.3m Where, Es = soil modulus for clays=2.08 [Ref: Table: C10.4.6.3-1, AASHTO- 2010] Hence critical value of point of fixity at 2.30 m from top of pile has been considered. Maximum Bending Moment due to Lateral Load, Mf = 138.00 kN-m. RECOMMENDATIONS From the above moment analysis, it is visible that, during 1-point pitching (at 0.3L distance) the developed moment along pile, is higher than the moment developed during 2- point lifting and shifting (at 0.2 L distance). Hence although during lifting, the developed moment is less than the moment developed during pitching, it is recommended to consider the developed moment during pitching as the ultimate developed moment for safe lifting transferring, pitching and driving of the pile. 2.30m 70 kN 0.2L 0.2L Lifting & shifting technique Pitching technique 23.70m
  • 6.
    www.priodeep.weebly.com GRADE (MPA) GRADE(psi) m m PILE SIZE 0.45 0.45 LENGTH 11 m 500 72519 10000.00 lb 59000.00 lb-ft 100.00 % 12519.11 432.96 inches. 0.25 inches. 0.10 3.179E-07 X Ru 0.10 313.71 Sq.inches 4341559.45 psi 8.472E-08 X Ru 2 + 0.35 = 0 = lbs = N 19.50 MPa HENCE OK!! 3948147.426 Stress on concrete during driving(Ru/A) = E= modulus of elasticity for pile material=57000√ f’c So, placing the values in equation -I, Ru -377375.7314 Solving the equation above: Ru 887543.54 s = set value(minimum penetration for each blow) C1= temporary compression allowance for pile head and cap C2= temporary compression of pile, in= Ru L/ AE C3= temporary compression allowance for quake of ground A= average cross section of pile Wr= weight of falling mass En=Rated energy per blow ef= hammer efficiency Wp= weight of pile L = length of pile e = coefficient of restitution * 0.40 *[Pile Top Covered by steel plate during driving.] Check for Driving Stress Formula for use with HYDRAULIC HAMMER: Ru= [12efEn/ (s+0.5(C1+C2+C3)] x [(Wr+e2 Wp) / (Wr+Wp)] ---------(I) Ru = ultimate carrying capacity of pile (ultimate resistance to driving) TO BE CALCULATED PILE SPECIFICATIONS MATERIAL STRENGTH PROPERTIES CONCRETE CYLINDRICAL CRASHING STRENGTH, fc' (28 days) 40 5802 YIELD STRNGTH OF STEEL,fy ANALYSIS ON PRE-CAST DRIVEN PILE FOR DRIVING STRESS 1 1/1/2018
  • 7.
    Job Name: Job Number: Beamor Slab Section? Beam Exterior or Interior Exposure? Exterior Reinforcing Yield Strength, fy = 72 ksi Concrete Comp. Strength, f 'c = 5.8 ksi h d Beam Width, b = 17.717 in. Depth to Tension Reinforcing, d = 14.63 in. Total Beam Depth, h = 17.717 in. Tension Reinforcing, As = 2.480 in.^2 No. of Tension Bars in Beam, Nb = 2.000 Tension Reinf. Bar Spacing, s1 = 12.000 in. d'=2.71'' Clear Cover to Tension Reinf., Cc = 2.710 in. Depth to Compression Reinf., d' = 2.710 in. Compression Reinforcing, A's = 2.480 in.^2 =2.48 Working Stress Moment, Ma = 103.00 ft-kips h=17.7165354330709'' d=14.6315354330709'' Ultimate Design Moment, Mu = 103.00 ft-kips Ultimate Design Shear, Vu = 15.73 kips Total Stirrup Area, Av(stirrup) = 0.220 in.