SlideShare a Scribd company logo
 Arithmetic circuits form an important class of circuits in
digital systems.
 With the progress in the very large scale integration
(VLSI) circuit technology, many complex circuits are
made simple and easy.
 Algorithms that seemed impossible to implement are
now easy to implement by interfacing of hardware and
software using VLSI.
 So as to be familiar with the new technology and to
cope up with the electronic industry, we have chosen
this project as our mini project.
 In this project an arithmetic unit based on IEEE
standard for floating point numbers will be
implemented on Spartan3 FPGA Board. The
arithmetic unit will consist of 32-bit processing unit
which allows various arithmetic operations such as,
Addition, Subtraction, Multiplication, Division and
Square Root, on floating point numbers.
 From all these operations we have chosen addition
operation as a mini project in the existing year.
 Synthesis of the unit for the FPGA board will be done
using XILINX-ISE.
 Floating-point operations are useful for computations
involving large dynamic range, but they require
significantly more resources than integer operations.
 FPGAs offer reduced development time and costs
compared to application specific integrated circuits,
and their flexibility enables field upgrade and
adaptation of hardware to run-time conditions.
 Our main objective for this standard is that an
implementation of a floating-point system confirming
to this standard “can be realized in software, entirely
in hardware, or in any combination of software and
hardware”.
 As per IEEE-754 floating-point standard,
simple representation of floating point
uses binary fraction(F) and
Exponent(E).
i.e. N=F*2^E
 Having the types of single precision(32
bit) & double precision(64 bit).
 In single precision out of 32 bits a bit
is used for sign, 8 bits are used for
exponent(E) & 23 are for mantissa.
 In double precision out of 64 bits a bit is
used for sign, 11 bits are used for
exponent(E) & 52 are for mantissa.
 For example:-
Representation of 1259.125
Now consider two parts, first is real part
before fraction point & other after
point.
Representing them separately as
(1259)10=(10011101011)2
(0.125)10=(0.001)2
 Therefore
(1259.125)2=(4EB)16=(10011101011.001)2
 Now, we have to normalize it
i.e. (1.0011101011001) * 210
Here, 10 is exponent, biased exponent
is 137(10+127) 1.0011101011001 is
mantissa.
Sign Exponent Mantissa
0 10001001 0011101011001
1. Invalid Operation:-
 Some arithmetic operations are invalid, such as a division by zero or
square root of a negative number.
 The result of an invalid operation shall be a NaN (Not a number).
2. Inexact:-
 This exception should be signaled whenever the result of an arithmetic
operation is not exact due to the restricted exponent and/or precision
range.
3. Underflow:-
 Two events cause the underflow to be signaled, tininess and loss of
accuracy.
 Tininess is detected after or before rounding when a result lies between
±2Emin. Loss of accuracy is detected when the result is simply inexact or
only when a renormalizations loss occurs.
4. Overflow:-
 The overflow is signaled whenever the result exceeds the maximum value
that can be represented due to the restricted exponent range.
 It is not signaled when one of the operands is infinity, because infinity
arithmetic is always exact.
1. Compare exponents. If the exponents are not
equal, shift the fraction with the smaller
exponent right and add 1 to its exponent;
repeat until the exponents are equal.
2. Add the fractions(significants).
3. If the result is 0, set the exponent to the
appropriate representation for 0 and exit.
4. If the fraction overflow occurs, shift right and
add 1 to the exponent to correct the overflow.
5. If the fraction is not normalized, shift left and
subtract 1 from the exponent until the fraction
is normalized.
6. Check the exponent overflow indicator, if
necessary.
7. Round to the appropriate number of bits. If still
it is not normalized go back to step 4.
 The main component for hardware
implementation of the project will be the
Spartan 3 FPGA development board.
 Interfacing will be done by using JTAG
programmable with parallel or USB
cables.
 The software used for the simulation of
the code will be Xilinx
 Low-cost, high-performance logic solution for high-volume, consumer-oriented applications
 Densities up to 74,880 logic cells
 Up to 633 I/O pins
 622+ Mb/s data transfer rate per I/O
 18 single-ended signal standards
 8 differential I/O standards including LVDS, RSDS
 Termination by Digitally Controlled Impedance
 Signal swing ranging from 1.14V to 3.465V
 Double Data Rate (DDR) support
 DDR, DDR2 SDRAM support up to 333 Mb/s
 Logic resources
 Abundant logic cells with shift register capability
 Wide, fast multiplexers
 Fast look-ahead carry logic
 Dedicated 18 x 18 multipliers
 JTAG logic compatible with IEEE 1149.1/1532
 Select RAM™ hierarchical memory
 Up to 1,872 Kbits of total block RAM
 Up to 520 Kbits of total distributed RAM
 Digital Clock Manager (up to four DCMs)
 Clock skew elimination
 Frequency synthesis
 High resolution phase shifting
 Eight global clock lines and abundant routing
 Fully supported by Xilinx ISE® and WebPACK™ software development systems
 MicroBlaze™ and PicoBlaze™ processor, PCI®, PCI Express® PIPE Endpoint, and other IP cores
THANK YOU

