SlideShare a Scribd company logo
KATHERINE LORENA SILVA ALONSOCODIGO: 2073612METODOS NUMERICOS-534035-455295 <br />APPROXIMATIONS OF A POLYNOMIAL BY TAYLOR SERIES<br />EXAMPLE<br />Use terms in the taylor series of zero to fourth order to approximate the function<br />fx=-0.1x4-0.15x3-0.5x2-0.25x+1.2<br />Since   xi=0  whit h=1 so that predicting the value of the function   in xi+1=1<br />SOLUTION<br />Because it is a known function, you can calculate values of f(x) between 0 and 1. The results indicate that the function starts in f(0)=1.2 and continuing down to f(1)=0.2 therefore the true value that is predicted is 0.2.<br />True solution0.51.0Second orderFirst orderZeroorder<br />Approximations in the Taylor series with n = 0<br />f(xi+1)≅f(xi)<br />f(xi+1)≅0.2<br />As seen in the figure, the zero-order approximation is a constant by using this formulation is the truncation error of: <br />Er=0.2-1.2=-1.0<br />En x=1<br />For n=1 the first derivative must be determined and assess in x=0, like:<br />f´0=-0.40.03-0.450.02-1.00.0-0.25=-0.25<br />The first order approximation using the following equation<br />f(xi+1)≅fxi+f´xi(xi+1-xi)<br />f(xi+1)≅1.2-0.5h<br />That its can use for calculate f(1)= 0.95 so the approximation begins to coincide with the trajectory of the function as the slope of a straight line. Thus the truncation error is reduced to <br />Er=0.2-0.95=-0.75<br />For n=2 the second derivative must be determined in x=0<br />f´0=-1.20.03-0.90.02-1.0=-1.0<br />According to the following equation<br />f(xi+1)≅1.2-0.5h-0.5h2<br />Substituting h = 1, f (1) = 0.45. to include the second derivative is added to a downward curvature provides a best estimate as shown in Figure.<br />The additional terms improve the approximation. The inclusion of third and fourth derivative gives the same equation as a result of principle whit <br />f(xi+1)≅1.2-0.5h-0.5h2-0.15h3-0.1h4<br />Since the fifth derivative of a polynomial of fourth order is zero, then the expansion of Taylor series to the fourth derivative produces an accurate approximation in: <br />xi+1=1<br />f1≅1.2-0.51-0.51-0.1513-0.114=0.2<br />
example presented
example presented

More Related Content

What's hot

Numerical Integration: Trapezoidal Rule
Numerical Integration: Trapezoidal RuleNumerical Integration: Trapezoidal Rule
Numerical Integration: Trapezoidal Rule
VARUN KUMAR
 
Maxima and minima
Maxima and minimaMaxima and minima
Maxima and minima
Ganesh Vadla
 
Derivative and graphing
Derivative and graphingDerivative and graphing
Derivative and graphingtayann46
 
Graph of linear function
Graph of linear functionGraph of linear function
Graph of linear function
MartinGeraldine
 
Tangent plane
Tangent planeTangent plane
Tangent plane
yash patel
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+NotesMatthew Leingang
 
1601 parametric equations-03
1601 parametric equations-031601 parametric equations-03
1601 parametric equations-03
Dr Fereidoun Dejahang
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
Tarun Gehlot
 
Developing Expert Voices Question #1 Solution Ver 2
Developing Expert Voices Question #1 Solution Ver 2Developing Expert Voices Question #1 Solution Ver 2
Developing Expert Voices Question #1 Solution Ver 2GreyM
 
Derive Exponential Derivative Formula
Derive Exponential Derivative FormulaDerive Exponential Derivative Formula
Derive Exponential Derivative FormulaPhil Clark
 
Applied numerical methods lec10
Applied numerical methods lec10Applied numerical methods lec10
Applied numerical methods lec10
Yasser Ahmed
 
