SlideShare a Scribd company logo
1
1. INTRODUCTION
The electronic industry is the world’s largest and fastest growing manufacturing
industry in the world. The increasing “market penetration” in developing countries,
“replacement market” in developed countries and “high obsolescence rate” of electrical
and electronic goods make electrical and electronic waste (e-waste) one of the fastest
growing waste streams. E-waste is valuable source for secondary raw material but
harmful if treated and discarded improperly as it contains many toxic components such as
lead, cadmium, mercury, polychlorinated biphenlys etc. (Bandyopadhyay, 2010).
The quantity of e-waste generated in developed countries equals 1% of total solid
waste on an average and is expected to grow to 2% by 2010 (UNEP Manual, 2007).In
United States alone, 1,30,000 computers and 3,00,000 cell phones are trashed each day
(Anderson, 2010).The developed countries use most of the world’s electronic products
and generate most of the E-waste (Basel Action Network, 2002). Rather than treat e-
waste in an environmentally friendly manner, the developed countries are finding an easy
way out of the problem by exporting these wastes to developing economies especially,
South Asian countries (Basel Action Network, 2002).
The import of e-waste to the developing countries is in violation of the ban imposed
by Basel Convention on the Control of Transboundary Movements of Hazardous Wastes
and their Disposal, as e-waste come under the definition of hazardous waste (Basel
Convention, 1992).Following this, our country, a party to the convention, banned the
import of hazardous waste including e-waste into the country. But a major source of e-
waste in India is illegal imports (Sathish, 2006).
The major portion of the e-waste generated domestically as well as illegally imported
are recycled in crude manner leading to pollution of the environment. Lack of legislation
in our country at present is aiding this hazardous form of recycling. Therefore there is
urgent need to frame and implement rules for regulating this waste and to find
2
environmentally sound, economically viable methods for recycling and disposing of this
necessary evil. The necessity of environmentally sound management of e-waste is
brought out with the help of a case study of uncontrolled dumping of e-waste.
2. E-WASTE
E-waste is the popular name for discarded electrical and electronic equipment with all
of their peripherals at the end of their life. E-waste comprises of wastes generated from
used electronic devices and household appliances which are not fit for their original
intended use and are destined for recovery, recycling or disposal. Such wastes
encompasses wide range of electrical and electronic devices such as computers, hand
held cellular phones, personal stereos, including large household appliances such as
refrigerators, air conditioners etc.
2.1 MAJOR SOURCES
Individuals and Small Businesses: The useful span of a computer has come down to
about two years due to improved versions being launched about every 18 months. Often,
new software is incompatible or insufficient with older hardware so that customers are
forced to buy new computers.
Large corporations, Institutions and Government: Large users upgrade employee
computers regularly.
Original Equipment Manufacturers (OEMs):OEMs generate e-waste when units
coming off the production line do not meet quality standards, and must be disposed off.
Some of the computer manufacturers contract with recycling companies to handle their
electronic waste, which often is exported.
Besides computers, other major e waste source is the cellular phone.
3
2.2 INDIAN SCENARIO
The electronics industry has emerged as the fastest growing segment of Indian
industry both in terms of production and exports. The share of software services in
electronics and IT sector has gone up from 38.7 per cent in 1998-99 to 61.8percent in
2003-04. A review of the industry statistics show that in 1990-91,hardware accounted for
nearly 50% of total IT revenues while software's share was 22%. The scenario changed
by 1994-95, with hardware share falling to 38%and software share rising to 41%. This
shift in the IT industry began with liberalization and the opening up of Indian markets
together with which there was a change in India’s import policies vis-à-vis hardware
leading to substitution of domestically produced hardware by imports.
By the end of financial year 2005-06, India had an installed base of 4.64 million
desktops, about 431thousand notebooks and 89 thousand servers. According to the
estimates made by the Manufacturers Association of Information Technology (MAIT),
the Indian PC industry is growing at a 25% compounded annual growth rate. The e-waste
inventory based on this obsolescence rate and installed base in India for the year 2005 has
been estimated to be 146180.00 tonne. This is expected to exceed 8,00,000tonne by 2012.
There is a lack of authentic and comprehensive data on e-waste availability for domestic
generation of e-waste and the various State Pollution Control Boards have initiated the
exercise to collect data on e-waste generation.
Sixty-five cities in India generate more than 60% of the total e-waste generated in
India. Ten states generate 70% of the total e-waste generated in India. Maharashtra ranks
first followed by Tamil Nadu, Andhra Pradesh, Uttar Pradesh, West Bengal, Delhi,
Karnataka, Gujarat, Madhya Pradesh and Punjab in the list of e-waste generating states in
India.
In our country, currently some units have registered with the Ministry of Environment
and Forests as possessing environmentally sound management facilities for recycling of
e-waste. The list of units registered with Ministry of Environment and Forests/Central
Pollution Control Board as recyclers/reprocessors having environmentally sound
4
management facilities is given below in table 2.1(Ministry of Environment and Forests,
2010):
Table 2.1List of Recyclers/Reprocessors having registration of the Ministry of
Environment and Forests, Govt. of India
Sl.
No.
Name of the Unit Waste permitted and Quantity
allowed
Registration Valid up to
ANDHRA PRADESH
1 Ramky E-waste Recycling
Facility (Ramky Engineers Ltd.)
Maheswaram (M) R.R.Distt
e-Waste as per the Sl.No.18 of
Schedule IV of Hazardous Waste
(Management, Handling
&Transboundary Movement)
(HW(M,H&TM))Rule,2008 -
10000 MTA
28/07/2011
2 Earth Sense Recycle Pvt. Ltd.
Rangareddy District
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H&TM)
Rule,2008- 1800 MTA
30/08/2015
HARYANA
1 Earth Sense Recycle Pvt. Ltd.
Gurgaon
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H&TM)
Rule,2008 - 1200 MTA
29/08/2015
KARNATAKA
1 Ash Recyclers, Unit-II
Bangalore
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 - 120 MTA
01/12/2010
2 New Port Computer Services
(India) Private Limited,
Bangalore
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 – 500MTA
31/01/2011
3 EWaRDD& Co.,
Bangalore
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 – 600MTA
04/03/2011
4 E-R3 Solutions Pvt. Ltd.,
Bangalore
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 – (only printer
cartridge) – 1,20,000 units
17/05/2011
5
MAHARASHTRA
1 Eco Recycling Limited,
Thane
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 – 7200MTA
25/04/2011
2 Earth Sense Recycle Pvt. Ltd.,
Thane
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 – 360MTA
27/10/2010
3 Hi Tech Recycling India (P) Ltd.,
Pune
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 – 500MTA
29/04/2011
RAJASTHAN
1 Green Eco Management Pvt.
Ltd., Alwar
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 – 450MTA
04/03/2011
TAMILNADU
1 Trishyiraya Recycling India Pvt.
Ltd., Chennai
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 – 740MTA
01/12/2010
2 TESAMM Private Limited,
Kancheepuram
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 –30,000MTA
08/12/2010
3 Global E-waste Management and
Services, Kancheepuram
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 – 387 MTA
02/05/2011
UTTAR PRADESH
1 TIC Group India Pvt. Ltd.,
Noida
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 – 1000 MTA
01/12/2010
UTTARKHAND
1 Attero Recycling Private Limited,
Haridwar
e-Waste as per the Sl.No.18 of
Schedule IV of HW(M,H& TM)
Rule,2008 – 12,000 MTA
15/07/2011
6
3. CLASSIFICATION OF E-WASTE
3.1COMPONENTSOF E-WASTE
E-waste has been categorized into three main categories, viz. large household
appliances, IT and Telecom and consumer equipment. Refrigerator and washing machine
represent large household appliances, personal computer monitor and laptop represent IT
and Telecom, while television represents consumer equipment. Each of these e-waste
items has been classified with respect to twenty six common components, which could be
found in them. These components form the “building blocks” of each item and therefore
they are readily “identifiable” and “removable”. These components are metal,
motor/compressor, cooling, plastic, insulation, glass, (Liquid Crystal Display) LCD,
rubber, wiring/ electrical, concrete, transformer, magnetron, textile, circuit board,
fluorescent lamp, incandescent lamp, heating element, thermostat, BFR-containing
plastic, batteries, fluorocarbons (CFC/HCFC/HFC/HC), external electric cables,
refractory ceramic fibers, radioactive substances and electrolyte capacitors. The kinds of
components, which are found in refrigerator, washing machine, personal computers (PC)
and televisions, are described in table 3.1.
From table 3.1 it can be seen that the range of different items seen in e-waste is
diverse. However, e-waste from these items can be dismantled into relatively smaller
number of common components for further treatments.
7
Table 3.1 Components of E-waste
Metal
Motor/compressor
Cooling
Plastic
Insulation
Glass
CRT
LCD
Rubber
Wiring/electrical
Concrete
Transformer
Magnetron
Textile
Circuitboard
Fluorescentlamp
Incandescentlamp
Heatingelement
Thermostat
BFRcontainingplastic
Batteries