More Related Content

What's hot

Cs6303 unit2
Cs6303 unit2 Cs6303 unit2
To count number of external events using LabVIEW
To count number of external events using LabVIEWTo count number of external events using LabVIEW
To count number of external events using LabVIEW
Ankita Tiwari
 
Design and implementation of complex floating point processor using fpga
Design and implementation of complex floating point processor using fpgaDesign and implementation of complex floating point processor using fpga
Design and implementation of complex floating point processor using fpga
VLSICS Design
 
To interface temperature sensor with microcontroller and perform closed loop ...
To interface temperature sensor with microcontroller and perform closed loop ...To interface temperature sensor with microcontroller and perform closed loop ...
To interface temperature sensor with microcontroller and perform closed loop ...
Ankita Tiwari
 
Simulation of 3 bit Flash ADC in 0.18μmTechnology using NG SPICE Tool for Hig...
Simulation of 3 bit Flash ADC in 0.18μmTechnology using NG SPICE Tool for Hig...Simulation of 3 bit Flash ADC in 0.18μmTechnology using NG SPICE Tool for Hig...
Simulation of 3 bit Flash ADC in 0.18μmTechnology using NG SPICE Tool for Hig...
ijsrd.com
 
Multiple Valued Logic for Synthesis and Simulation of Digital Circuits
Multiple Valued Logic for Synthesis and Simulation of Digital CircuitsMultiple Valued Logic for Synthesis and Simulation of Digital Circuits
Multiple Valued Logic for Synthesis and Simulation of Digital Circuits
IJERA Editor
 
Design flash adc 3bit (VHDL design)
Design flash adc 3bit (VHDL design)Design flash adc 3bit (VHDL design)
Design flash adc 3bit (VHDL design)
Rabab Muhammad
 
Two Bit Adder
Two Bit AdderTwo Bit Adder
Two Bit Adder
Sumit Bansal
 
A 8-bit high speed ADC using Intel μP 8085
A 8-bit high speed ADC using Intel μP 8085A 8-bit high speed ADC using Intel μP 8085
A 8-bit high speed ADC using Intel μP 8085
IJERD Editor
 
My profile
My profileMy profile
My profiledhruv_63
 
Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converter
shrutishreya14
 
Digital Signal Conditioning
Digital Signal ConditioningDigital Signal Conditioning
Digital Signal Conditioning
Ghansyam Rathod
 
Ie3614221424
Ie3614221424Ie3614221424
Ie3614221424
IJERA Editor
 
C011122428
C011122428C011122428
C011122428
IOSR Journals
 
Comm lab manual_final-1
Comm lab manual_final-1Comm lab manual_final-1
Comm lab manual_final-1
Abhishek Bansal
 
DOUBLE PRECISION FLOATING POINT CORE IN VERILOG
DOUBLE PRECISION FLOATING POINT CORE IN VERILOGDOUBLE PRECISION FLOATING POINT CORE IN VERILOG
DOUBLE PRECISION FLOATING POINT CORE IN VERILOG
IJCI JOURNAL
 
K045076266
K045076266K045076266
K045076266
IJERA Editor
 
Clockless chips
Clockless chipsClockless chips
Clockless chips
Saumya Ranjan Behura
 
Ecd302 unit 05(misc simulation tools)(new version)
Ecd302 unit 05(misc simulation tools)(new version)Ecd302 unit 05(misc simulation tools)(new version)
Ecd302 unit 05(misc simulation tools)(new version)Xi Qiu
 

What's hot (20)

Cs6303 unit2
Cs6303 unit2 Cs6303 unit2
Cs6303 unit2
 
To count number of external events using LabVIEW
To count number of external events using LabVIEWTo count number of external events using LabVIEW
To count number of external events using LabVIEW
 
Design and implementation of complex floating point processor using fpga
Design and implementation of complex floating point processor using fpgaDesign and implementation of complex floating point processor using fpga
Design and implementation of complex floating point processor using fpga
 
To interface temperature sensor with microcontroller and perform closed loop ...
To interface temperature sensor with microcontroller and perform closed loop ...To interface temperature sensor with microcontroller and perform closed loop ...
To interface temperature sensor with microcontroller and perform closed loop ...
 