Sheet 1
Sheet 1Sheet 1
Sheet 1
Ahmed Elmorsy
 
Sheet 2
Sheet 2Sheet 2
Sheet 2
Ahmed Elmorsy
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integrationdicosmo178
 
Sheet 3
Sheet 3Sheet 3
Sheet 3
Ahmed Elmorsy
 
1519 differentiation-integration-02
1519 differentiation-integration-021519 differentiation-integration-02
1519 differentiation-integration-02
Dr Fereidoun Dejahang
 
Area Under the Curve
Area Under the CurveArea Under the Curve
Area Under the Curvealexbeja
 
Linear functions
Linear functionsLinear functions
Linear functionshalcr1ja
 
Derivativedemo
DerivativedemoDerivativedemo
Derivativedemo
Paul Roundy
 

What's hot (20)

Numerical Integration: Trapezoidal Rule
Numerical Integration: Trapezoidal RuleNumerical Integration: Trapezoidal Rule
Numerical Integration: Trapezoidal Rule
 
Maxima and minima
Maxima and minimaMaxima and minima
Maxima and minima
 
Derivative and graphing
Derivative and graphingDerivative and graphing
Derivative and graphing
 
Graph of linear function
Graph of linear functionGraph of linear function
Graph of linear function
 
Tangent plane
Tangent planeTangent plane
Tangent plane
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+Notes
 
1601 parametric equations-03
1601 parametric equations-031601 parametric equations-03
1601 parametric equations-03
 
Numerical differentiation integration
Numerical differentiation integrationNumerical differentiation integration
Numerical differentiation integration
 
Developing Expert Voices Question #1 Solution Ver 2
Developing Expert Voices Question #1 Solution Ver 2Developing Expert Voices Question #1 Solution Ver 2
Developing Expert Voices Question #1 Solution Ver 2
 
Derive Exponential Derivative Formula
Derive Exponential Derivative FormulaDerive Exponential Derivative Formula
Derive Exponential Derivative Formula
 
Applied numerical methods lec10
Applied numerical methods lec10Applied numerical methods lec10
Applied numerical methods lec10
 
Sheet 1
Sheet 1Sheet 1
Sheet 1
 
Sheet 2
Sheet 2Sheet 2
Sheet 2
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
 
Sheet 3
Sheet 3Sheet 3
Sheet 3
 
1519 differentiation-integration-02
1519 differentiation-integration-021519 differentiation-integration-02
1519 differentiation-integration-02
 
Area Under the Curve
Area Under the CurveArea Under the Curve
Area Under the Curve
 
Mqm em
Mqm emMqm em
Mqm em
 
Linear functions
Linear functionsLinear functions
Linear functions
 
Derivativedemo
DerivativedemoDerivativedemo
Derivativedemo
 

Viewers also liked

FAO - agribusiness handbook: white sugar
FAO - agribusiness handbook: white sugarFAO - agribusiness handbook: white sugar
FAO - agribusiness handbook: white sugar
Hernani Larrea
 
Improvements in cane sugar refining at ssm
Improvements in cane sugar refining at ssmImprovements in cane sugar refining at ssm
Improvements in cane sugar refining at ssmHayaturRahim
 
Sugar industry of india
Sugar industry of indiaSugar industry of india
Sugar industry in pakistan
Sugar industry in pakistanSugar industry in pakistan
Sugar industry in pakistan
phulcritude
 
INPLANT TRAINING REPORT AT PRABHULINGESHWAR SUGARS
INPLANT TRAINING REPORT AT PRABHULINGESHWAR SUGARSINPLANT TRAINING REPORT AT PRABHULINGESHWAR SUGARS
INPLANT TRAINING REPORT AT PRABHULINGESHWAR SUGARS
bkshivkumar012
 
SUGAR COGEN PPT PPP NTPC DIM MNRE 25APR15
SUGAR COGEN PPT PPP NTPC DIM MNRE 25APR15 SUGAR COGEN PPT PPP NTPC DIM MNRE 25APR15
SUGAR COGEN PPT PPP NTPC DIM MNRE 25APR15 Ram Kaul
 