^2 As=2.48 Tie/Stirrup Spacing, s2 = 3.0000 in. Moment Capacity Check for Beam-Type Section: Crack Control (Distribution of Reinf.): b1 = 0.76 Per ACI 318-14 Code: c = 0.000 in. Es = 29000 ksi a = 0.000 in. Ec = 4341 ksi rb = 0.02847 n = 6.68 r = 0.00957 fs = 37.84 ksi r(min) = 0.00317 fs(used) = 37.84 ksi As(min) = 0.823 in.^2 <= As = 2.48 in.^2, O.K. s1(max) = 22.71 in. >= s1 = 12 in., O.K. ρ(temp) = N.A. (total for section) As(temp) = N.A. in.^2 (total) Per ACI 318-95 Code (for reference only): ρ(max) = 0.02230 dc = 3.0850 in. As(max) = 5.781 in.^2 >= As = 2.48 in.^2, O.K. z = 209.03 k/in. e's = -0.00001 z(allow) = 319.00 k/in. >= z = 209.03 k/in., f's = N.A. ksi (A's does not yield) O.K. et = 0.01332 >= 0.005, Tension-controlled f = 0.900 ΦMn = 182.26 ft-k O.K. ΦMn = Shear Capacity Check for Beam-Type Section: Moment of Inertia for Deflection: fVc = 29.61 kips fr = 0.571 ksi fVs = 57.94 kips kd = 4.1577 in. fVn = 87.55 kips >= Vu = 15.73 kips, O.K. Ig = 8209.83 in.^4 fVs(max) = 118.45 kips >= Vu-(phi)Vc = 0 kips, O.K. Mcr = 44.11 ft-k Av(prov) = 0.220 in.^2 = Av(stirrup) Icr = 2271.46 in.^4 Av(req'd) = 0.000 in.^2 <= Av(prov) = 0.22 in.^2, O.K. Ie = 2738.00 in.^4 (for deflection) Av(min) = 0.042 in.^2 <= Av(prov) = 0.22 in.^2, O.K. s2(max) = 7.316 in. >= s2 = 3 in., O.K. A's Doubly Reinforced Section Results: 247.1033 kN.m b=17.7165354330709'' As PRECAST DRIVEN PILE SECTION ANALYSIS Flexure, Shear, Crack Control, and Inertia for Singly or Doubly Reinforced Sections Per ACI 318-14 Code PRECAST DRIVEN PILE-450mmX450 mm Subject: SECTIONAL ANALYSIS OF PILE MAITREE 2X660MW-STPP-RAMPAL Originator: PRIODEEP CHOWDHURY Input Data: b Singly Reinforced Section 1 of 1 1/1/2018 12:06 PM
  • 8.
    LATERALLY LOADED ELASTICPILES ON ELASTO-PLASTIC NODAL SPRINGS  Constant pile EI  Constant soil stiffness in each element  Constant element subdivision length  Loads and restraints on top node Description DRIVEN PRECAST PILE: 450 mm X 450 mm PROJECT: MAITREE 2X660MW-STPP-RAMPAL LOCATION: RAMPAL, BANGLADESH GENERAL PARAMETERS  Pile length 26 m  Epile 2.97E+07 kPa  Ipile 3.42E-03 m4  Elements 52  Element length 0.5 m  Load steps 26  Max. iterations/step 30 TOP NODE MOMENT RESTRAINT (q=0:FIXED; q=1:FREE) Node ux q 1 1 0 TOP NODE LOADS Node Fh M Top node reaction [kNm][kN] [kNm] 1 70 0 138.80
  • 9.
    0 5000 1000015000 20000 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 SOIL STIFFNESS/ELEMENT [KN/M2] -30.00 -20.00 -10.00 0.00 10.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 AVERAGE SPRING FORCES IN ELEMENTS [KN/M] -21.00 -16.00 -11.00 -6.00 -1.00-0.002 0.000 0.002 0.004 0.006 0.008 HORIZONTAL DISPLACEMENT [M] -21.00 -16.00 -11.00 -6.00 -1.00 -50.0 0.0 50.0 100.0 150.0 BENDING MOMENT [KNM] -21.00 -16.00 -11.00 -6.00 -1.00-20.0 0.0 20.0 40.0 60.0 80.0 SHEAR FORCE [KN] 0 0.2 0.4 0.6 0.8 1 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 LOAD FACTOR VS DISPLACEMENT OF TOP NODE [M] 0 0.2 0.4 0.6 0.8 1 0.000 20.000 40.000 60.000 80.000 100.000 120.000 140.000 160.000 LOAD FACTOR VS MAX. BENDING MOMENT [KNM]
  • 10.