Simulation of 3 bit Flash ADC in 0.18μmTechnology using NG SPICE Tool for Hig...
Simulation of 3 bit Flash ADC in 0.18μmTechnology using NG SPICE Tool for Hig...Simulation of 3 bit Flash ADC in 0.18μmTechnology using NG SPICE Tool for Hig...
Simulation of 3 bit Flash ADC in 0.18μmTechnology using NG SPICE Tool for Hig...
 
Multiple Valued Logic for Synthesis and Simulation of Digital Circuits
Multiple Valued Logic for Synthesis and Simulation of Digital CircuitsMultiple Valued Logic for Synthesis and Simulation of Digital Circuits
Multiple Valued Logic for Synthesis and Simulation of Digital Circuits
 
Design flash adc 3bit (VHDL design)
Design flash adc 3bit (VHDL design)Design flash adc 3bit (VHDL design)
Design flash adc 3bit (VHDL design)
 
Two Bit Adder
Two Bit AdderTwo Bit Adder
Two Bit Adder
 
A 8-bit high speed ADC using Intel μP 8085
A 8-bit high speed ADC using Intel μP 8085A 8-bit high speed ADC using Intel μP 8085
A 8-bit high speed ADC using Intel μP 8085
 
My profile
My profileMy profile
My profile
 
Analog to digital converter
Analog to digital converterAnalog to digital converter
Analog to digital converter
 
Digital Signal Conditioning
Digital Signal ConditioningDigital Signal Conditioning
Digital Signal Conditioning
 
Ie3614221424
Ie3614221424Ie3614221424
Ie3614221424
 
C011122428
C011122428C011122428
C011122428
 
Comm lab manual_final-1
Comm lab manual_final-1Comm lab manual_final-1
Comm lab manual_final-1
 
DOUBLE PRECISION FLOATING POINT CORE IN VERILOG
DOUBLE PRECISION FLOATING POINT CORE IN VERILOGDOUBLE PRECISION FLOATING POINT CORE IN VERILOG
DOUBLE PRECISION FLOATING POINT CORE IN VERILOG
 
K045076266
K045076266K045076266
K045076266
 
Clockless chips
Clockless chipsClockless chips
Clockless chips
 
Dac
DacDac
Dac
 
Ecd302 unit 05(misc simulation tools)(new version)
Ecd302 unit 05(misc simulation tools)(new version)Ecd302 unit 05(misc simulation tools)(new version)
Ecd302 unit 05(misc simulation tools)(new version)
 

Viewers also liked

Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
iosrjce
 
VHDL Packages, Coding Styles for Arithmetic Operations and VHDL-200x Additions
VHDL Packages, Coding Styles for Arithmetic Operations and VHDL-200x AdditionsVHDL Packages, Coding Styles for Arithmetic Operations and VHDL-200x Additions
VHDL Packages, Coding Styles for Arithmetic Operations and VHDL-200x Additions
Amal Khailtash
 
Vlsi mini project list 2013
Vlsi mini project list 2013Vlsi mini project list 2013
Vlsi mini project list 2013
Vision Solutions
 
All VLSI programs
All VLSI programsAll VLSI programs
All VLSI programsGouthaman V
 
VERILOG CODE
VERILOG CODEVERILOG CODE
VERILOG CODE
Dhaval Kaneria
 
Programs of VHDL
Programs of VHDLPrograms of VHDL
Programs of VHDL
Rkrishna Mishra
 
LinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-PresentedLinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-Presented
SlideShare
 

Viewers also liked (9)

Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
Implementation of 32 Bit Binary Floating Point Adder Using IEEE 754 Single Pr...
 