CFC,HCFC,HFC,HC
Electriccables
Refractoryceramicfibres
Radioactivesubstances
Electrolytecapacitors
Large household appliances
Refrigerator √ √ √ √ √ √ - - √ √ - - - - - - √ - √ √ - √ √ - - -
Washing
Machine
√ √ - √ - √ - - √ √ √ - - - √ - - √ √ - - - √ - - º
IT & Telecom
Personal
Computer
(base &
keyboard)
√ √ - √ - - - - - √ - √ - - √ - - - - - √ - √ - - -
Personal
Computer
(monitor)
- - - √ - - √ √ - - - - - - √ - - - - - - - √ - - -
Laptop - √ - √ - - - √ √ - - √ √ - - - √ √ - √ - √ - - -
Consumer equipment
Television √ - - √ - - √ - - √ - √ - - √ - - - - √ - - √ - - -
8
3.2 COMPOSITION OF E-WASTE
Composition of e-waste is very diverse and differs in products across different
categories. It contains more than 1000 different substances, which fall under “hazardous”
and “non-hazardous” categories. Broadly, it consists of ferrous and non-ferrous metals,
plastics, glass, wood & plywood, printed circuit boards, concrete and ceramics, rubber
and other items. Iron and steel constitutes about50% of the e-waste followed by plastics
(21%), non ferrous metals (13%) and other constituents. Non-ferrous metals consist of
metals like copper, aluminium and precious metals e.g. silver, gold, platinum, palladium
etc. The presence of elements like lead, mercury, arsenic, cadmium, selenium and
hexavalent chromium and flame retardants beyond threshold quantities in e-waste
classifies them as hazardous waste. The possible constituents of concern found in the
three main categories described in 3.1 are given in table 3.2.
Table 3.2 Possible Hazardous Substances in Components of E-waste
Component Possible hazardous content
Metal
Motor/compressor
Cooling Ozone Depleting Substances (ODS)
Plastic Phthalate plasticizer, brominated flame retardants (BFR)
Insulation Insulation ODS in foam, asbestos, refractory ceramic fiber
Glass
Cathode Ray Tube Lead, Antimony, Mercury, Phosphor
Liquid Crystal Display Mercury
Rubber Phthalate plasticizer, BFR
Wiring / electrical Phthalate plasticizer, BFR, Lead
Concrete
Transformer
Circuit Board Lead, Beryllium, Antimony, BFR
Fluorescent lamp Mercury, Phosphorous, Flame retardants
Incandescent lamp
Heating element
Thermostat Mercury
BFR-containing plastic BFRs
Batteries Lead, Lithium, Cadmium, Mercury
CFC,HCFC,HFC,HC ODS
9
The substances within the above mentioned components, which cause most concern
are the heavy metals such as lead, mercury, cadmium and chromium(VI), halogenated
substances (e.g. CFCs), polychlorinated biphenyls, plastics and circuit boards that contain
brominated flame retardants (BFRs). BFR can give rise to dioxins and furans during
incineration. Other materials and substances that can be present are arsenic, asbestos,
nickel and copper. These substances may act as catalysts to increase the formation of
dioxins during incineration.
3.3 HEALTH EFFECTS OF SOME COMMON CONSTITUENTS IN E-WASTE
The health effects of heavy metals and certain compounds found commonly in
components of e-waste are described below:
3.3.1. Lead
Lead is used in glass panels and gaskets in computer monitors and in solder in printed
circuit boards and other components.
Lead causes damage to the central and peripheral nervous systems, blood systems,
kidney and reproductive system in humans. It also affects the endocrine system, and
impedes brain development among children. Lead tends to accumulate in the
environment and has high acute and chronic effects on plants, animals and micro
organisms (Metcalf & Eddy, 2003).
3.3.2. Cadmium
Cadmium occurs in surface mounted device (SMD) chip resistors, infra-red detectors,
and semiconductor chips. Some older cathode ray tubes contain cadmium.
Toxic cadmium compounds accumulate in the human body, especially the liver,
kidneys pancreas, thyroid (Metcalf & Eddy, 2003, Basel Action Network, 2002).
External electric cables BFRs, plasticizers
Electrolyte capacitors Glycol, other unknown substances
10
3.3.3. Mercury
It is estimated that 22 % of the yearly world consumption of mercury is used in
electrical and electronic equipment. Mercury is used in thermostats, sensors, relays,
switches, medical equipment, lamps, mobile phones and in batteries. Mercury, used in
flat panel displays, will likely increase as their use replaces cathode ray tubes.
Mercury can cause damage to central nervous system as well as the foetus. The
developing foetus is highly vulnerable to mercury exposure (Metcalf & Eddy, 2003).
When inorganic mercury spreads out in the water, it is transformed to methylated
mercury which bio-accumulates in living organisms and concentrates through the food
chain, particularly via fish (Basel Action Network, 2002).
3.3.4. Hexavalent Chromium/Chromium VI
Chromium VI is used as corrosion protector of untreated and galvanized steel plates
and as a decorative or hardener for steel housings.
Chromium VI can cause damage to DNA and is extremely toxic in the environment.
Long term effects are skin sensitization and kidney damage(Metcalf & Eddy, 2003).
3.4.5. Plastics (including PVC)
The largest volume of plastics (26%) used in electronics has been poly vinyl chloride
(PVC). PVC elements are found in cabling and computer housings. Many computer
moldings are now made with the somewhat more benign acrylonitrile butadiene (ABS)
plastic. Dioxins are released when PVC is burned (Basel Action Network, 2002)..
3.4.6 Brominated Flame Retardants (BFRs)
BFRs are used in the plastic housings of electronic equipment and in circuit boards to
prevent flammability. BFRs are persistent in the atmosphere and show bioaccumulation.
Concerns are raised considering their potential to toxicity (Basel Action Network, 2002).
11
3.4.7. Barium
Barium is a soft silvery-white metal that is usedprotect users from radiation.
Studies have shown that short-term exposure to barium causes brain swelling, muscle
weakness, damage to the heart, liver, and spleen(Basel Action Network, 2002).
3.4.8. Beryllium
Beryllium is commonly found on motherboards and finger clips.
Exposure to beryllium can cause lung cancer. Beryllium also causes a skin disease that is
characterised by poor wound healing and wartlike bumps. Studies have shown that
people can develop beryllium disease many years following the last exposure. It is used
as a copper-beryllium alloy to strengthen connectors.
Barium is a soft silvery-white metal that is used to protect users from radiation.
3.4.9. Phosphor and additives
Phosphor is an inorganic chemical compound that is applied as a coat on the interior of
the CRT faceplate. Phosphor affects the display resolution and luminance of the images
that is seen in the monitor.
The phosphor coating on cathode ray tubes contains heavy metals, such as cadmium, and
other rare earth metals, for example, zinc, vanadium as additives. These metals and their
compounds are very toxic. This is a serious hazard posed for those who dismantle CRTs
by hand.
12
3.4.NEED FOR GUIDELINES FOR ENVIRONMENTALLY SOUND
MANAGEMENT
The saying waste is misplaced wealth is true in the case of e-waste. The recyclability
of e-waste and the precious metals that can be extracted from the waste make recycling
a lucrative business. But recycling using environmentally sound means costly business
and so majority of the e-waste is recycled via the informal sector. Informal recycling
involves minimal use of technology and is carried out in the poorer parts of big cities.
The standard recycling drill involves physically breaking down components often without
any protective gear, burning poly vinyl chloride (PVC) wires to retrieve copper, melting
of lead and mercury laden parts. The extraction of gold and copper requires acid
processing. The plastic parts, which contain brominated flame retardants (BFR) are also
broken into small pieces prior to recycle. All these processes release toxic fumes into
the atmosphere and polluted water into soil and water bodies leading to contamination.
Most of those who work in the recycling sector are the urban poor with low literacy
lacking awareness of the hazards of the toxic e-wastes. Children and women are
routinely involved in the operations. Most of the work is done by bare hands. Waste
components which do not have resale value are openly burnt or disposed off in open
dumps (Kurian, 2007).
Rapid pace of product obsolescence resulting in short life span of computers and
other electronic equipments coupled with exponential increase in consumption of such
products will result in the doubling of waste over next five to six years. The toxicity of
constituents in e-waste, lack of environmentally sound recycling infrastructure and the
large scale current practice of informal recycling highlight the urgent need for guidelines
for environmentally sound management of e-waste.
13
4. METHODOLOGY FOR ENVIRONMENTALLY SOUND
MANAGEMENT OF E-WASTE
4.1. E-WASTE COMPOSITION AND RECYCLE POTENTIAL
The composition of e-waste and its recyclable potential is specific for each appliance. In
order to handle this complexity, the parts/materials found in e-waste may be divided broadly
into six categories as follows:
Iron and steel, used for casings and frames
Non-ferrous metals, especially copper used in cables, and aluminum
Glass used for screens, windows
Plastic used as casing, in cables and for circuit boards
Electronic components
Others (rubber, wood, ceramic etc.)
Overview of the composition of the appliances in the three categories mentioned earlier is
given in table 4.1.
Table 4.1 Average Weight and Composition of Selected Appliances (Typical)
Appliances Average
weight
(kg)
Fe %
weight
Non Fe-
metal
%
weight
Glass
%
weight
Plastic %
weight
Electronic
components
% weight
Others
%
weight
Refrigerators and
freezers
48 .0 64.4 6 .0 1.4 13 .0 0.2 15.0
Personal computer 29.6 20.0 24 15 23.0 17.3 0.7
TV sets 36.2 5.3 5.4 62 22.9 0.9 3.5
The recovery potential (typical values) of items of economic value from refrigerator,
personal computer and television are given in tables 4.2, 4.3, 4.4 respectively.
14
Table 4.2 Recoverable Quantity of Materials in a Refrigerator
