CALCULATION OF THE ROOT
  we first make the graph of the function to get an inkling of what the value of the root and so allocate an appropriate


                   x                  f(X)
                                 0              1                                                                   GRAPH OF TH
                               0.1     0.71873075                                             1.2
                               0.2     0.47032005                                               1
                               0.3     0.24881164                                             0.8
                               0.4     0.04932896                                             0.6
                               0.5    -0.13212056                                             0.4
                               0.6    -0.29880579                                             0.2
                               0.7    -0.45340304                                               0
                               0.8    -0.59810348                                            -0.2 0           0.2
                               0.9    -0.73470111                                            -0.4
                                                                                             -0.6
                                                                                             -0.8
                                                                                               -1



   we now make the evaluation of each of the methods

                                                                   BISECTION METHOD
N° ITERATION       Xi                 Xs              Xr=Xi+Xs/2                           F(Xi)         F(Xr)
            0                     0               2                                    1             1    -0.86466472
            1                     0               1                                  0.5             1    -0.13212056
            2                     0             0.5                                0.25              1     0.35653066
            3                  0.25             0.5                               0.375     0.35653066     0.09736655
            4                 0.375             0.5                             0.4375      0.09736655    -0.02063798
            5                 0.375         0.4375                             0.40625      0.09736655     0.03749731
            6              0.40625          0.4375                           0.421875       0.03749731     0.00821964
            7             0.421875          0.4375                          0.4296875       0.00821964    -0.00626086
            8             0.421875      0.4296875                         0.42578125        0.00821964     0.00096637
            9          0.42578125       0.4296875                        0.427734375        0.00096637    -0.00265049
           10          0.42578125      0.42773438                        0.426757813        0.00096637    -0.00084287
           11          0.42578125      0.42675781                        0.426269531        0.00096637     6.1544E-05




                                                                                FALSE POSITION METHOD
N° ITERACION       Xi                 Xs              Xr=Xs-F(Xs)(Xi-Xs)/F(Xi)-F(Xs)      F(Xi)      F(Xs)
               0                 0              2                             0.67076181           1 -1.98168436
               1                 0     0.67076181                             0.47594889           1 -0.40931479
               2                 0     0.47594889                           0.436673946            1 -0.08994112
               3                 0     0.43667395                           0.428480265            1 -0.01912266
4                 0         0.42848027                     0.426760405             1 -0.00403004
            5                 0          0.4267604                     0.426398958             1 -0.00084767
            6                 0         0.42639896                     0.426322976             1 -0.00017823




                                                             SECANTE METHOD
                Xi-1               xi                F(xi)                           F(xi-1)    xi+1
            0                 0                  2                     -1.981684361            1 0.67076181
            1                 2         0.67076181                     -0.409314792 -1.98168436 0.32473829
            2        0.67076181         0.32473829                      0.197580806 -0.40931479 0.43738964
            3        0.32473829         0.43738964                     -0.020435594 0.19758081 0.42683035
            4        0.43738964         0.42683035                        -0.0009772 -0.02043559 0.42630007




                                           NEWTON METHOD
                xi                 F(x)          F´(x)                                ERROR
            0                  1    -0.86466472                        -1.270670566
            1        0.31952094      0.20827694                        -2.055595758    212.968537
            2        0.42084287      0.01014051                        -1.861966764    24.0759539
            3           0.426289     2.5474E-05                        -1.852628949    1.27756709
            4        0.42630275        1.612E-10                       -1.852605502     0.0032254
            5        0.42630275                0                       -1.852605502    2.0411E-08




                        FIXED POINT METHOD
                                  G1(x)
N° ITERACIONESX           F(x)            G(x)
            1           0               1                                        1
            2           1 -0.86466472                                  0.135335283
            3 0.13533528 0.62753249                                    0.762867769
            4 0.76286777 -0.54540672                                   0.217461047
            5 0.21746105 0.42985405                                    0.647315095
            6 0.64731509 -0.37331592                                   0.273999173
            7 0.27399917 0.30410665                                     0.57810582
            8 0.57810582 -0.26342979                                   0.314676031
            9 0.31467603 0.21826097                                    0.532936999
           10    0.532937 -0.1885103                                   0.344426695
           11   0.3444267 0.15772482                                   0.502151511
           12 0.50215151 -0.13585166                                   0.366299849
           13 0.36629985 0.11435795                                    0.480657799
           14   0.4806578 -0.09826832                                  0.382389484
           15 0.38238948 0.08304731                                    0.465436796
           16   0.4654368 -0.07122761                                  0.394209182
           17 0.39420918       0.060354                                0.454563181
           18 0.45456318 -0.05168714                                   0.402876038
           19 0.40287604 0.04387577                                    0.446751809
20   0.44675181 -0.03753232    0.40921949
21   0.40921949 0.03190022    0.441119714
22   0.44111971 -0.02726464   0.413855074
23   0.41385507 0.02319384    0.437048918
ROOT
e root and so allocate an appropriate interval to assess