VHDL Packages, Coding Styles for Arithmetic Operations and VHDL-200x Additions
VHDL Packages, Coding Styles for Arithmetic Operations and VHDL-200x AdditionsVHDL Packages, Coding Styles for Arithmetic Operations and VHDL-200x Additions
VHDL Packages, Coding Styles for Arithmetic Operations and VHDL-200x Additions
 
Floating Point Numbers
Floating Point NumbersFloating Point Numbers
Floating Point Numbers
 
Vlsi mini project list 2013
Vlsi mini project list 2013Vlsi mini project list 2013
Vlsi mini project list 2013
 
All VLSI programs
All VLSI programsAll VLSI programs
All VLSI programs
 
VERILOG CODE
VERILOG CODEVERILOG CODE
VERILOG CODE
 
Programs of VHDL
Programs of VHDLPrograms of VHDL
Programs of VHDL
 
LinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-PresentedLinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-Presented
 
Slideshare ppt
Slideshare pptSlideshare ppt
Slideshare ppt
 

Similar to Final

fixed-point-vs-floating-point.ppt
fixed-point-vs-floating-point.pptfixed-point-vs-floating-point.ppt
fixed-point-vs-floating-point.ppt
RavikumarR77
 
IRJET- Single Precision Floating Point Arithmetic using VHDL Coding
IRJET-  	  Single Precision Floating Point Arithmetic using VHDL CodingIRJET-  	  Single Precision Floating Point Arithmetic using VHDL Coding
IRJET- Single Precision Floating Point Arithmetic using VHDL Coding
IRJET Journal
 
Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...researchinventy
 
Research Inventy: International Journal of Engineering and Science
Research Inventy: International Journal of Engineering and ScienceResearch Inventy: International Journal of Engineering and Science
Research Inventy: International Journal of Engineering and Scienceresearchinventy
 
The Principle Of Ultrasound Imaging System
The Principle Of Ultrasound Imaging SystemThe Principle Of Ultrasound Imaging System
The Principle Of Ultrasound Imaging System
Melissa Luster
 
Building efficient 5G NR base stations with Intel® Xeon® Scalable Processors
Building efficient 5G NR base stations with Intel® Xeon® Scalable Processors Building efficient 5G NR base stations with Intel® Xeon® Scalable Processors
Building efficient 5G NR base stations with Intel® Xeon® Scalable Processors
Michelle Holley
 
The Role Of Software And Hardware As A Common Part Of The...
The Role Of Software And Hardware As A Common Part Of The...The Role Of Software And Hardware As A Common Part Of The...
The Role Of Software And Hardware As A Common Part Of The...
Sheena Crouch
 
A parallel 8 bit computer interface circuit and software for a digital nuclea...
A parallel 8 bit computer interface circuit and software for a digital nuclea...A parallel 8 bit computer interface circuit and software for a digital nuclea...
A parallel 8 bit computer interface circuit and software for a digital nuclea...Alexander Decker
 
A parallel 8 bit computer interface circuit and software for a digital nuclea...
A parallel 8 bit computer interface circuit and software for a digital nuclea...A parallel 8 bit computer interface circuit and software for a digital nuclea...
A parallel 8 bit computer interface circuit and software for a digital nuclea...Alexander Decker
 
International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER) International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER)
ijceronline
 
Lp2520162020
Lp2520162020Lp2520162020
Lp2520162020
IJERA Editor
 
Lp2520162020
Lp2520162020Lp2520162020
Lp2520162020
IJERA Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor
 
Digital logic-formula-notes-final-1
Digital logic-formula-notes-final-1Digital logic-formula-notes-final-1
Digital logic-formula-notes-final-1
Kshitij Singh
 
DESIGN OF DOUBLE PRECISION FLOATING POINT MULTIPLICATION ALGORITHM WITH VECTO...
DESIGN OF DOUBLE PRECISION FLOATING POINT MULTIPLICATION ALGORITHM WITH VECTO...DESIGN OF DOUBLE PRECISION FLOATING POINT MULTIPLICATION ALGORITHM WITH VECTO...
DESIGN OF DOUBLE PRECISION FLOATING POINT MULTIPLICATION ALGORITHM WITH VECTO...
jmicro
 
Paper id 25201467
Paper id 25201467Paper id 25201467
Paper id 25201467IJRAT
 
Nt1310 Unit 5 Algorithm
Nt1310 Unit 5 AlgorithmNt1310 Unit 5 Algorithm
Nt1310 Unit 5 Algorithm
Angie Lee
 