Material Type % (by weight)
CFCs 0.20
Oil 0.32
Ferrous Metals 46.61
Non-Ferrous Metals 4.97
Plastics 13.84
Compressors 23.80
Cables/Plugs 0.55
Spent Foam 7.60
Glass 0.81
Mixed Waste 1.30
Total 100.00
Table 4.3 Recoverable Quantity of Materials in a Personal Computer
Elements Content (% of
total weight)
Content
(Kg)
Recycling
efficiency (%)
Recoverable weight of
element (kg)
Plastics 23 6.25 20% 1.251
Lead 6 1.71 5% 0.086
Aluminum 14 3.85 80% 3.084
Germanium 0.0016 0.00 0% 0
Gallium 0.0013 0.00 0% 0
Iron 20 5.57 80% 4.455
Tin 1 0.27 70% 0.192
Copper 7 1.88 90% 1.696
Barium 0.0315 0.01 0% 0
Nickel 0.8503 0.23 0% 0
Zinc 2 0.60 60% 0.360
Tanialum 0.0157 0.0046 0% 0
Indium 0.0016 0.00047 60% 0.00026
15
Vanadium 0.0002 0.00 0% 0
Beryllium 0.0157 0.0046 0% 0
Gold 0.0016 0.00047 99% 0.00043
Europium 0.0002 0.00 0% 0
Tritium 0.0157 0.00 0% 0
Ruthenium 0.0016 0.00047 80% 0.00035
Cobalt 0.0157 0.0047 85% 0.00363
Palladium 0.0003 0.00 0077 95% 0.000077
Manganese 0.0315 0.01 0% 0
Silver 0.0189 0.0156 98% 0.00504
Antimony 0.0094 0.00 0% 0
Bismuth 0.0063 0.00 0% 0
Chromium 0.0063 0.00 0% 0
Cadmium 0.0094 0.00 0% 0
Selenium 0.0016 0.00047 70% 0.0003
Niobium 0.0002 0.00045 0% 0
Yttrium 0.0002 0.00 0% 0
Mercury 0.0022 0.00 0% 0
Arsenic 0.0013 0.00 0% 0
Silica 24.8803 6.77 0% 0
Table 4.4 Recoverable Quantity of Materials in a Television
Elements % by weight Recoverable Weight of
element (Kg)
Aluminium 1.2 0.4344
Copper 3.4 1.2308
Lead 0.2 0.0724
Zinc 0.3 0.1086
Nickel 0.038 0.0138
Iron 12 4.344
Plastic 26 9.412
Glass 53 19.186
Silver 0.000724
Gold 0.000362
16
4.2. ASSESSMENT OF HAZARDOUSNESS OF E-WASTE
The hazardous nature of e-waste is determined by identifying the e-waste category
item (identification includes the waste items and year of manufacture), identifying the e-
waste composition or its components, identifying possible hazardous content in the e-
waste and identifying whether the e-waste component is hazardous or the entire e-waste
item is hazardous.
4.3.RECYCLING, REUSE AND RECOVERY OPTIONS
The composition of e-waste consists of diverse items like ferrous and non ferrous
metals, glass, plastic, electronic components and other items and it is also revealed that e-
waste consists of hazardous elements. Therefore, the major approach to treat e-waste is to
reduce the concentration of these hazardous chemicals and elements through recycle and
recovery. In the process of recycling or recovery, certain e-waste fractions act as
secondary raw material for recovery of valuable items. The recycle and recovery includes
the following unit operations.
(i) Dismantling
Removal of parts containing dangerous substances (CFCs, Hg switches, PCB); removal
of easily accessible parts containing valuable substances(cable containing copper, steel,
iron, precious metal containing parts, e.g. contacts).
(ii) Segregation of ferrous metal, non-ferrous metal and plastic
This separation is normally done in a shredder process.
(iii) Refurbishment and reuse
Refurbishment and reuse of e-waste has potential for those used electrical and electronic
equipments which can be easily refurbished to put to its original use.
17
(iv) Recycling/recovery of valuable materials
Ferrous metals in electrical are furnaces, non-ferrous metals in smelting plants, precious
metals in separating works.
(v) Treatment/disposal of dangerous materials and waste
Shredder light fraction is disposed of in landfill sites or sometimes incinerated
(expensive), CFCs are treated thermally, PCB is incinerated or disposed of in
underground storages, Hg is often recycled or disposed of in underground landfill sites.
4.4. TREATMENT &DISPOSAL OF E-WASTE
The presence of hazardous elements in e-waste offers the potential of increasing the
intensity of their discharge in environment due to landfilling and incineration. The
potential treatment &disposal options based on the composition are given below:
1) Incineration 2) Landfilling
4.4.1. Landfilling
The literature review reveals that degradation processes in landfills are very
complicated and run over a wide time span. At present it is not possible to quantify
environmental impacts from E-waste in landfills for the following reasons:
 Landfills contain mixtures of various waste streams
 Emission of pollutants from landfills can be delayed for many years
One of the studies on landfills reports that the environmental risks from landfilling of e-
waste cannot be neglected because the conditions in a landfill site are different from a
native soil, particularly concerning the leaching behavior of metals. In addition it is
known that cadmium and mercury are emitted in diffuse form or via the landfill gas
combustion plant. Although the risks cannot be quantified and traced back to e-waste,
landfilling does not appear to be an environmentally sound treatment method for
substances, which are volatile and not biologically degradable (Cd, Hg, CFC), persistent
(PCB) or with unknown behaviour in a landfill site (brominated flame retardants). As a
18
consequence o fthe complex material mixture in e-waste, it is not possible to exclude
environmental (long-term) risks even in secured landfilling.
4.4.2. Incineration
Advantage of incineration of e-waste is the reduction of waste volume and the
utilization of the energy content of combustible materials. Some plants remove iron from
the slag for recycling. By incineration some environmentally hazardous organic
substances are converted into less hazardous compounds. Disadvantage of incineration
are the emission to air of substances escaping fluegas cleaning and the large amount of
residues from gas cleaning and combustion.
There is no available research study or comparable data, which indicates the impact of e-
waste emissions into the overall performance of municipal waste incineration plants.
Waste incineration plants contribute significantly to the annual emissions of cadmium
and mercury. In addition, heavy metals not emitted into the atmosphere are transferred to
slag and exhaust gas residues and can reenter the environment on disposal. Therefore, e-
waste incineration will increase these emissions, if no reduction measures like removal of
heavy metals from are taken.
5. ENVIRONMENTALLY SOUND E-WASTE TREATMENT
TECHNOLOGIES
Environmentally sound E-waste treatment technologies (EST) are used at three levels
as described below:
1. 1st
level treatment
2. 2nd
level treatment
3. 3rd
level treatment
19
5.1. ANALYSIS
All the three levels of e-waste treatment are based on material flow. The material
flows from 1st
level to 3rd
level treatment. Each level treatment consists of unit operations,
where e-waste is treated and output of 1st
level treatment serves as input to 2nd
level
treatment. After the third level treatment, the residues are disposed of either in Treatment,
Storage, Disposal Facility (TSDF) or incinerated. The efficiency of operations at first and
second level determines the quantity of residues going to TSDF or incineration. The
simplified version of all the three treatments is shown in figure 5.1.EST at each level of
treatment is described in terms of input, unit operations, output and emissions.
Figure 5.1: Simplified Version of EST for E-waste
1st
LEVEL
TREATMENT
2nd
LEVEL
TREATMENT
3rd
LEVEL
TREATMENT
Input e-waste
Disposal
Disposal
Output i.e. recovered
materials
20
5.2. EST FOR 1ST LEVEL TREATMENT
5.2.1 Input: e-waste items like TV, refrigerator and Personal Computers (PC)
5.2.2 Unit Operations:
There are three units operations at first level of e-waste treatment.
1.Decontamination - The first treatment step is to decontaminate e-waste and render it
nonhazardous. This involves removal of all types of liquids and gases (if any)under
negative pressure, their recovery and storage.
2. Dismantling - Manual/mechanized breaking
3.Segregation - Components are segregated into hazardous and nonhazardous
components of e-waste fractions to be sent for 3rd level treatment.
All the three unit operations are dry processes, which do not require usage of water.
5.2.3. Output:
1. Segregated hazardous wastes like CFC, Hg Switches, batteries and capacitors
2. Decontaminated e-waste consisting of segregated non-hazardous e-waste like plastic,
CRT, circuit board and cables
5.2.4.Emissions: The emissions coming out of 1st level treatment is given in table 5.1.
Table 5.1 Emissions from 1st level E-waste treatment
Emissions Dismantling Segregation
Air √ (fugitive) X
Water X X
Noise √ √
Land/ Soil Contamination due to
spillage
√ √
Generation of hazardous waste √ √
21
5.3. ESTFOR 2ND LEVEL TREATMENT
5.3.1. Input: Decontaminated E-waste consisting segregated non hazardous e-waste like
plastic, CRT, circuit board and cables.
5.3.2.Unit Operations:
There are three unit operations at second level of E-waste treatment.
1. Hammering
2. Shredding
3. Special treatment Processes comprising of
(i) CRT treatment consisting of separation of funnels and screen glass.
(ii) Electromagnetic separation
(iii) Eddy current separation
(iv) Density separation using water
The two major unit operations are hammering and shredding. The major objective of
these two unit operations is size reduction. The third unit operation consists of special
treatment processes. Electromagnetic and eddy current separation utilizes properties of
different elements like electrical conductivity, magnetic properties and density to separate
ferrous, non ferrous metal and precious metal fractions. Plastic fractions consisting of
sorted plastic after 1st
level treatment, plastic mixture and plastic with flame retardants
after second level treatment, glass and lead are separated during this treatment. The
efficiency of this treatment determines the recovery rate of metal and segregated-waste
fractions for third level treatment. The simplified version of this treatment technology
showing combination of all three unit operations is given in Figure 5.2.
1. The technology for sorting, treatment, including recycling and disposal of E-waste is