    Soil properties Springforces (last step) Pile forces (last step) Pile displacement and rotation (last step) Step-by-step results k_soil F_max F_soil z F_soil z V M z ux q Fhstep ux,top |Mmax| NL Springs Iterations Element [kN/m2 ] [kN/m] Element [kNm] [m] [kN] [m] [kN] [kNm] [m] [m] [rad] Step [kN] [m] [kNm] 1 5000 5.0 1 -5.00 0.00 -1.3 0.00 70.0 138.8 0.00 0.007 0.0000 0.038462 2.69 0.0 4.023 12.0 2 2 5000 10.0 2 -10.00 -0.50 -3.8 -0.50 68.8 104.4 -0.50 0.007 -0.0006 0.076923 5.38 0.0 8.045 12.0 1 3 5000 15.0 3 -15.00 -1.00 -6.3 -1.00 65.0 71.9 -1.00 0.006 -0.0010 0.115385 8.08 0.0 12.068 12.0 1 4 5000 20.0 4 -20.00 -1.50 -8.8 -1.50 58.8 42.5 -1.50 0.006 -0.0013 0.153846 10.77 0.0 16.091 12.0 1 5 5000 25.0 5 -22.37 -2.00 -11.3 -2.00 50.0 17.5 -2.00 0.005 -0.0015 0.192308 13.46 0.0 20.114 12.0 1 6 5000 30.0 6 -20.38 -2.50 -11.1 -2.50 38.8 -1.8 -2.50 0.004 -0.0015 0.230769 16.15 0.0 24.290 13.0 2 7 5000 35.0 7 -16.76 -3.00 -9.3 -3.00 27.6 -15.6 -3.00 0.004 -0.0015 0.269231 18.85 0.0 28.678 13.0 1 8 5000 40.0 8 -13.38 -3.50 -7.5 -3.50 18.4 -24.8 -3.50 0.003 -0.0014 0.307692 21.54 0.0 33.065 13.0 1 9 5000 45.0 9 -10.33 -4.00 -5.9 -4.00 10.9 -30.3 -4.00 0.002 -0.0012 0.346154 24.23 0.0 37.903 14.0 2 10 5000 50.0 10 -7.67 -4.50 -4.4 -4.50 5.0 -32.8 -4.50 0.002 -0.0011 0.384615 26.92 0.0 42.965 14.0 1 11 5000 50.0 11 -5.40 -5.00 -3.2 -5.00 0.5 -33.0 -5.00 0.001 -0.0009 0.423077 29.62 0.0 48.026 14.0 1 12 5000 50.0 12 -3.53 -5.50 -2.2 -5.50 -2.7 -31.7 -5.50 0.001 -0.0007 0.461538 32.31 0.0 53.087 14.0 1 13 5000 50.0 13 -2.04 -6.00 -1.3 -6.00 -4.9 -29.3 -6.00 0.001 -0.0006 0.5 35.00 0.0 58.149 14.0 1 14 5000 50.0 14 -0.88 -6.50 -0.7 -6.50 -6.2 -26.2 -6.50 0.000 -0.0005 0.538462 37.69 0.0 63.602 15.0 2 15 5000 50.0 15 -0.02 -7.00 -0.2 -7.00 -6.9 -22.7 -7.00 0.000 -0.0003 0.576923 40.38 0.0 69.336 15.0 1 16 5000 50.0 16 0.57 -7.50 0.2 -7.50 -7.1 -19.2 -7.50 0.000 -0.0002 0.615385 43.08 0.0 75.070 15.0 1 17 5000 50.0 17 0.96 -8.00 0.4 -8.00 -6.9 -15.7 -8.00 0.000 -0.0002 0.653846 45.77 0.0 80.805 15.0 1 18 5000 50.0 18 1.17 -8.50 0.6 -8.50 -6.5 -12.4 -8.50 0.000 -0.0001 0.692308 48.46 0.0 86.539 15.0 1 19 5000 50.0 19 1.24 -9.00 0.6 -9.00 -6.0 -9.5 -9.00 0.000 0.0000 0.730769 51.15 0.0 92.562 16.0 2 20 5000 50.0 20 1.21 -9.50 0.6 -9.50 -5.3 -6.8 -9.50 0.000 0.0000 0.769231 53.85 0.0 98.969 16.0 1 21 5000 50.0 21 1.44 -10.00 0.6 -10.00 -4.7 -4.4 -10.00 0.000 0.0000 0.807692 