Bsnl inplant-training-report srm
Bsnl inplant-training-report srm Bsnl inplant-training-report srm
Bsnl inplant-training-report srm
Aswinkumar R
 
STUDY OF THE MANUFACTURING PROCESS OF WHITE CRYSTAL SUGAR
STUDY OF THE MANUFACTURING PROCESS OF WHITE CRYSTAL SUGARSTUDY OF THE MANUFACTURING PROCESS OF WHITE CRYSTAL SUGAR
STUDY OF THE MANUFACTURING PROCESS OF WHITE CRYSTAL SUGAR
Ashish Panchal
 
Sugar Industry I I
Sugar  Industry  I ISugar  Industry  I I
Sugar Industry I Iyousifmagdi
 
Sugar plant design
Sugar plant designSugar plant design
Sugar plant design
Pasan Bandara
 
A handbook for_cane-sugar_manufacturers_and_their_chemists_1000763605
A handbook for_cane-sugar_manufacturers_and_their_chemists_1000763605A handbook for_cane-sugar_manufacturers_and_their_chemists_1000763605
A handbook for_cane-sugar_manufacturers_and_their_chemists_1000763605
Paul Cedric Agra
 

Viewers also liked (13)

FAO - agribusiness handbook: white sugar
FAO - agribusiness handbook: white sugarFAO - agribusiness handbook: white sugar
FAO - agribusiness handbook: white sugar
 
Improvements in cane sugar refining at ssm
Improvements in cane sugar refining at ssmImprovements in cane sugar refining at ssm
Improvements in cane sugar refining at ssm
 
Sugar industry of india
Sugar industry of indiaSugar industry of india
Sugar industry of india
 
Sugar industry in pakistan
Sugar industry in pakistanSugar industry in pakistan
Sugar industry in pakistan
 
INPLANT TRAINING REPORT AT PRABHULINGESHWAR SUGARS
INPLANT TRAINING REPORT AT PRABHULINGESHWAR SUGARSINPLANT TRAINING REPORT AT PRABHULINGESHWAR SUGARS
INPLANT TRAINING REPORT AT PRABHULINGESHWAR SUGARS
 
SUGAR COGEN PPT PPP NTPC DIM MNRE 25APR15
SUGAR COGEN PPT PPP NTPC DIM MNRE 25APR15 SUGAR COGEN PPT PPP NTPC DIM MNRE 25APR15
SUGAR COGEN PPT PPP NTPC DIM MNRE 25APR15
 
Bsnl inplant-training-report srm
Bsnl inplant-training-report srm Bsnl inplant-training-report srm
Bsnl inplant-training-report srm
 
STUDY OF THE MANUFACTURING PROCESS OF WHITE CRYSTAL SUGAR
STUDY OF THE MANUFACTURING PROCESS OF WHITE CRYSTAL SUGARSTUDY OF THE MANUFACTURING PROCESS OF WHITE CRYSTAL SUGAR
STUDY OF THE MANUFACTURING PROCESS OF WHITE CRYSTAL SUGAR
 
Manu report
Manu reportManu report
Manu report
 
Sugar Industry I I
Sugar  Industry  I ISugar  Industry  I I
Sugar Industry I I
 
Sugar plant design
Sugar plant designSugar plant design
Sugar plant design
 
Sugarcane Ppt
Sugarcane PptSugarcane Ppt
Sugarcane Ppt
 
A handbook for_cane-sugar_manufacturers_and_their_chemists_1000763605
A handbook for_cane-sugar_manufacturers_and_their_chemists_1000763605A handbook for_cane-sugar_manufacturers_and_their_chemists_1000763605
A handbook for_cane-sugar_manufacturers_and_their_chemists_1000763605
 

Similar to example presented

Fourier 3
Fourier 3Fourier 3
Fourier 3
nugon
 
Week 6
Week 6Week 6
Week 6
EasyStudy3
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
Tarun Gehlot
 