fully based on dry process using mechanical operations.
2. The pre-comminuting stage includes separation of Plastic, CRT and remaining non
CRT based e-waste. Equipments like hammer mill and shear shredder will be used at
22
comminuting stage to cut and pulverize e-waste and prepare it as a feedstock to
magnetic and eddy current separation.
E-wastes
Figure 5.2 Process Flow Chart of Non CRT Based E-Waste Treatment
3. A heavy-duty hammer mill grinds the material to achieve separation of inert materials
and metals.
Pre- comminuting for a rough liberation
Magnetic & eddy current separation of ferrous
and non ferrous metals
Ferrous and nonferrous metals
Cyclone
Liberation of Non Ferrous Metals
Classifying for unproved separation
Subsequent comminution of unliberated
materials
Electrostatic separation of metal fraction
Comminuting using hammer mill and shredder
Dust Extraction Optional gravity or eddy
current separation of course metal fraction
Separation of
Cu, Al, Au,Ag
and other
precious
metals
Fractions
(Cu, Al, Au
Ag and other
precious
metals)
Separation of
Fe & non- Fe
(Cu, Al, Au,
Ag and other
precious
metals)
23
4. After separation of metals from inert material, metal fraction consisting of ferrous and
non-ferrous metals are subjected to magnetic current separation. After separation of
Ferrous containing fraction, Non-ferrous fraction is classified into different non-metal
fractions, electrostatic separation and pulverization.
5. The ground material is then screened and de dusted subsequently followed by
separation of valuable metal fraction using electrostatic, gravimetric separation and eddy
current separation technologies fractions of copper (Cu), aluminum (Al), residual
fractions containing gold (Au), silver (Ag) and other precious metals. This results in
recovery of clean metallic concentrates, which are sold for further refining to smelters.
Sometimes water may be used for separation at last stage.
6. Electric conductivity-based separation separates materials of different electric
conductivity (or resistivity) mainly different fractions of non-ferrous metals from E-
waste. Eddy current separation technique has been used based on electrical conductivity
for non ferrous metal separation from e-waste. Its operability is based on the use of rare
earth permanent magnets. When a conductive particle is exposed to an alternating
magnetic field, eddy currents will be induced in that object, generating a magnetic field to
oppose the magnetic field. The interactions between the magnetic field and the induced
eddy currents lead to the appearance of electro dynamic actions upon conductive non-
ferrous particles and are responsible for the separation process.
7. The efficacy of the recycling system is dependent on the expected yields/output of the
recycling system. The expected yields/ output from the recycling system are dependent
on the optimization of separation parameters. These parameters are given below:
 Particle size
 Particle shape
 Feeding rate/ RPM
 Optimum operations
24
Figure 5.3Non- ferrous Metal Distribution vs. Size Range for PC Scrap
Figure 5.3.2 shows the non- ferrous metal distribution (which forms the backbone of
financial viability of recycling system) as a function of size range for PC scrap. It can be
seen that aluminum is mainly distributed in the coarse fractions (+6.7 mm), but other
metals are mainly distributed in the fine fractions (−5 mm). Size properties are essential
for choosing an effective separation technique. Therefore, eddy current separator is best
for granular nonferrous materials having size greater than 5mm. The eddy current
separation will ensure better separation of Al fraction in comparison to fraction
containing Cu, Ag and Au.
8. Particle shape is dependent on comminuting and separation.
9. The feeding rate can be optimized based on the speed and width of the conveyor.
5.3.2.1. CRT Treatment Technology
The salient features of CRT treatment technology are given below.
1. CRT is manually removed from plastic/ wooden casing.
25
2. Picture tube is split and the funnel section is then lifted off the screen section and the
internal metal mask can be lifted to facilitate internal phosphor coating.
3. Internal phosphor coating is removed by using an abrasive wire brush and a strong
vacuum system to clean the inside and recover the coating. The extracted air is cleaned
through an air filter system to collect the phosphor dust.
Different types of splitting technology used are given below.
 NiChrome hot wire cutting
 Thermal shock
 Laser cutting
 Diamond wire method
 Diamond saw separation
 Water-jet separation
5.3.3.Output: The output from the 2nd
level treatment technology is given below.
1. Ferrous metal scrap (secondary raw material)
2. Non ferrous metal scrap, mainly copper and aluminum
3. Precious metal scrap mainly silver, gold, & palladium
4. Plastic consisting of sorted plastic, plastic with flame retardants and plastic
mixture
5. Glass fraction (secondary raw material)
6. Lead (secondary raw material)
5.3.4. Emissions: The emissions coming out of 2nd
level treatment is given in table 5.2.
26
Table 5.2 Emissions from 2ndLevel E-wastes Treatment
Unit Operations / Emissions Dismantling Shredding Special Treatment Process
CRT Electro-
magnetic
Eddy
Current
Density
separation
Air √(fugitive) √
(fugitive)
X √ (fugitive) √ (fugitive) X
Water X X √ X X
Noise √ √ √ √ √ X
Land/ Soil Contamination
due to spillage
√ √ √ √ √ √
Generation of hazardous
waste
√ √ √ X X X
5.4. EST FOR 3RD LEVEL TREATMENT
The hazardous material separated during the 1st
level treatment and the output from
the 2nd
level is subjected to the 3rd
level treatment. This facility need not always exists
with the first two treatment locations, but may be located at different places. The
treatment includes recycle /recovery of valuable materials using processes like smelting,
refining etc.
27
The input, output and unit operations at 3rd
level treatment are described in table 5.3.
Table 5.3 Input, Output and Unit Operations at 3rdLevel Treatment
6. CASE STUDY OF RECYCLING AND DUMPING OF E-WASTE
A case study of environmental contamination from electronic waste recycling at
Guiyu, southeast China done by Anna Leung, Zong Wei Cai and Ming Hung Wong in
2005 reported in the Journal of Material Cycles Waste Management is briefly described
below:
Input/ WEEE Residues Unit Operation/ Disposal/
Recycling Technique
Output
Sorted Plastic Recycling Plastic Product
Plastic Mixture Energy Recovery/
Incineration
Energy Recovery
Plastic Mixture with BFR Incineration Energy Recovery
CRT Breaking/ Recycling Glass Cullet
Lead bearing residue Secondary Lead Smelter Lead
Ferrous metal scrap Secondary steel/ iron
recycling
Iron
Non Ferrous metal Scrap Secondary copper and
aluminum smelting
Copper/ Aluminum
Precious Metals Au/ Ag separation Gold/ Silver
Batteries (Lead, Acid/
Nickel metal Hydride
(Ni-MH) and Li – ion
Lead recovery and smelting
remelting and separation
Lead
CFC Recovery/ Reuse and
Incineration
CFC/ Energy recovery
Oil Recovery/ Reuse and
Incineration
Oil recovery/ energy
Capacitors Incineration Energy recovery
Mercury Separation and Distillation Mercury
28
Guiyu is made up of several villages located in the Chaozhou region of Guangdong
Province, 250km northeast of HongKong. Since 1995, the traditionally rice-growing
community has become an e-waste recycling center for e-waste arriving from the United
States, Hong Kong and from other countries. In Guiyu, recycling operations consist of
toner sweeping, dismantling electronic equipment, selling computer monitor yokes to
copper recovery operations, plastic chipping and melting, burning wires to recover
copper, heating circuit boards over honeycombed coal blocks and using acid chemical
strippers to recover gold and other metals. Not all activities are related to recovery; some
include open burning of unwanted e-waste and their open dumping. Operations for the
recovery of copper wires through the burning of polyvinyl chloride and flame retardant-
protected cables(i.e., polybrominated diphenyl ethers, PBDEs) can release toxic
polychlorinated dibenzo-p-dioxins and polybrominated dibenzo-p-dioxins
(PCDDs/PBDDs) and furans(PCDFs/PBDFs) and the open burning of computer casings
and circuit boards stripped of metal parts can produce toxic fumes and ashes containing
polycyclic aromatic hydrocarbons(PAHs). Polychlorinated biphenyls (PCBs), which have
been widely used as plasticizers, as coolants and lubricants in transformers and
capacitors, and as hydraulic and heat exchange fluids, may also be present in the e-waste
stream. In the study, the total concentration of polycyclic aromatic hydrocarbons (PAHs)
ranged from 98.2 to 514 μg/kg in the sediment samples and from 93.7 to 593 μg/kg in the
soil samples. The concentration of polychlorinated bi phenyls (PCBs) varied from 5.3 to
743 μg/kg in the sediment samples and from 22.7 to 102 μg/kg in the soil samples. The
highest concentration of poly brominated diphenyl ethers (PBDEs) observed was 32.3
μg/kg in sediment and 1169 μg/kg in the soil. Concentration of heavy metals such as
cadmium detected in the sediment ranged from 0.1 to .9 mg/kg, chromium from 3.4 to
43.5 mg/kg, copper from 6.3 to 528 mg/kg, nickel 11.3 to 120 mg/kg, lead 39.4 to 316
mg/kg and zinc 45.2 to 249 mg/kg. Concentration of cadmium detected in the soil
ranged from nil to 3.1 mg/kg, chromium from 3.4 to 74.9 mg/kg, copper from 9.2 to 712
mg/kg, nickel 8.4 to 185 mg/kg, lead 55.4 to 104 mg/kg and zinc 78 to 258 mg/kg.
29
6.1. MATERIALS AND METHODS
6.1.1 Sampling Sites
A preliminary survey of contaminant levels in Guiyu, located in Guangdong
Province, China, was conducted in August 2003. Sediment samples were collected from
two duck ponds (A & B) and at three different places along the Lianjiang River (River 1,
River 2, River 3). Duck ponds A and B are located near open fields where dumping and
open burning of e-waste and acid leaching of printed circuit boards are carried out. River