56.54 0.0 105.376 16.0 1 22 11000 50.0 22 1.84 -10.50 0.8 -10.50 -4.1 -2.4 -10.50 0.000 0.0001 0.846154 59.2308 0.005456 111.8 16.0 1 23 11000 50.0 23 1.80 -11.00 1.0 -11.00 -3.3 -0.7 -11.00 0.000 0.0001 0.884615 61.9231 0.005813 118.2 16.0 1 24 11000 50.0 24 1.45 -11.50 0.8 -11.50 -2.3 0.4 -11.50 0.000 0.0001 0.923077 64.6154 0.006175 124.6 17.0 2 25 11000 50.0 25 1.11 -12.00 0.6 -12.00 -1.5 1.2 -12.00 0.000 0.0001 0.961538 67.3077 0.006615 131.7 17.0 1 26 11000 50.0 26 0.81 -12.50 0.5 -12.50 -0.8 1.6 -12.50 0.000 0.0001 1 70.0000 0.007055 138.8 17.0 1 27 11000 50.0 27 0.60 -13.00 0.3 -13.00 -0.4 1.8 -13.00 0.000 0.0000 28 15000 50.0 28 0.44 -13.50 0.3 -13.50 0.0 1.8 -13.50 0.000 0.0000 29 15000 50.0 29 0.26 -14.00 0.2 -14.00 0.2 1.7 -14.00 0.000 0.0000 30 15000 50.0 30 0.10 -14.50 0.1 -14.50 0.4 1.5 -14.50 0.000 0.0000 31 15000 50.0 31 -0.02 -15.00 0.0 -15.00 0.5 1.2 -15.00 0.000 0.0000 32 15000 50.0 32 -0.09 -15.50 0.0 -15.50 0.5 1.0 -15.50 0.000 0.0000 33 15000 50.0 33 -0.13 -16.00 -0.1 -16.00 0.5 0.7 -16.00 0.000 0.0000 34 15000 50.0 34 -0.15 -16.50 -0.1 -16.50 0.4 0.5 -16.50 0.000 0.0000 35 15000 50.0 35 -0.14 -17.00 -0.1 -17.00 0.3 0.4 -17.00 0.000 0.0000 36 15000 50.0 36 -0.13 -17.50 -0.1 -17.50 0.3 0.2 -17.50 0.000 0.0000 37 15000 50.0 37 -0.11 -18.00 -0.1 -18.00 0.2 0.1 -18.00 0.000 0.0000 38 15000 50.0 38 -0.09 -18.50 -0.1 -18.50 0.1 0.1 -18.50 0.000 0.0000 39 15000 50.0 39 -0.07 -19.00 0.0 -19.00 0.1 0.0 -19.00 0.000 0.0000 40 15000 50.0 40 -0.04 -19.50 0.0 -19.50 0.0 0.0 -19.50 0.000 0.0000 41 18000 41 -0.02 -20.00 0.0 -20.00 0.0 0.0 -20.00 0.000 0.0000 42 18000 42 0.00 -20.50 0.000 -20.50 0.0 0.0 -20.5000 1.2E-07 0.00 43 18000 43 0.00 -21.00 0.000 -21.00 0.0 0.0 -21.0000 -1.6E-06 0.00 44 18000 44 0.00 -21.50 0.00000 -21.50 0.0 0.0 -21.5000 -3.3E-06 0.00 45 18000 45 0.00 -22.00 0.000 -22.00 0.0 0.0 -22.0000 -5.1E-06 0.00 46 18000 46 0.00 -22.50 0.000 -22.50 0.0 0.0 -22.5000 -6.8E-06 0.00 47 18000 47 0.00 -23.00 0.000 -23.00 0.0 0.0 -23.0000 -8.5E-06 0.00 48 18000 48 0.00 -23.50 0.000 -23.50 0.0 0.0 -23.5000 -1E-05 0.00 49 18000 49 0.00 -24.00 0.000 -24.00 0.0 0.0 -24.0000 -1.2E-05 0.00 50 18000 50 0.00 -24.50 0.000 -24.50 0.0 0.0 -24.5000 -1.4E-05 0.00 51 18000 51 0.00 -25.00 0.000 -25.00 0.0 0.0 -25.0000 -1.5E-05 0.00 52 18000 52 0.00 -25.50 0.000 -25.50 0.0 0.0 -25.5000 -1.7E-05 0.00 -26.00 0.000 -26.00 0.0 0.0 -26.0000 -1.9E-05 0.00 Fhstep/ Fh
  • 11.