Statistics Assignment 1 HET551 – Design and Developm.docx
Statistics Assignment 1 HET551 – Design and Developm.docxStatistics Assignment 1 HET551 – Design and Developm.docx
Statistics Assignment 1 HET551 – Design and Developm.docx
rafaelaj1
 
Fourier series
Fourier seriesFourier series
Fourier series
Shiv Prasad Gupta
 
Math Project !.docx What is the effect of changing the transformations on a s...
Math Project !.docx What is the effect of changing the transformations on a s...Math Project !.docx What is the effect of changing the transformations on a s...
Math Project !.docx What is the effect of changing the transformations on a s...
GOOGLE
 
Limits And Derivative slayerix
Limits And Derivative slayerixLimits And Derivative slayerix
Limits And Derivative slayerixAshams kurian
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
Ashams kurian
 
L19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functionsL19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functions
James Tagara
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)asghar123456
 
Time Series Analysis
Time Series AnalysisTime Series Analysis
Time Series Analysis
Amit Ghosh
 
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptxTPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
ragavvelmurugan
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
Rizwan Kazi
 
adv-2015-16-solution-09
adv-2015-16-solution-09adv-2015-16-solution-09
adv-2015-16-solution-09志远 姚
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
habtamu292245
 
Initial value problems
Initial value problemsInitial value problems
Initial value problems
Ali Jan Hasan
 
differentiate free
differentiate freedifferentiate free
differentiate free
lydmilaroy
 

Similar to example presented (20)

Taylor series
Taylor seriesTaylor series
Taylor series
 
Fourier 3
Fourier 3Fourier 3
Fourier 3
 
Week 6
Week 6Week 6
Week 6
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Statistics Assignment 1 HET551 – Design and Developm.docx
Statistics Assignment 1 HET551 – Design and Developm.docxStatistics Assignment 1 HET551 – Design and Developm.docx
Statistics Assignment 1 HET551 – Design and Developm.docx
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Math Project !.docx What is the effect of changing the transformations on a s...
Math Project !.docx What is the effect of changing the transformations on a s...Math Project !.docx What is the effect of changing the transformations on a s...
Math Project !.docx What is the effect of changing the transformations on a s...
 
Limits And Derivative slayerix
Limits And Derivative slayerixLimits And Derivative slayerix
Limits And Derivative slayerix
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
 
L19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functionsL19 increasing &amp; decreasing functions
L19 increasing &amp; decreasing functions
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)
 
Time Series Analysis
Time Series AnalysisTime Series Analysis
Time Series Analysis
 
Lemh105
Lemh105Lemh105
Lemh105
 
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptxTPDE_UNIT II-FOURIER SERIES_PPT.pptx
TPDE_UNIT II-FOURIER SERIES_PPT.pptx
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
adv-2015-16-solution-09
adv-2015-16-solution-09adv-2015-16-solution-09
adv-2015-16-solution-09
 
senior seminar
senior seminarsenior seminar
senior seminar
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
 
Initial value problems
Initial value problemsInitial value problems
Initial value problems
 
differentiate free
differentiate freedifferentiate free
differentiate free
 

More from Kt Silva

example presented
example presentedexample presented
example presentedKt Silva
 
example presented
example presentedexample presented
example presentedKt Silva
 
Iterative methods
Iterative methodsIterative methods
Iterative methodsKt Silva
 
Example of calculate of root
Example of calculate of rootExample of calculate of root
Example of calculate of rootKt Silva
 
example presented
example presentedexample presented
example presentedKt Silva
 
Ecuacion diferencial
Ecuacion diferencialEcuacion diferencial
Ecuacion diferencialKt Silva
 
Ecuacion diferencial
Ecuacion diferencialEcuacion diferencial
Ecuacion diferencialKt Silva
 
Perforacion de pozos, grupo d3 b, tarea numero 1
Perforacion de pozos, grupo d3 b, tarea numero 1Perforacion de pozos, grupo d3 b, tarea numero 1
Perforacion de pozos, grupo d3 b, tarea numero 1Kt Silva
 