1 is located alongside a residential area away from the dumpsite but near printed circuit
heating workshops. River 2 site is located near the open fields. River 3 site is in Heping
town, located about 16km downstream from Guiyu. Soil was collected from a burnt
plastic dump site and from a printer roller dump site. A reservoir located in the northern
part of Guiyu, approximately 6km from the central e-waste processing region where
impacts from e-waste were expected to be smaller, served as a control site. Both soil and
sediment were collected from this site.
6.1.2. Sample Collection and Preparation
Samples were collected from each study site at a depth of0–10cm using a stainless
steel shovel. All samples we restored in clean polyethylene bags (Ziploc) to minimize
sample contamination and were kept in ice-filled coolers at approximately 4°C for
transport to the laboratory, where they were transferred and wrapped in aluminum foil
and stored at −20°C. Soil and sediment samples were freeze dried; sieved (<1mm) to
remove stones, roots, and coarse materials; and then stored in a desiccator prior to
analysis.
6.2. SAMPLE ANALYSES
The soil samples from burnt plastic dump site and printer roller dump site, reservoir
and sediment samples from duck ponds A & B, River sites 1,2& 3 were analyzed for
PAHs, PCBs, PBDEs, and heavy metals.
30
6.2.1. Polycyclic Aromatic Hydrocarbons
5 g of sample was extracted was extracted with acetone and dichloromethane and
concentrated in rotary evaporator. The extract was analysed using gas chromatography/
mass spectrometry analysis.
6.2.2. Poly Chlorinated Biphenyls
Sample was extracted was extracted with acetone and dichloromethane and analysed
using gas chromatography / mass spectrometry analysis.
6.2.3. Poly Brominated Diphenyl Ethers
PBDE analyses were conducted using a gas chromatography/ion trap mass
spectrometry method.
6.2.4. Heavy Metals
The samples were finely ground and 0.250 g of each sample was used for the
determination of heavy metal (Cd, Cr, Cu, Ni, Pb and Zn) concentrations by microwave
digestion.
6.3. RESULTS AND DISCUSSION
The total concentration and individual concentrations of the 16 USEPA priority
PAHs, PCBs, PBDEs and heavy metals in the sediment and soil samples are shown.
6.3.1. Sediment
Total PAH concentrations in the sediment ranged from 98.2 to 514μg/kg. The highest
concentration was at duck pond A. Both duck ponds A and B are located
31
approximately20m from a road; therefore, the elevated PAHs of these sediment samples
may be partly attributed to PAH emissions from vehicular traffic in addition to the open
burning of e-waste in the surrounding fields. Interestingly, the concentration of the
sediment at the reservoir was higher than at the residential site (river-1). A possible
explanation for the higher concentration at the reservoir may be the burning of incense
and paper offerings, which is a Chinese custom for paying respect to ancestors. Many
graves were seen on the hills surrounding the reservoir and below the water level; the
area became a reservoir only a few years ago. The total PAH concentration of sediment
collected from river-2, located in Guiyu, was approximately four times that of the
sediment collected from within the residential area (river-1) and approximately twice the
concentration of the sediment collected from the Lianjiang River in the town of Heping,
approximately 16km downstream. The concentrations of the seven USEPA carcinogenic
PAHs in the sediments ranged from 13.2 (reservoir) to 122μg/kg (duck pond A) and
accounted for 6% (reservoir) to32% (river-2) of the total PAH concentrations. With the
exception of the reservoir, the percentage of carcinogenic PAHs were similar (23.7%–
31.5%). Benzo(a)pyrene accounted for 16%, 14%, 12%, and 5% of the total carcinogenic
compounds for river-2, duck pond B, duck pond A and river-1, respectively. It was not
detected in river-3 or the reservoir.
Concentration of PAHs in sediment is shown in table 6.1.
Table 6.1 Concentration of PAHs in Sediment (μg/kg dry wt)
USEPA PAHs Duck pond A Duck pond
B
River-1 River-2 River-3 Reservoir
Two-ring
Naphthalene 27.3 18.5 18.1 25.8 13.7 23.2
Three-ring
Acenaphthylene ND ND ND ND ND ND
Acenaphthene 75.4 ND 1.9 6.4 9.2 46.9
Fluorene 35.8 13.3 2.2 16.6 ND 12.6
Phenanthrene 110 67.9 25.5 67.3 35.5 55.3
Anthracene 22.0 ND 1.7 5.9 4.6 10.9
Four-ring
Fluoranthene 65.4 57.2 12.1 48.4 41.0 45.1
Pyrene 41.0 35.0 8.6 43.0 32.1 32.4
32
Benzo(a)anthracene 15.2 18.7 3.8 23.6 13.3 5.6
Chrysene 34.4 43.5 11.3 46.1 30.6 7.6
Five-ring
Benzo(a)pyrene 14.4 12.8 1.5 17.5 ND ND
Benzo(b +
k)fluoranthene
42.2 ND 11.3 ND ND ND
Dibenz(a,h)anthracene ND ND ND ND ND ND
Six-ring
Indeno(1,2,3-
c,d)pyrene
15.7 18.7 ND 24.1 ND ND
Benzo(g,h,i)perylene 15.6 22.1 ND 26.7 ND ND
∑ 16 PAHs 514 308 98.2 352 180 240
∑7 Carcinogenic
PAHs
122 93.8 28.0 111 43.8 13.2
% Carcinogenic PAHs 23.7 30.5 28.5 31.7 24.4 5.5
Table 6.2 lists some of the most toxic and environmentally prevalent PCB congeners
found in the sediment samples. The samples were analysed for a total of 66 PCB
congeners, which included three dioxin-like PCBs (PCB-105, -118, and -157) and all
seven indicator PCBs (PCB-28,-52, -101, -118, -138, -153, -180). The indicator PCBs are
known to be persistent in the environment and also to bioaccumulate in the food chain.
The total PCB concentration of duck pond A was comparable to that of duck pond B, and
both were below the Canadian interim sediment quality guideline of 34.1μg/kg, whereas
there was a large variation between the sediment collected from the two different
locations of the Lianjiang River. River-2, in the vicinity of e-waste dumping and open
burning, was highly contaminated by PCBs, with levels 53 times those at river-1, located
near a residential area. PCBs were not detected in the sediments from the reservoir and
river-3, located approximately 16km downstream of Guiyu in the town of Heping.
33
Table 6.2Concentration of PCBs in Sediment (μg/kg dry wt)
PCB congener
IUPAC number
Sediment
Duck
Pond A
Duck
Pond B
River 1 River 2
PCB-1 ND ND ND ND
PCB-2 ND ND ND ND
PCB-3 ND ND ND 2.39
Total mono PCBs ND ND ND 2.39
PCB-4 ND ND ND 33.6
PCB-6 ND ND ND 10.1
PCB-8 ND ND ND 66.6
PCB-9 ND ND ND 4.52
PCB-15 ND ND ND 23.5
Total di PCBs ND ND ND 122
PCB-16 0.22 ND ND 47.7
PCB-18 ND ND ND 40.3
PCB-19 ND ND ND 10.1
PCB-20 ND ND ND 39.2
PCB-22 ND ND ND 18.8
PCB-25 ND ND ND 5.28
PCB-27 ND ND ND 7.09
PCB-28 ND ND ND 115
PCB-29 ND ND ND 0.98
PCB-34 ND ND ND 0.53
Total di PCBs ND ND ND 294
PCB-40 ND 0.24 0.33 31.3
PCB-42 ND ND ND 14.7
PCB-44 0.28 0.24 0.33 31.3
PCB-47 ND 0.23 0.21 27.1
PCB-52 0.29 0.27 0.42 33.5
PCB-56 0.10 0.17 0.46 2.25
PCB-66 0.31 0.22 0.79 8.57
PCB-67 ND ND ND 0.94
PCB-69 ND ND ND ND
PCB-71 ND ND ND 13.0
PCB-74 ND 0.11 0.27 6.46
Total tetra PCBs 1.91 2.69 5.11 258
PCB-82 ND 0.06 ND 0.70
PCB-87 0.15 0.11 0.42 2.40
PCB-92 ND ND ND 1.34
PCB-93 ND ND ND 8.16
PCB-99 0.18 0.11 0.30 3.22
PCB-101 0.28 ND 0.90 6.74
PCB-105 ND ND ND 2.41
PCB-110 ND 0.06 ND 0.70
PCB-118 0.33 0.20 1.06 6.29
PCB-119 ND ND ND 0.17
Total penta PCBs 1.66 1.14 4.92 43.9
PCB-128 ND ND 0.37 1.43
PCB-134 ND ND ND 0.32
PCB-136 ND ND 0.13 0.59
PCB-138 0.48 0.21 1.09 5.68
PCB-144 ND ND 0.14 0.81
PCB-146 ND ND ND 0.72
PCB-147 ND ND ND 0.19
PCB-151 ND ND 0.14 0.72
PCB-153 0.32 0.15 0.87 4.56
PCB-157 ND ND ND 0.44
PCB-158 ND ND ND 0.65
Total hexa PCBs 1.34 0.67 4.04 15.9
PCB-173 ND ND ND ND
34
PCB-174 ND ND ND 0.46
PCB-177 ND ND ND 0.27
PCB-179 ND ND ND 0.17
PCB-180 ND 0.14 0.24 1.15
PCB-187 ND ND ND 0.42
PCB-190 ND ND ND 0.73
PCB-191 ND ND ND ND
Total hepta PCBs ND 0.14 0.32 5.20
PCB-194 ND ND ND ND
PCB-195 ND ND ND ND
PCB-199 ND ND ND ND
PCB-203 ND ND ND ND
Total octa PCBs ND ND ND ND
PCB-206 ND ND ND ND
PCB-207 ND ND ND ND
PCB-208 ND ND ND ND
Total nona PCBs ND ND ND ND
PCB-209 ND ND ND ND
Total deca PCBs ND ND ND ND
Total PCBs 5.3 4.7 14.1 743
Total indicator PCBsa
1.7 1.0 4.6 173
PCB WHO –TEQb
3.27 2.04 1.06 1.09
PCB, polychlorinated biphenyls; IUPAC, International Union of Pure and Applied Chemistry;
WHO-TEQ,World Health Organization/toxic equivalent
a
Total indicator PCBs sum of concentrations of PCB-28, -52, -101, -118, -138, -153, -180
b
PCB WHO-TEQ sum of WHO-TEQ concentrations of PCB-105, -118, -157
A total of 43 mono- to hepta-brominated substituted poly brominated diphenyl ethers
(PBDEs) congeners were detected in the sediment collected from river-2.Although the
data were limited, it appears that the river sediment was contaminated by e-waste
activities such as dumping, dismantling, and open burning.
The heavy metal concentrations measured in sediment are shown in Table 6.3 together
with some soil quality standards. Cu, Pb, and Zn were the most abundant metals among
the environmental samples. E-waste, such as printed circuit boards dumped along the
bank of Lianjiang River, may be responsible for the high Cu concentration atriver-2. The
Cd, Cu, Ni, Pb, and Zn concentrations for river-2 exceeded the respective Dutch optimum
values. For the reservoir soil, the heavy metal concentrations were below or close to the
limits for the natural background as defined by the Chinese Environmental Quality
Standards. The concentrations of heavy metals at duck pond A and duck pond B were
very similar, however, Cr at duck pond B was twice that of duck pond A. The Pb contents
of the duck ponds were slightly higher than the Pb content of the reservoir sediment.
35
6.3.2. Soil
The soil PAH concentrations were highest at the printer roller dump site and were
dominated by two- and three-ring compounds. The concentration profile for the soil
collected from the burnt plastic dump site differed from the printer roller dump site. The
total PAH concentration at the reservoir was low compared to the other sites. Of the
sediment and soil samples, soil from the burnt plastic dump site was the most toxic
Table 6.3 Heavy Metal Concentration in Sediment (mg/kg dry wt)
Sampling site Heavy metals
Cd Cr Cu Ni Pb Zn
Sediment
Duck pond-A ND 21.2 32.2 20.6 57.7 79.6