                GRAPH OF THE FUNCTION




                                                                         f(X)

                          0.4           0.6          0.8           1




                   F(Xi)*F(Xr)   Ea
                    -0.86466472
                    -0.13212056           100
                     0.35653066           100
                     0.03471416 33.3333333
                    -0.00200945 14.2857143
                     0.00365098 7.69230769
                     0.00030821     3.7037037
                     -5.1462E-05 1.81818182
                      7.9432E-06 0.91743119
                     -2.5613E-06     0.456621
                     -8.1453E-07 0.22883295
                      5.9474E-08 0.11454754




THOD
                   F(Xr)          F(Xi)*F(Xr)  Ea
                    -0.40931479    -0.40931479
                    -0.08994112    -0.08994112             40.93147915
                    -0.01912266    -0.01912266             8.994111954
                    -0.00403004    -0.00403004             1.912265637
-0.00084767 -0.00084767    0.403003816
-0.00017823 -0.00017823    0.084767304
 -3.7469E-05 -3.7469E-05   0.017822515




ERROR
 198.168436
                                         250
 106.554579
 25.7553761                              200
 2.47388323
 0.12439283                              150

                                         100

                                          50

                                           0
                                               0   2
                                         -50
METODO SECANTE                       METODO NEWTON
% ERROR RELATIVO    N° ITERACIONES   % ERROR RELATIVO      N° ITERACIONES

      198.1684361             0              212.9685366             1
      106.5545793             1              24.07595393             2
      25.75537607             2              1.277567089             3
      2.473883231             3              0.003225405             4
      0.124392826             4              2.04108E-08             5
ERROR Vs ITERACIONES



                               METODO BISECCION
                               METODO SECANTE
                               METODO NEWTON




2   4      6    8    10   12
METODO BISECCION
N° ITERACIONES   % ERROR RELATIVO
                             N° ITERACIONES

                         100           0
                         100           1
                  33.3333333           2
                  14.2857143           3
                  7.69230769           4
                   3.7037037           5
1.81818182     6
0.91743119     7
   0.456621    8
0.22883295     9
0.11454754    10