    Job Name: Subject: JobNumber: Originator: Input Data: Lx=17.7165354330709 Reinforcing Yield Strength, fy = 72 ksi. Concrete Comp. Strength, f 'c = 5.8 ksi Total Member Width, Lx = 17.717 in. Total Member Depth, Ly = 17.717 in. Distance to Long. Reinforcing, d' = 2.710 in. Ly=17.7165354330709 Ntb=4 Ultimate Design Axial Load, Pu = 191.09 kips Nsb=0 Ultimate Design Moment, Mux = 101.84 ft-kips Total Top/Bot. Long. Bars, Ntb = 4 Top/Bot. Longitudinal Bar Size = 10 d'=2.71 (typ.) Total Side Long. Bars, Nsb = 0 Member Section Side Longitudinal Bar Size = 10 Results: X-axis Flexure and Axial Load Interaction Diagram Points Location ΦPnx (k) ΦMnx (ft-k) ey (in.) Comments Point #1 1279.01 0.00 0.00 Nom. max. compression = ΦPo Point #2 1023.21 0.00 0.00 Allowable fPn(max) = 0.8*fPo Point #3 1023.21 124.64 1.46 Min. eccentricity Point #4 795.21 235.73 3.56 0% rebar tension = 0 ksi Point #5 668.83 263.46 4.73 25% rebar tension = 15 ksi Point #6 567.55 279.87 5.92 50% rebar tension = 30 ksi Point #7 372.77 309.13 9.95 100% rebar tension = 60 ksi Point #8 182.05 224.00 14.77 ΦPn = 0.1*f'c*Ag Inter Point #9 0.00 191.39 (Infinity) Pure moment capacity Point #10 -329.18 0.00 0.00 Pure axial tension capacity Gross Reinforcing Ratio Provided: rg = 0.01618 Member Uniaxial Capacity at Design Eccentricity: Interpolated Results from Above: fPnx (k) fMnx (ft-k) ey (in.) 531.62 283.34 6.40 Effective Length Criteria for "Short" Column: k*Lu <= 9.74 ft. (for k*Lu/r(min) <= 22) k*Lu <= 17.72 ft. (for k*Lu/r(min) <= 40) Pure Axial Compression Capacity without Reinforcing: fPn = 866.55 kips Tie Minimum Size and Maximum Spacing: #3@18'' RECTANGULAR CONCRETE PRECAST SECTION ANALYSIS PRECAST DRIVEN PILE-350mmX350 mm 2X660 MW MAITREE STPP. PRIODEEP Uniaxial Bending Check For X-Axis Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing -600 -400 -200 0 200 400 600 800 1000 1200 1400 0 100 200 300 400 ΦPnx(k) ΦMnx (ft-k) X-AXIS INTERACTION DIAGRAM X Y 1 of 1
  • 12.
