More Related Content
PPTX
PDF
PPS
PDF
PPTX
26ºEvento Beside- A importância das redes sociais no networking profissional DOC
PPT
PDF
More from Kt Silva
DOCX
DOCX
PPTX
DOCX
Example of calculate of root XLSX
XLSX
DOCX
DOCX
DOCX
DOCX
Perforacion de pozos, grupo d3 b, tarea numero 1 PPTX
PPTX
example presented
- 1.
CALCULATION OF THEROOT
we first make the graph of the function to get an inkling of what the value of the root and so allocate an appropriate
x f(X)
0 1 GRAPH OF TH
0.1 0.71873075 1.2
0.2 0.47032005 1
0.3 0.24881164 0.8
0.4 0.04932896 0.6
0.5 -0.13212056 0.4
0.6 -0.29880579 0.2
0.7 -0.45340304 0
0.8 -0.59810348 -0.2 0 0.2
0.9 -0.73470111 -0.4
-0.6
-0.8
-1
we now make the evaluation of each of the methods
BISECTION METHOD
N° ITERATION Xi Xs Xr=Xi+Xs/2 F(Xi) F(Xr)
0 0 2 1 1 -0.86466472
1 0 1 0.5 1 -0.13212056
2 0 0.5 0.25 1 0.35653066
3 0.25 0.5 0.375 0.35653066 0.09736655
4 0.375 0.5 0.4375 0.09736655 -0.02063798
5 0.375 0.4375 0.40625 0.09736655 0.03749731
6 0.40625 0.4375 0.421875 0.03749731 0.00821964
7 0.421875 0.4375 0.4296875 0.00821964 -0.00626086
8 0.421875 0.4296875 0.42578125 0.00821964 0.00096637
9 0.42578125 0.4296875 0.427734375 0.00096637 -0.00265049
10 0.42578125 0.42773438 0.426757813 0.00096637 -0.00084287
11 0.42578125 0.42675781 0.426269531 0.00096637 6.1544E-05
FALSE POSITION METHOD
N° ITERACION Xi Xs Xr=Xs-F(Xs)(Xi-Xs)/F(Xi)-F(Xs) F(Xi) F(Xs)
0 0 2 0.67076181 1 -1.98168436
1 0 0.67076181 0.47594889 1 -0.40931479
2 0 0.47594889 0.436673946 1 -0.08994112
3 0 0.43667395 0.428480265 1 -0.01912266
- 2.
4 0 0.42848027 0.426760405 1 -0.00403004
5 0 0.4267604 0.426398958 1 -0.00084767
6 0 0.42639896 0.426322976 1 -0.00017823
SECANTE METHOD
Xi-1 xi F(xi) F(xi-1) xi+1
0 0 2 -1.981684361 1 0.67076181
1 2 0.67076181 -0.409314792 -1.98168436 0.32473829
2 0.67076181 0.32473829 0.197580806 -0.40931479 0.43738964
3 0.32473829 0.43738964 -0.020435594 0.19758081 0.42683035
4 0.43738964 0.42683035 -0.0009772 -0.02043559 0.42630007
NEWTON METHOD
xi F(x) F´(x) ERROR
0 1 -0.86466472 -1.270670566
1 0.31952094 0.20827694 -2.055595758 212.968537
2 0.42084287 0.01014051 -1.861966764 24.0759539
3 0.426289 2.5474E-05 -1.852628949 1.27756709
4 0.42630275 1.612E-10 -1.852605502 0.0032254
5 0.42630275 0 -1.852605502 2.0411E-08
FIXED POINT METHOD
G1(x)
N° ITERACIONESX F(x) G(x)
1 0 1 1
2 1 -0.86466472 0.135335283
3 0.13533528 0.62753249 0.762867769
4 0.76286777 -0.54540672 0.217461047
5 0.21746105 0.42985405 0.647315095
6 0.64731509 -0.37331592 0.273999173
7 0.27399917 0.30410665 0.57810582
8 0.57810582 -0.26342979 0.314676031
9 0.31467603 0.21826097 0.532936999
10 0.532937 -0.1885103 0.344426695
11 0.3444267 0.15772482 0.502151511
12 0.50215151 -0.13585166 0.366299849
13 0.36629985 0.11435795 0.480657799
14 0.4806578 -0.09826832 0.382389484
15 0.38238948 0.08304731 0.465436796
16 0.4654368 -0.07122761 0.394209182
17 0.39420918 0.060354 0.454563181
18 0.45456318 -0.05168714 0.402876038
19 0.40287604 0.04387577 0.446751809
- 3.
20 0.44675181 -0.03753232 0.40921949
21 0.40921949 0.03190022 0.441119714
22 0.44111971 -0.02726464 0.413855074
23 0.41385507 0.02319384 0.437048918
- 4.
ROOT
e root andso allocate an appropriate interval to assess
GRAPH OF THE FUNCTION
f(X)
0.4 0.6 0.8 1
F(Xi)*F(Xr) Ea
-0.86466472
-0.13212056 100
0.35653066 100
0.03471416 33.3333333
-0.00200945 14.2857143
0.00365098 7.69230769
0.00030821 3.7037037
-5.1462E-05 1.81818182
7.9432E-06 0.91743119
-2.5613E-06 0.456621
-8.1453E-07 0.22883295
5.9474E-08 0.11454754
THOD
F(Xr) F(Xi)*F(Xr) Ea
-0.40931479 -0.40931479
-0.08994112 -0.08994112 40.93147915
-0.01912266 -0.01912266 8.994111954
-0.00403004 -0.00403004 1.912265637
- 5.
-0.00084767 -0.00084767 0.403003816
-0.00017823 -0.00017823 0.084767304
-3.7469E-05 -3.7469E-05 0.017822515
ERROR
198.168436
250
106.554579
25.7553761 200
2.47388323
0.12439283 150
100
50
0
0 2
-50
- 7.
METODO SECANTE METODO NEWTON
% ERROR RELATIVO N° ITERACIONES % ERROR RELATIVO N° ITERACIONES
198.1684361 0 212.9685366 1
106.5545793 1 24.07595393 2
25.75537607 2 1.277567089 3
2.473883231 3 0.003225405 4
0.124392826 4 2.04108E-08 5
- 8.
- 10.
- 11.
1.81818182 6
0.91743119 7
0.456621 8
0.22883295 9
0.11454754 10