Duck pond-B 0.3 43.5 30.9 20.8 53.1 84.5
River-1 0.1 17.6 113 10.1 316 86.8
River-2 0.9 29.2 528 120 94.3 249
River-3 0.5 27.3 20.1 12.6 118 175
Reservoir ND 3.4 9.2 8.4 55.4 78.0
Reservoir ND 3.4 9.2 8.4 55.4 78.0
Soil quality standards
Dutch
Optimum value 0.8 100 36 35 85 140
Action value 12 380 190 210 530 720
China
Grade I (natural background) 0.2 90 35 40 35 100
Grade II (agricultural and related use) 0.3 200 100 50 300 250
Grade III (industrial activity) 1 300 400 200 500 500
36
because the concentration of carcinogenic compounds contributed to 43%of the total
concentration. The target set by the Dutch government for unpolluted soil is20–50μg/kg.
Therefore, as all of the soils sampled were above 50μg/kg, the soils were considered to be
polluted by PAHs. As there are many open e-waste burning sites in Guiyu, it was
postulated that PAHs would be transported atmospherically by wind and subsequently
deposited on land. Concentration of PAHs in the soil collected is given in table 6.4.
Table 6.4Concentration of PAHs in soil (μg/kg dry wt)
USEPA PAHs Burnt plastic Printer
roller
Reservoir
Two-ring
Naphthalene 45.4 294 27.3
Three-ring
Acenaphthylene ND 14.2 0.7
Acenaphthene 6.6 64.6 7.5
Fluorene 9.7 36.5 4.0
Phenanthrene 58.8 131 23.1
Anthracene 8.0 9.7 9.7 2.1
Four-ring
Fluoranthene 39.1 16.4 9.6
Pyrene 41.0 27.3 8.5
Benzo(a)anthracene 23.7 ND 1.6
Chrysene 48.3 ND 4.3
Five-ring
Benzo(b +k)
fluoranthene
56.5 ND 4.9
Benzo(a)pyrene 22.7 ND ND
Dibenz(a,h)anthracene 4.5 ND ND
Six ring
Indeno(1,2,3-
c,d)pyrene
29.1 ND ND
Benzo(g,h,i)perylene 34.5 ND ND
∑ 16 PAHs 428 593 93.7
∑7 Carcinogenic
PAHsa
185 ND 10.8
% Carcinogenic PAHs 43.2 ND 11.6
37
The concentration of PCBs in soil collected is given in table 6.5.
Table 6.5 Concentration of PCBs in soil
(μg/kg dry wt)
PCB congener
IUPAC number
soil
Burnt plastic
Dump site
Printer roller
Dump site
PCB-1 ND ND
PCB-2 ND ND
PCB-3 ND ND
Total mono PCBs ND ND
PCB-4 ND ND
PCB-6 ND ND
PCB-8 ND ND
PCB-9 ND ND
PCB-15 ND ND
Total di PCBs ND ND
PCB-16 ND 7.00
PCB-18 ND 8.27
PCB-19 ND 0.84
PCB-20 ND 14.4
PCB-22 ND 3.25
PCB-25 ND ND
PCB-27 ND ND
PCB-28 ND 22.5
PCB-29 ND ND
PCB-34 ND ND
Total di PCBs ND 55.1
PCB-40 0.48 5.33
PCB-42 ND 2.06
PCB-44 0.48 5.33
PCB-47 ND 3.79
PCB-52 0.87 5.79
PCB-56 0.34 ND
PCB-66 0.57 2.01
PCB-67 0.94 ND
PCB-69 ND ND
PCB-71 13.0 ND
PCB-74 6.46 1.41
Total tetra PCBs 5.99 38.0
PCB-82 0.29 ND
PCB-87 0.60 0.46
PCB-92 0.31 ND
PCB-93 0.90 1.08
PCB-99 0.63 0.39
PCB-101 1.31 0.84
PCB-105 0.51 0.76
PCB-110 0.29 0.30
PCB-118 1.01 0.92
PCB-119 ND ND
Total penta PCBs 8.14 5.87
PCB-128 0.41 0.23
PCB-134 ND ND
PCB-136 0.20 ND
PCB-138 1.50 0.82
PCB-144 ND ND
PCB-146 0.41 ND
PCB-147 ND ND
PCB-151 ND ND
38
PCB-153 0.91 0.40
PCB-157 ND ND
PCB-158 0.21 ND
Total hexa PCBs 6.32 2.96
PCB-173 ND ND
PCB-174 0.12 ND
PCB-177 ND ND
PCB-179 ND ND
PCB-180 0.43 0.21
PCB-187 0.25 ND
PCB-190 0.51 ND
PCB-191 ND ND
Total hepta PCBs 2.04 0.21
PCB-194 ND ND
PCB-195 ND ND
PCB-199 ND ND
PCB-203 0.18 ND
Total octa PCBs 0.18 ND
PCB-206 ND ND
PCB-207 ND ND
PCB-208 ND ND
Total nona PCBs ND ND
PCB-209 ND ND
Total deca PCBs ND ND
Total PCBs 22.7 102
Total indicator PCBsa
6.0 31
PCB, polychlorinated biphenyls; IUPAC, International Union of Pure and Applied Chemistry;
WHO-TEQ,World Health Organization/toxic equivalent
a
Total indicator PCBs sum of concentrations of PCB-28, -52, -101, -118, -138, -153, -180
The soil at the waste printer roller dumpsite also exhibited a notable presence of PCBs
(102μg/kg. The concentration was almost twice the allowable level of 60μg/kg for PCBs
in ambient soil stipulated by the former USSR Ministry ofHealth in 1991.
A total of 43 poly brominated diphenyl ethers (PBDEs) congeners were detected in soil
collected from the burnt plastic dump site.The analyses indicated that PBDE mono- to
hepta-brominated congeners in soil had concentrations ranging from 0.26 to824μg/kg dry
wt. The concentrations of the highly lipophilic BDE-47, -99, -100, and -153 congeners in
the soil samples ranged from 2.70 to 615μg/kg andwere generally higher than the levels
in the sediment collected from the Lianjiang River. Soil from the burnt plastic site had a
BDE-183concentration that was almost 70 times that of soil fromthe printer roller dump
site. PBDE concentrations in the soil at the dumping sites of Guiyu were approximately
10–60 times those reported elsewhere.
Cu, Pb, and Zn were the most abundant metals among the environmental samples. Cu
concentrations at the printer roller dump site (712 mg/kg) exceeded the new Dutch list
action value of 190mg/kg. There were no other values that exceeded the Dutch action
39
level with regard to the other heavy metals, however, the Cd, Cu, Ni, Pb, and Zn
concentrations for the burnt plastic dump site, and the printer roller dump site exceeded
the respective Dutch optimum values. For the reservoir soil, the heavy metal
concentrations were below or close to the limits for the natural backgroundas defined by
the Chinese Environmental Quality Standards. Heavy metal concentration in the soil
samples collected is given table 6.6.
Of the study sites, the most seriously polluted were the burnt plastic and printer roller
dump sites. From the results study conducted, there was a better awareness of the
hazardous implications of e-waste recycling on the environment and human health.
Based on the data it was concluded that the analyses of environmental and human
samples collected from the area would show significant contamination by various
substances resulting directly from crude and inappropriate e-waste recycling practices.
Table 6.6 Heavy Metal Concentration in Soil Samples (mg/kg dry wt)
Sampling site Heavy metals
Cd Cr Cu Ni Pb Zn
Soil
Burnt plastic dump site 1.7 28.6 496 155 104 258
Printer roller dump site 3.1 74.9 712 87.4 190 –
Reservoir ND 3.4 9.2 8.4 55.4 78.0
Soil quality standards
Dutch
Optimum value 0.8 100 36 35 85 140
Action value 12 380 190 210 530 720
China
Grade I (natural background) 0.2 90 35 40 35 100
Grade II (agricultural and related use) 0.3 200 100 50 300 250
Grade III (industrial activity) 1 300 400 200 500 500
40
7. STRATEGIES FOR COMBATING E- WASTE
7.1. LEGISLATION
Separate legislation for dealing with waste electrical and electronic equipments to
control aspects of production, recycle, reuse and disposal is need of the hour. Many
countries have such laws in place. In India, draft e-Waste (Management and Handling)
Rules have been published by the Ministry of Environment and Forests, Government of
India on 14.5.2010.
7.2. EXTENDED PRODUCER RESPONSIBILITY (EPR)
Traditionally, the legislative approach toward environmental problems has been one
of ‘command and control’, largely addressing ‘end-of-pipe’ pollution problems. Now, the
emphasis is changing towards producer responsibility whereby those who produce good
sare then responsible for the environmental impacts throughout the whole of their life
cycle, from resource extraction to recycling, reuse and disposal (Nnorom et.al, 2008).
Implementation of EPR in the developing countries has become necessary in the light of
the present high level of trans-boundary movement of e-waste into the developing
countries and the absence of basic or state-of the-art facilities for sound end-of-life
material/energy recovery and disposal of e-waste.
The Organization for Economic Cooperation and Development(OECD) defined EPR as
“an environmental policy approach in which a producers’ responsibility for a product is
extended to the post-consumer stage of a products life cycle including its final disposal”
The main goals of EPR are:
• waste prevention and reduction;
• product reuse;
• increased use of recycled materials in production;
• reduced natural resource consumption;
• internalization of environmental costs into product prices
• energy recovery when incineration is considered appropriate
41
Under EPR, the producer is expected to take back all electrical and electronic equipment
at the end of their life.
7.3.REDUCTION IN USE OF HAZARDOUS SUBSTANCES (ROHS)
This aims at reducing the hazardous substances entering the atmosphere while
dismantling the e-waste by prescribing threshold limits for use of such substances in e-
waste.
8. CONCLUSION
Electronic and electrical equipments cannot be avoided in today’s world. So also is the
case of waste electronic and electrical equipments. As long as this is a necessary evil, it
has to be best managed to minimize its adverse impacts on environment. Through
innovative changes in product design under EPR, use of environmentally friendly
substitutes for hazardous substances, these impacts can be mitigated. A legal framework
has to be there for enforcing EPR, RoHS for attaining this goal. Adoption of
environmentally sound technologies for recycling and reuse of e-waste along with EPR
and RoHS offers workable solution for environmentally sound management of e-waste.
42
REFERENCES
Bandhopadhyay, A. (2010) “Electronic Waste Management: Indian Practices and Guidelines”
International Journal of Energy and Environment 1(5) pp. 193-807
Basel Convention on the Control of Transboundary Movement of Hazardous Wastes and Their
Disposal – Document accessed in 10/2010
E-Waste Volume II, E-Waste Management Manual – United Nations Environment Program –
accessed in 10/2010
Kurian Joseph (2007), “Electronic Waste Management in India-Issues and Strategies” Proc. On
Eleventh International Waste Management and Landfill Symposium
Mark Anderson (2010) What an E-waste” IEEE-spectrum, September, 2010
Nnorom I.C., Osibanjo O (2008) “Overview of Electronic Waste (e-waste) Management
Practices and Legislation in the Developed Countries” Journal of Resource Conservation and
Recycling 52(2008) 843-858
Sathish Sinha (2006) E-waste Time to Act Now –Toxic Alert, accessed in 10/2010
The Basel Action Network “Exporting Harm – The High Tech Trashing of Asia” accessed in
10/2010
Waste Water Engineering (2003), Metcalf and Eddy fourth edition
www.moef.nic.in- website of Ministry of Environment and Forests, Government of India.