    Job Name: Subject: JobNumber: Originator: Input Data: Lx=17.7165354330709 Reinforcing Yield Strength, fy = 72 ksi. Concrete Comp. Strength, f 'c = 5.8 ksi Total Member Width, Lx = 17.717 in. Total Member Depth, Ly = 17.717 in. Distance to Long. Reinforcing, d' = 2.710 in. Ly=17.7165354330709 Ntb=4 Ultimate Design Axial Load, Pu = -56.20 kips Nsb=0 Ultimate Design Moment, Mux = 101.84 ft-kips Total Top/Bot. Long. Bars, Ntb = 4 Top/Bot. Longitudinal Bar Size = 10 d'=2.71 (typ.) Total Side Long. Bars, Nsb = 0 Member Section Side Longitudinal Bar Size = 10 Results: X-axis Flexure and Axial Load Interaction Diagram Points Location ΦPnx (k) ΦMnx (ft-k) ey (in.) Comments Point #1 1279.01 0.00 0.00 Nom. max. compression = ΦPo Point #2 1023.21 0.00 0.00 Allowable fPn(max) = 0.8*fPo Point #3 1023.21 124.64 1.46 Min. eccentricity Point #4 795.21 235.73 3.56 0% rebar tension = 0 ksi Point #5 668.83 263.46 4.73 25% rebar tension = 15 ksi Point #6 567.55 279.87 5.92 50% rebar tension = 30 ksi Point #7 372.77 309.13 9.95 100% rebar tension = 60 ksi Point #8 182.05 224.00 14.77 ΦPn = 0.1*f'c*Ag Inter Point #9 0.00 191.39 (Infinity) Pure moment capacity Point #10 -329.18 0.00 0.00 Pure axial tension capacity Gross Reinforcing Ratio Provided: rg = 0.01618 Member Uniaxial Capacity at Design Eccentricity: Interpolated Results from Above: fPnx (k) fMnx (ft-k) ey (in.) -79.96 144.90 21.74 Effective Length Criteria for "Short" Column: k*Lu <= 9.74 ft. (for k*Lu/r(min) <= 22) k*Lu <= 17.72 ft. (for k*Lu/r(min) <= 40) Pure Axial Compression Capacity without Reinforcing: fPn = 866.55 kips Tie Minimum Size and Maximum Spacing: #3@18'' RECTANGULAR CONCRETE PRECAST SECTION ANALYSIS PRECAST DRIVEN PILE-350mmX350 mm Uniaxial Bending Check 2X660 MW MAITREE STPP. PRIODEEP For X-Axis Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing -600 -400 -200 0 200 400 600 800 1000 1200 1400 0 100 200 300 400 ΦPnx(k) ΦMnx (ft-k) X-AXIS INTERACTION DIAGRAM X Y 1 of 1 1/1/2018 12:12 PM
  • 13.
    Job Name: Subject:COMBINED ACTION CHECK. Job Number: 2X660 MW MAITREE STPP. Originator: Input Data: Lx=17.7165354330709 Reinforcing Yield Strength, fy = 72 ksi. Concrete Comp. Strength, f 'c = 5.8 ksi Total Member Width, Lx = 17.717 in. Total Member Depth, Ly = 17.717 in. Distance to Long. Reinforcing, d' = 2.710 in. Ly=17.7165354330709 Ntb=4 Ultimate Design Axial Load, Pu = 191.09 kips Nsb=0 Ultimate Design Moment, Mux = 101.84 ft-kips Ultimate Design Moment, Muy = 101.84 ft-kips Total Top/Bot. Long. Bars, Ntb = 4 d'=2.71 (typ.) Top/Bot. Longitudinal Bar Size = 6 Total Side Long. Bars, Nsb = 0 Member Section Side Longitudinal Bar Size = 6 Results: Gross reinforcing ratio provided: rg = 0.00561 X-axis Flexure and Axial Load Interaction Diagram Points Y-axis Flexure and Axial Load Interaction Diagram Points Location fPnx (k) fMnx (ft-k) ey (in.) Comments Location fPny (k) fMny (ft-k) ex (in.) Comments Point #1 1151.03 0.00 0.00 Nom. max. compression = fPo Point #1 1151.03 0.00 0.00 Nom. max. compression = fPo Point #2 920.82 0.00 0.00 Allowable fPn(max) = 0.8*fPo Point #2 920.82 0.00 0.00 Allowable fPn(max) = 0.8*fPo Point #3 920.82 110.50 1.44 Min. eccentricity Point #3 920.82 110.50 1.44 Min. eccentricity Point #4 731.22 201.51 3.31 0% rebar tension = 0 ksi Point #4 731.22 201.51 3.31 0% rebar tension = 0 ksi Point #5 622.27 220.71 4.26 25% rebar tension = 15 ksi Point #5 622.27 220.71 4.26 25% rebar tension = 15 ksi Point #6 538.42 228.49 5.09 50% rebar tension = 30 ksi Point #6 538.42 228.49 5.09 50% rebar tension = 30 ksi Point #7 378.50 226.33 7.18 100% rebar tension = 60 ksi Point #7 378.50 226.33 7.18 100% rebar tension = 60 ksi Point #8 182.05 130.48 8.60 fPn = 0.1*f'c*Ag Point #8 182.05 130.48 8.60 fPn = 0.1*f'c*Ag Point #9 0.00 69.59 (Infinity ) Pure moment capacity Point #9 0.00 69.59 (Infinity ) Pure moment capacity Point #10 -114.05 0.00 0.00 Pure axial tension capacity Point #10 -114.05 0.00 0.00 Pure axial tension capacity Member Uniaxial Capacity at Design Eccentricity, ey: Member Uniaxial Capacity at Design Eccentricity, ex: Interpolated Results from Above: Interpolated Results from Above: fPnx (k) fMnx (ft-k) ey (in.) fPny (k) fMny (ft-k) ex (in.) 426.18 227.14 6.40 426.18 227.14 6.40 Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: Effective Length Criteria for "Short" Column: fPn = N.A. kips fPn = 1/(1/fPnx + 1/fPny -1/fPo) <= 1.0 k*Lu <= 9.74 ft. (for k*Lu/r(min) <= 22) S.R. = N.A. S.R. = Pu/fPn <= 1.0 k*Lu <= 17.72 ft. (for k*Lu/r(min) <= 40) Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: Pure Axial Compression Capacity w/o Reinf.: Tie Min. Size & Max. Spac.: S.R. = N.A. S.R. = (Mux/fMnx)^1.15 + (Muy/fMny)^1.15 <= 1.0 fPn = 866.55 kips fPn = 0.80*0.70*(0.85*f'c*Ag) #3@12'' PRECAST-CONCRETE DRIVEN PILE ANALYSIS FOR COMBINED BIAXIAL FLEXURE WITH AXIAL STRESS For Biaxial Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing PRIODEEP PRECAST DRIVEN PILE-350mmX350 mm -200 0 200 400 600 800 1000 1200 1400 0 100 200 300 ΦPnx(k) ΦMnx (ft-k) X-AXIS INTERACTION DIAGRAM X Y -200 0 200 400 600 800 1000 1200 1400 0 100 200 300 ΦPny(k) ΦMny (ft-k) Y-AXIS INTERACTION DIAGRAM 1 of 1 1/1/2018 12:17 PM
  • 14.