example presented

  • 1.
    CALCULATION OF THEROOT we first make the graph of the function to get an inkling of what the value of the root and so allocate an appropriate x f(X) 0 1 GRAPH OF TH 0.1 0.71873075 1.2 0.2 0.47032005 1 0.3 0.24881164 0.8 0.4 0.04932896 0.6 0.5 -0.13212056 0.4 0.6 -0.29880579 0.2 0.7 -0.45340304 0 0.8 -0.59810348 -0.2 0 0.2 0.9 -0.73470111 -0.4 -0.6 -0.8 -1 we now make the evaluation of each of the methods BISECTION METHOD N° ITERATION Xi Xs Xr=Xi+Xs/2 F(Xi) F(Xr) 0 0 2 1 1 -0.86466472 1 0 1 0.5 1 -0.13212056 2 0 0.5 0.25 1 0.35653066 3 0.25 0.5 0.375 0.35653066 0.09736655 4 0.375 0.5 0.4375 0.09736655 -0.02063798 5 0.375 0.4375 0.40625 0.09736655 0.03749731 6 0.40625 0.4375 0.421875 0.03749731 0.00821964 7 0.421875 0.4375 0.4296875 0.00821964 -0.00626086 8 0.421875 0.4296875 0.42578125 0.00821964 0.00096637 9 0.42578125 0.4296875 0.427734375 0.00096637 -0.00265049 10 0.42578125 0.42773438 0.426757813 0.00096637 -0.00084287 11 0.42578125 0.42675781 0.426269531 0.00096637 6.1544E-05 FALSE POSITION METHOD N° ITERACION Xi Xs Xr=Xs-F(Xs)(Xi-Xs)/F(Xi)-F(Xs) F(Xi) F(Xs) 0 0 2 0.67076181 1 -1.98168436 1 0 0.67076181 0.47594889 1 -0.40931479 2 0 0.47594889 0.436673946 1 -0.08994112 3 0 0.43667395 0.428480265 1 -0.01912266
  • 2.
    4 0 0.42848027 0.426760405 1 -0.00403004 5 0 0.4267604 0.426398958 1 -0.00084767 6 0 0.42639896 0.426322976 1 -0.00017823 SECANTE METHOD Xi-1 xi F(xi) F(xi-1) xi+1 0 0 2 -1.981684361 1 0.67076181 1 2 0.67076181 -0.409314792 -1.98168436 0.32473829 2 0.67076181 0.32473829 0.197580806 -0.40931479 0.43738964 3 0.32473829 0.43738964 -0.020435594 0.19758081 0.42683035 4 0.43738964 0.42683035 -0.0009772 -0.02043559 0.42630007 NEWTON METHOD xi F(x) F´(x) ERROR 0 1 -0.86466472 -1.270670566 1 0.31952094 0.20827694 -2.055595758 212.968537 2 0.42084287 0.01014051 -1.861966764 24.0759539 3 0.426289 2.5474E-05 -1.852628949 1.27756709 4 0.42630275 1.612E-10 -1.852605502 0.0032254 5 0.42630275 0 -1.852605502 2.0411E-08 FIXED POINT METHOD G1(x) N° ITERACIONESX F(x) G(x) 1 0 1 1 2 1 -0.86466472 0.135335283 3 0.13533528 0.62753249 0.762867769 4 0.76286777 -0.54540672 0.217461047 5 0.21746105 0.42985405 0.647315095 6 0.64731509 -0.37331592 0.273999173 7 0.27399917 0.30410665 0.57810582 8 0.57810582 -0.26342979 0.314676031 9 0.31467603 0.21826097 0.532936999 10 0.532937 -0.1885103 0.344426695 11 0.3444267 0.15772482 0.502151511 12 0.50215151 -0.13585166 0.366299849 13 0.36629985 0.11435795 0.480657799 14 0.4806578 -0.09826832 0.382389484 15 0.38238948 0.08304731 0.465436796 16 0.4654368 -0.07122761 0.394209182 17 0.39420918 0.060354 0.454563181 18 0.45456318 -0.05168714 0.402876038 19 0.40287604 0.04387577 0.446751809
  • 3.
    20 0.44675181 -0.03753232 0.40921949 21 0.40921949 0.03190022 0.441119714 22 0.44111971 -0.02726464 0.413855074 23 0.41385507 0.02319384 0.437048918
  • 4.
    ROOT e root andso allocate an appropriate interval to assess GRAPH OF THE FUNCTION f(X) 0.4 0.6 0.8 1 F(Xi)*F(Xr) Ea -0.86466472 -0.13212056 100 0.35653066 100 0.03471416 33.3333333 -0.00200945 14.2857143 0.00365098 7.69230769 0.00030821 3.7037037 -5.1462E-05 1.81818182 7.9432E-06 0.91743119 -2.5613E-06 0.456621 -8.1453E-07 0.22883295 5.9474E-08 0.11454754 THOD F(Xr) F(Xi)*F(Xr) Ea -0.40931479 -0.40931479 -0.08994112 -0.08994112 40.93147915 -0.01912266 -0.01912266 8.994111954 -0.00403004 -0.00403004 1.912265637
  • 5.
    -0.00084767 -0.00084767 0.403003816 -0.00017823 -0.00017823 0.084767304 -3.7469E-05 -3.7469E-05 0.017822515 ERROR 198.168436 250 106.554579 25.7553761 200 2.47388323 0.12439283 150 100 50 0 0 2 -50
  • 7.
    METODO SECANTE METODO NEWTON % ERROR RELATIVO N° ITERACIONES % ERROR RELATIVO N° ITERACIONES 198.1684361 0 212.9685366 1 106.5545793 1 24.07595393 2 25.75537607 2 1.277567089 3 2.473883231 3 0.003225405 4 0.124392826 4 2.04108E-08 5
  • 8.
    ERROR Vs ITERACIONES METODO BISECCION METODO SECANTE METODO NEWTON 2 4 6 8 10 12
  • 10.
    METODO BISECCION N° ITERACIONES % ERROR RELATIVO N° ITERACIONES 100 0 100 1 33.3333333 2 14.2857143 3 7.69230769 4 3.7037037 5
  • 11.
    1.81818182 6 0.91743119 7 0.456621 8 0.22883295 9 0.11454754 10