More Related Content

What's hot

E-waste
E-wasteE-waste
E-waste
Suraj Soni
 
E waste management
E waste managementE waste management
E waste managementblaznrunners
 
Strategy of E-Waste Management
Strategy of E-Waste ManagementStrategy of E-Waste Management
Strategy of E-Waste Management
Esri India
 
E-Waste - Recycle & Management
E-Waste - Recycle & ManagementE-Waste - Recycle & Management
E-Waste - Recycle & Management
Jyotsna Tiwary
 
E waste report
E waste reportE waste report
E waste report
akisaki
 
E - Waste
E - WasteE - Waste
E-Waste | Electronic Waste PPT
E-Waste | Electronic Waste PPTE-Waste | Electronic Waste PPT
E-Waste | Electronic Waste PPT
A M
 
E waste problem
E waste problemE waste problem
E waste problem
SonaaK
 
E waste management in india
E  waste management in indiaE  waste management in india
E waste management in india
Harshit Srivastava
 
E waste and its Management
E waste and its Management E waste and its Management
E waste and its Management
KrishnaveniKrishnara1
 
E waste
E wasteE waste
E waste
E wasteE waste
E waste & it’s management
E waste & it’s managementE waste & it’s management
E waste & it’s management
Shîvãm Gûptå
 
E – waste presentation for project work by Jaitrix Prakash
E – waste presentation for project work by Jaitrix PrakashE – waste presentation for project work by Jaitrix Prakash
E – waste presentation for project work by Jaitrix Prakash
Jai Prakash
 
E-Waste: A Hazard to Human Beings and Environment
E-Waste: A Hazard to Human Beings and EnvironmentE-Waste: A Hazard to Human Beings and Environment
E-Waste: A Hazard to Human Beings and Environment
Dr Somvir Bajar
 
E waste and management
E waste and managementE waste and management
E waste and management
Shafiya Nizam
 
e-Waste (Electronic Waste) Recycling and Management
e-Waste (Electronic Waste) Recycling and Managemente-Waste (Electronic Waste) Recycling and Management
e-Waste (Electronic Waste) Recycling and Management
Ajjay Kumar Gupta
 
E waste Management
E waste ManagementE waste Management
E waste Management
Aneesh Pavan Prodduturu
 

What's hot (20)

e-WASTE
e-WASTEe-WASTE
e-WASTE
 
E-waste
E-wasteE-waste
E-waste
 
E waste management
E waste managementE waste management
E waste management
 
Strategy of E-Waste Management
Strategy of E-Waste ManagementStrategy of E-Waste Management
Strategy of E-Waste Management
 
E-Waste - Recycle & Management
E-Waste - Recycle & ManagementE-Waste - Recycle & Management
E-Waste - Recycle & Management
 
Ewaste ppt
Ewaste ppt Ewaste ppt
Ewaste ppt
 
E waste report
E waste reportE waste report
E waste report
 
E - Waste
E - WasteE - Waste
E - Waste
 
E-Waste | Electronic Waste PPT
E-Waste | Electronic Waste PPTE-Waste | Electronic Waste PPT
E-Waste | Electronic Waste PPT
 
E waste problem
E waste problemE waste problem
E waste problem
 
E waste management in india
E  waste management in indiaE  waste management in india
E waste management in india
 
E waste and its Management
E waste and its Management E waste and its Management
E waste and its Management
 
E waste
E wasteE waste
E waste
 
E waste
E wasteE waste
E waste
 
E waste & it’s management
E waste & it’s managementE waste & it’s management
E waste & it’s management
 
E – waste presentation for project work by Jaitrix Prakash
E – waste presentation for project work by Jaitrix PrakashE – waste presentation for project work by Jaitrix Prakash
E – waste presentation for project work by Jaitrix Prakash
 
E-Waste: A Hazard to Human Beings and Environment
E-Waste: A Hazard to Human Beings and EnvironmentE-Waste: A Hazard to Human Beings and Environment
E-Waste: A Hazard to Human Beings and Environment
 
E waste and management
E waste and managementE waste and management
E waste and management
 
e-Waste (Electronic Waste) Recycling and Management
e-Waste (Electronic Waste) Recycling and Managemente-Waste (Electronic Waste) Recycling and Management
e-Waste (Electronic Waste) Recycling and Management
 
E waste Management
E waste ManagementE waste Management
E waste Management
 

Viewers also liked

Electronic Waste Management
Electronic Waste ManagementElectronic Waste Management
Electronic Waste ManagementSourabh Kulkarni
 
Project management (E - Waste Management)
Project management (E - Waste Management)Project management (E - Waste Management)
Project management (E - Waste Management)Santanu Das
 
E waste literature review - final
E waste literature review - finalE waste literature review - final
E waste literature review - finalChandrakant Chopde
 
Report on e-waste management & recycling
Report on e-waste management & recyclingReport on e-waste management & recycling
Report on e-waste management & recyclingGovindmeena93
 
E waste management
E waste managementE waste management
E waste managementSuharsh L
 
Supercapacitors: the near Future of Batteries
Supercapacitors: the near Future of BatteriesSupercapacitors: the near Future of Batteries
Supercapacitors: the near Future of Batteries
International Journal of Engineering Inventions www.ijeijournal.com
 
Blue brain technology
Blue brain technologyBlue brain technology
Blue brain technology
Iaetsd Iaetsd
 