    Job Name: Subject:COMBINED ACTION CHECK. Job Number: 2X660 MW MAITREE STPP. Originator: Input Data: Lx=17.7165354330709 Reinforcing Yield Strength, fy = 72 ksi. Concrete Comp. Strength, f 'c = 5.8 ksi Total Member Width, Lx = 17.717 in. Total Member Depth, Ly = 17.717 in. Distance to Long. Reinforcing, d' = 2.710 in. Ly=17.7165354330709 Ntb=4 Ultimate Design Axial Load, Pu = -56.20 kips Nsb=0 Ultimate Design Moment, Mux = 101.84 ft-kips Ultimate Design Moment, Muy = 101.84 ft-kips Total Top/Bot. Long. Bars, Ntb = 4 d'=2.71 (typ.) Top/Bot. Longitudinal Bar Size = 10 Total Side Long. Bars, Nsb = 0 Member Section Side Longitudinal Bar Size = 10 Results: Gross reinforcing ratio provided: rg = 0.01618 X-axis Flexure and Axial Load Interaction Diagram Points Y-axis Flexure and Axial Load Interaction Diagram Points Location fPnx (k) fMnx (ft-k) ey (in.) Comments Location fPny (k) fMny (ft-k) ex (in.) Comments Point #1 1279.01 0.00 0.00 Nom. max. compression = fPo Point #1 1279.01 0.00 0.00 Nom. max. compression = fPo Point #2 1023.21 0.00 0.00 Allowable fPn(max) = 0.8*fPo Point #2 1023.21 0.00 0.00 Allowable fPn(max) = 0.8*fPo Point #3 1023.21 124.64 1.46 Min. eccentricity Point #3 1023.21 124.64 1.46 Min. eccentricity Point #4 795.21 235.73 3.56 0% rebar tension = 0 ksi Point #4 795.21 235.73 3.56 0% rebar tension = 0 ksi Point #5 668.83 263.46 4.73 25% rebar tension = 15 ksi Point #5 668.83 263.46 4.73 25% rebar tension = 15 ksi Point #6 567.55 279.87 5.92 50% rebar tension = 30 ksi Point #6 567.55 279.87 5.92 50% rebar tension = 30 ksi Point #7 372.77 309.13 9.95 100% rebar tension = 60 ksi Point #7 372.77 309.13 9.95 100% rebar tension = 60 ksi Point #8 182.05 224.00 14.77 fPn = 0.1*f'c*Ag Point #8 182.05 224.00 14.77 fPn = 0.1*f'c*Ag Point #9 0.00 191.39 (Infinity ) Pure moment capacity Point #9 0.00 191.39 (Infinity ) Pure moment capacity Point #10 -329.18 0.00 0.00 Pure axial tension capacity Point #10 -329.18 0.00 0.00 Pure axial tension capacity Member Uniaxial Capacity at Design Eccentricity, ey: Member Uniaxial Capacity at Design Eccentricity, ex: Interpolated Results from Above: Interpolated Results from Above: fPnx (k) fMnx (ft-k) ey (in.) fPny (k) fMny (ft-k) ex (in.) -79.96 144.90 21.74 -79.96 144.90 21.74 Biaxial Capacity and Stress Ratio for Pu >= 0.1*f'c*Ag: Effective Length Criteria for "Short" Column: fPn = N.A. kips fPn = 1/(1/fPnx + 1/fPny -1/fPo) <= 1.0 k*Lu <= 9.74 ft. (for k*Lu/r(min) <= 22) S.R. = N.A. S.R. = Pu/fPn <= 1.0 k*Lu <= 17.72 ft. (for k*Lu/r(min) <= 40) Biaxial Stress Ratio for Pu < 0.1*f'c*Ag: Pure Axial Compression Capacity w/o Reinf.: Tie Min. Size & Max. Spac.: S.R. = N.A. S.R. = (Mux/fMnx)^1.15 + (Muy/fMny)^1.15 <= 1.0 fPn = 866.55 kips fPn = 0.80*0.70*(0.85*f'c*Ag) #3@18'' PRECAST-CONCRETE DRIVEN PILE ANALYSIS FOR COMBINED BIAXIAL FLEXURE WITH AXIAL STRESS For Biaxial Flexure with Axial Compression or Tension Load Assuming "Short", Non-Slender Member with Symmetric Reinforcing PRECAST DRIVEN PILE-350mmX350 mm PRIODEEP -600 -400 -200 0 200 400 600 800 1000 1200 1400 0 100 200 300 400 ΦPnx(k) ΦMnx (ft-k) X-AXIS INTERACTION DIAGRAM X Y -600 -400 -200 0 200 400 600 800 1000 1200 1400 0 100 200 300 400 ΦPny(k) ΦMny (ft-k) Y-AXIS INTERACTION DIAGRAM 1 of 1 1/1/2018 12:18 PM