Report on Embedded Based Home security system
Report on Embedded Based Home security systemReport on Embedded Based Home security system
Report on Embedded Based Home security system
NIT srinagar
 
At36276280
At36276280At36276280
At36276280
IJERA Editor
 

Similar to Final (20)

fixed-point-vs-floating-point.ppt
fixed-point-vs-floating-point.pptfixed-point-vs-floating-point.ppt
fixed-point-vs-floating-point.ppt
 
DSP Processor
DSP Processor DSP Processor
DSP Processor
 
IRJET- Single Precision Floating Point Arithmetic using VHDL Coding
IRJET-  	  Single Precision Floating Point Arithmetic using VHDL CodingIRJET-  	  Single Precision Floating Point Arithmetic using VHDL Coding
IRJET- Single Precision Floating Point Arithmetic using VHDL Coding
 
Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...
 
Research Inventy: International Journal of Engineering and Science
Research Inventy: International Journal of Engineering and ScienceResearch Inventy: International Journal of Engineering and Science
Research Inventy: International Journal of Engineering and Science
 
The Principle Of Ultrasound Imaging System
The Principle Of Ultrasound Imaging SystemThe Principle Of Ultrasound Imaging System
The Principle Of Ultrasound Imaging System
 
Building efficient 5G NR base stations with Intel® Xeon® Scalable Processors
Building efficient 5G NR base stations with Intel® Xeon® Scalable Processors Building efficient 5G NR base stations with Intel® Xeon® Scalable Processors
Building efficient 5G NR base stations with Intel® Xeon® Scalable Processors
 
The Role Of Software And Hardware As A Common Part Of The...
The Role Of Software And Hardware As A Common Part Of The...The Role Of Software And Hardware As A Common Part Of The...
The Role Of Software And Hardware As A Common Part Of The...
 
A parallel 8 bit computer interface circuit and software for a digital nuclea...
A parallel 8 bit computer interface circuit and software for a digital nuclea...A parallel 8 bit computer interface circuit and software for a digital nuclea...
A parallel 8 bit computer interface circuit and software for a digital nuclea...
 
A parallel 8 bit computer interface circuit and software for a digital nuclea...
A parallel 8 bit computer interface circuit and software for a digital nuclea...A parallel 8 bit computer interface circuit and software for a digital nuclea...
A parallel 8 bit computer interface circuit and software for a digital nuclea...
 
International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER) International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER)
 
Lp2520162020
Lp2520162020Lp2520162020
Lp2520162020
 
Lp2520162020
Lp2520162020Lp2520162020
Lp2520162020
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Digital logic-formula-notes-final-1
Digital logic-formula-notes-final-1Digital logic-formula-notes-final-1
Digital logic-formula-notes-final-1
 
DESIGN OF DOUBLE PRECISION FLOATING POINT MULTIPLICATION ALGORITHM WITH VECTO...
DESIGN OF DOUBLE PRECISION FLOATING POINT MULTIPLICATION ALGORITHM WITH VECTO...DESIGN OF DOUBLE PRECISION FLOATING POINT MULTIPLICATION ALGORITHM WITH VECTO...
DESIGN OF DOUBLE PRECISION FLOATING POINT MULTIPLICATION ALGORITHM WITH VECTO...
 
Paper id 25201467
Paper id 25201467Paper id 25201467
Paper id 25201467
 
Nt1310 Unit 5 Algorithm
Nt1310 Unit 5 AlgorithmNt1310 Unit 5 Algorithm
Nt1310 Unit 5 Algorithm
 
Report on Embedded Based Home security system
Report on Embedded Based Home security systemReport on Embedded Based Home security system
Report on Embedded Based Home security system
 
At36276280
At36276280At36276280
At36276280
 

Recently uploaded

UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
Fwdays
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Tobias Schneck
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 

Recently uploaded (20)

UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 

Final

  • 1.
  • 2.  Arithmetic circuits form an important class of circuits in digital systems.  With the progress in the very large scale integration (VLSI) circuit technology, many complex circuits are made simple and easy.  Algorithms that seemed impossible to implement are now easy to implement by interfacing of hardware and software using VLSI.  So as to be familiar with the new technology and to cope up with the electronic industry, we have chosen this project as our mini project.
  • 3.  In this project an arithmetic unit based on IEEE standard for floating point numbers will be implemented on Spartan3 FPGA Board. The arithmetic unit will consist of 32-bit processing unit which allows various arithmetic operations such as, Addition, Subtraction, Multiplication, Division and Square Root, on floating point numbers.  From all these operations we have chosen addition operation as a mini project in the existing year.  Synthesis of the unit for the FPGA board will be done using XILINX-ISE.
  • 4.  Floating-point operations are useful for computations involving large dynamic range, but they require significantly more resources than integer operations.  FPGAs offer reduced development time and costs compared to application specific integrated circuits, and their flexibility enables field upgrade and adaptation of hardware to run-time conditions.  Our main objective for this standard is that an implementation of a floating-point system confirming to this standard “can be realized in software, entirely in hardware, or in any combination of software and hardware”.
  • 5.  As per IEEE-754 floating-point standard, simple representation of floating point uses binary fraction(F) and Exponent(E). i.e. N=F*2^E  Having the types of single precision(32 bit) & double precision(64 bit).  In single precision out of 32 bits a bit is used for sign, 8 bits are used for exponent(E) & 23 are for mantissa.
  • 6.  In double precision out of 64 bits a bit is used for sign, 11 bits are used for exponent(E) & 52 are for mantissa.  For example:- Representation of 1259.125 Now consider two parts, first is real part before fraction point & other after point. Representing them separately as (1259)10=(10011101011)2 (0.125)10=(0.001)2
  • 7.  Therefore (1259.125)2=(4EB)16=(10011101011.001)2  Now, we have to normalize it i.e. (1.0011101011001) * 210 Here, 10 is exponent, biased exponent is 137(10+127) 1.0011101011001 is mantissa. Sign Exponent Mantissa 0 10001001 0011101011001
  • 8.
  • 9. 1. Invalid Operation:-  Some arithmetic operations are invalid, such as a division by zero or square root of a negative number.  The result of an invalid operation shall be a NaN (Not a number). 2. Inexact:-  This exception should be signaled whenever the result of an arithmetic operation is not exact due to the restricted exponent and/or precision range. 3. Underflow:-  Two events cause the underflow to be signaled, tininess and loss of accuracy.  Tininess is detected after or before rounding when a result lies between ±2Emin. Loss of accuracy is detected when the result is simply inexact or only when a renormalizations loss occurs. 4. Overflow:-  The overflow is signaled whenever the result exceeds the maximum value that can be represented due to the restricted exponent range.  It is not signaled when one of the operands is infinity, because infinity arithmetic is always exact.
  • 10. 1. Compare exponents. If the exponents are not equal, shift the fraction with the smaller exponent right and add 1 to its exponent; repeat until the exponents are equal. 2. Add the fractions(significants). 3. If the result is 0, set the exponent to the appropriate representation for 0 and exit. 4. If the fraction overflow occurs, shift right and add 1 to the exponent to correct the overflow. 5. If the fraction is not normalized, shift left and subtract 1 from the exponent until the fraction is normalized. 6. Check the exponent overflow indicator, if necessary. 7. Round to the appropriate number of bits. If still it is not normalized go back to step 4.
  • 11.
  • 12.  The main component for hardware implementation of the project will be the Spartan 3 FPGA development board.  Interfacing will be done by using JTAG programmable with parallel or USB cables.  The software used for the simulation of the code will be Xilinx
  • 13.  Low-cost, high-performance logic solution for high-volume, consumer-oriented applications  Densities up to 74,880 logic cells  Up to 633 I/O pins  622+ Mb/s data transfer rate per I/O  18 single-ended signal standards  8 differential I/O standards including LVDS, RSDS  Termination by Digitally Controlled Impedance  Signal swing ranging from 1.14V to 3.465V  Double Data Rate (DDR) support  DDR, DDR2 SDRAM support up to 333 Mb/s  Logic resources  Abundant logic cells with shift register capability  Wide, fast multiplexers  Fast look-ahead carry logic  Dedicated 18 x 18 multipliers  JTAG logic compatible with IEEE 1149.1/1532  Select RAM™ hierarchical memory  Up to 1,872 Kbits of total block RAM  Up to 520 Kbits of total distributed RAM  Digital Clock Manager (up to four DCMs)  Clock skew elimination  Frequency synthesis  High resolution phase shifting  Eight global clock lines and abundant routing  Fully supported by Xilinx ISE® and WebPACK™ software development systems  MicroBlaze™ and PicoBlaze™ processor, PCI®, PCI Express® PIPE Endpoint, and other IP cores