ROOTS OF EQUATIONS
ROOTS OF EQUATIONSROOTS OF EQUATIONS
ROOTS OF EQUATIONSKt Silva
 
mathematical model
mathematical modelmathematical model
mathematical model
Kt Silva
 

More from Kt Silva (12)

example presented
example presentedexample presented
example presented
 
example presented
example presentedexample presented
example presented
 
Iterative methods
Iterative methodsIterative methods
Iterative methods
 
Example of calculate of root
Example of calculate of rootExample of calculate of root
Example of calculate of root
 
example presented
example presentedexample presented
example presented
 
Refuerzo
RefuerzoRefuerzo
Refuerzo
 
Refuerzo
RefuerzoRefuerzo
Refuerzo
 
Ecuacion diferencial
Ecuacion diferencialEcuacion diferencial
Ecuacion diferencial
 
Ecuacion diferencial
Ecuacion diferencialEcuacion diferencial
Ecuacion diferencial
 
Perforacion de pozos, grupo d3 b, tarea numero 1
Perforacion de pozos, grupo d3 b, tarea numero 1Perforacion de pozos, grupo d3 b, tarea numero 1
Perforacion de pozos, grupo d3 b, tarea numero 1
 
ROOTS OF EQUATIONS
ROOTS OF EQUATIONSROOTS OF EQUATIONS
ROOTS OF EQUATIONS
 
mathematical model
mathematical modelmathematical model
mathematical model
 

example presented

  • 1. KATHERINE LORENA SILVA ALONSOCODIGO: 2073612METODOS NUMERICOS-534035-455295 <br />APPROXIMATIONS OF A POLYNOMIAL BY TAYLOR SERIES<br />EXAMPLE<br />Use terms in the taylor series of zero to fourth order to approximate the function<br />fx=-0.1x4-0.15x3-0.5x2-0.25x+1.2<br />Since xi=0 whit h=1 so that predicting the value of the function in xi+1=1<br />SOLUTION<br />Because it is a known function, you can calculate values of f(x) between 0 and 1. The results indicate that the function starts in f(0)=1.2 and continuing down to f(1)=0.2 therefore the true value that is predicted is 0.2.<br />True solution0.51.0Second orderFirst orderZeroorder<br />Approximations in the Taylor series with n = 0<br />f(xi+1)≅f(xi)<br />f(xi+1)≅0.2<br />As seen in the figure, the zero-order approximation is a constant by using this formulation is the truncation error of: <br />Er=0.2-1.2=-1.0<br />En x=1<br />For n=1 the first derivative must be determined and assess in x=0, like:<br />f´0=-0.40.03-0.450.02-1.00.0-0.25=-0.25<br />The first order approximation using the following equation<br />f(xi+1)≅fxi+f´xi(xi+1-xi)<br />f(xi+1)≅1.2-0.5h<br />That its can use for calculate f(1)= 0.95 so the approximation begins to coincide with the trajectory of the function as the slope of a straight line. Thus the truncation error is reduced to <br />Er=0.2-0.95=-0.75<br />For n=2 the second derivative must be determined in x=0<br />f´0=-1.20.03-0.90.02-1.0=-1.0<br />According to the following equation<br />f(xi+1)≅1.2-0.5h-0.5h2<br />Substituting h = 1, f (1) = 0.45. to include the second derivative is added to a downward curvature provides a best estimate as shown in Figure.<br />The additional terms improve the approximation. The inclusion of third and fourth derivative gives the same equation as a result of principle whit <br />f(xi+1)≅1.2-0.5h-0.5h2-0.15h3-0.1h4<br />Since the fifth derivative of a polynomial of fourth order is zero, then the expansion of Taylor series to the fourth derivative produces an accurate approximation in: <br />xi+1=1<br />f1≅1.2-0.51-0.51-0.1513-0.114=0.2<br />