AbioCor Heart System
AbioCor Heart SystemAbioCor Heart System
AbioCor Heart System
Samantha Luber
 
Waste Electrical and Electronic Equipment Regulations and the Management of R...
Waste Electrical and Electronic Equipment Regulations and the Management of R...Waste Electrical and Electronic Equipment Regulations and the Management of R...
Waste Electrical and Electronic Equipment Regulations and the Management of R...
Chartered Management Institute
 
Super capacitors
Super capacitorsSuper capacitors
Super capacitors
SAI SREE
 
Blue Brain Technology
Blue Brain TechnologyBlue Brain Technology
Blue Brain Technology
ijsrd.com
 
105422162 managemen-kapasitas-jaringan-u
105422162 managemen-kapasitas-jaringan-u105422162 managemen-kapasitas-jaringan-u
105422162 managemen-kapasitas-jaringan-u
Muhammad Arif Fikri
 
common_report_2
common_report_2common_report_2
common_report_2RAHEEMA PP
 
Total artificial heart review paper
Total artificial heart review paperTotal artificial heart review paper
Total artificial heart review paperjavierzavala1995
 
Ce 105 e-waste - ce 105vcs
Ce 105 e-waste - ce 105vcsCe 105 e-waste - ce 105vcs
Ce 105 e-waste - ce 105vcsGaurav Pahuja
 
E waste
E wasteE waste

Viewers also liked (20)

Electronic Waste Management
Electronic Waste ManagementElectronic Waste Management
Electronic Waste Management
 
Project management (E - Waste Management)
Project management (E - Waste Management)Project management (E - Waste Management)
Project management (E - Waste Management)
 
E waste literature review - final
E waste literature review - finalE waste literature review - final
E waste literature review - final
 
E waste management
E waste managementE waste management
E waste management
 
E waste
E wasteE waste
E waste
 
Report on e-waste management & recycling
Report on e-waste management & recyclingReport on e-waste management & recycling
Report on e-waste management & recycling
 
E waste management
E waste managementE waste management
E waste management
 
Ewaste
EwasteEwaste
Ewaste
 
Supercapacitors: the near Future of Batteries
Supercapacitors: the near Future of BatteriesSupercapacitors: the near Future of Batteries
Supercapacitors: the near Future of Batteries
 
Blue brain technology
Blue brain technologyBlue brain technology
Blue brain technology
 
AbioCor Heart System
AbioCor Heart SystemAbioCor Heart System
AbioCor Heart System
 
Waste Electrical and Electronic Equipment Regulations and the Management of R...
Waste Electrical and Electronic Equipment Regulations and the Management of R...Waste Electrical and Electronic Equipment Regulations and the Management of R...
Waste Electrical and Electronic Equipment Regulations and the Management of R...
 
Super capacitors
Super capacitorsSuper capacitors
Super capacitors
 
Blue Brain Technology
Blue Brain TechnologyBlue Brain Technology
Blue Brain Technology
 
105422162 managemen-kapasitas-jaringan-u
105422162 managemen-kapasitas-jaringan-u105422162 managemen-kapasitas-jaringan-u
105422162 managemen-kapasitas-jaringan-u
 
common_report_2
common_report_2common_report_2
common_report_2
 
blue brain
blue brainblue brain
blue brain
 
Total artificial heart review paper
Total artificial heart review paperTotal artificial heart review paper
Total artificial heart review paper
 
Ce 105 e-waste - ce 105vcs
Ce 105 e-waste - ce 105vcsCe 105 e-waste - ce 105vcs
Ce 105 e-waste - ce 105vcs
 
E waste
E wasteE waste
E waste
 

Similar to e-waste-management report

E-Waste Management in India
E-Waste Management in India E-Waste Management in India
E-Waste Management in India
Market Research Reports, Inc.
 
E – Waste Management through Regulations
E – Waste Management through RegulationsE – Waste Management through Regulations
Tech Waste: Environmental Impact and Management
Tech Waste: Environmental Impact and ManagementTech Waste: Environmental Impact and Management
Tech Waste: Environmental Impact and Management
Editor IJCATR
 
E0423029037
E0423029037E0423029037
E0423029037
ijceronline
 
India
IndiaIndia
E-Waste Management Rules.pdf
E-Waste Management Rules.pdfE-Waste Management Rules.pdf
E-Waste Management Rules.pdf
MDAbdullah621330
 
Eco waste project class 11 (THE TOXIC COMPOSITION OF EWASTES AND THEIR EFFEC...
Eco waste project class 11 (THE TOXIC COMPOSITION OF EWASTES AND THEIR EFFEC...Eco waste project class 11 (THE TOXIC COMPOSITION OF EWASTES AND THEIR EFFEC...
Eco waste project class 11 (THE TOXIC COMPOSITION OF EWASTES AND THEIR EFFEC...
SayanMandal31
 
Ewasteandmanagement 13001371461749-phpapp01 (2)
Ewasteandmanagement 13001371461749-phpapp01 (2)Ewasteandmanagement 13001371461749-phpapp01 (2)
Ewasteandmanagement 13001371461749-phpapp01 (2)Priyanka
 
What is e waste
What is e wasteWhat is e waste
What is e waste
Naveen Babu Nayaka
 
E waste- Dr Kulrajat Bhasin
E waste- Dr Kulrajat BhasinE waste- Dr Kulrajat Bhasin
E waste- Dr Kulrajat Bhasin
drkulrajat
 
E-waste Roadmap 2023 for India
E-waste Roadmap 2023 for IndiaE-waste Roadmap 2023 for India
E-waste Roadmap 2023 for India
HarshitaMehta8
 
E waste management india
E waste management  indiaE waste management  india
E waste management india
Akhilesh Singh
 
Seminar presentation on Electronic waste/E waste
Seminar presentation on Electronic waste/E wasteSeminar presentation on Electronic waste/E waste
Seminar presentation on Electronic waste/E waste
Er Gupta
 
E waste ppt seminar
E waste ppt seminarE waste ppt seminar
E waste ppt seminar
AVNIKASODARIYA
 
A Case Study of Reducing Waste Electrical and Electronic Equipment Specific F...
A Case Study of Reducing Waste Electrical and Electronic Equipment Specific F...A Case Study of Reducing Waste Electrical and Electronic Equipment Specific F...
A Case Study of Reducing Waste Electrical and Electronic Equipment Specific F...
IRJET Journal
 
Ewaste pune(india)
Ewaste pune(india)Ewaste pune(india)
Ewaste pune(india)
Rahul Gupta
 
IRJET - Smart Gadget Bin for E-Waste Management
IRJET -  	  Smart Gadget Bin for E-Waste ManagementIRJET -  	  Smart Gadget Bin for E-Waste Management
IRJET - Smart Gadget Bin for E-Waste Management
IRJET Journal
 
Swacch bharat
Swacch bharatSwacch bharat
Swacch bharat
Aviral Srivastava
 

Similar to e-waste-management report (20)

E-Waste Management in India
E-Waste Management in India E-Waste Management in India
E-Waste Management in India
 
E – Waste Management through Regulations
E – Waste Management through RegulationsE – Waste Management through Regulations
E – Waste Management through Regulations
 
Tech Waste: Environmental Impact and Management
Tech Waste: Environmental Impact and ManagementTech Waste: Environmental Impact and Management
Tech Waste: Environmental Impact and Management
 
E0423029037
E0423029037E0423029037
E0423029037
 
India
IndiaIndia
India
 
E waste
E wasteE waste
E waste
 
E-Waste Management Rules.pdf
E-Waste Management Rules.pdfE-Waste Management Rules.pdf
E-Waste Management Rules.pdf
 
Eco waste project class 11 (THE TOXIC COMPOSITION OF EWASTES AND THEIR EFFEC...
Eco waste project class 11 (THE TOXIC COMPOSITION OF EWASTES AND THEIR EFFEC...Eco waste project class 11 (THE TOXIC COMPOSITION OF EWASTES AND THEIR EFFEC...
Eco waste project class 11 (THE TOXIC COMPOSITION OF EWASTES AND THEIR EFFEC...
 
Ewasteandmanagement 13001371461749-phpapp01 (2)
Ewasteandmanagement 13001371461749-phpapp01 (2)Ewasteandmanagement 13001371461749-phpapp01 (2)
Ewasteandmanagement 13001371461749-phpapp01 (2)
 
What is e waste
What is e wasteWhat is e waste
What is e waste
 
E waste- Dr Kulrajat Bhasin
E waste- Dr Kulrajat BhasinE waste- Dr Kulrajat Bhasin
E waste- Dr Kulrajat Bhasin
 
GO GREENN GET GREEN
GO GREENN GET GREENGO GREENN GET GREEN
GO GREENN GET GREEN
 
E-waste Roadmap 2023 for India
E-waste Roadmap 2023 for IndiaE-waste Roadmap 2023 for India
E-waste Roadmap 2023 for India
 
E waste management india
E waste management  indiaE waste management  india
E waste management india
 
Seminar presentation on Electronic waste/E waste
Seminar presentation on Electronic waste/E wasteSeminar presentation on Electronic waste/E waste
Seminar presentation on Electronic waste/E waste
 
E waste ppt seminar
E waste ppt seminarE waste ppt seminar
E waste ppt seminar
 
A Case Study of Reducing Waste Electrical and Electronic Equipment Specific F...
A Case Study of Reducing Waste Electrical and Electronic Equipment Specific F...A Case Study of Reducing Waste Electrical and Electronic Equipment Specific F...
A Case Study of Reducing Waste Electrical and Electronic Equipment Specific F...
 
Ewaste pune(india)
Ewaste pune(india)Ewaste pune(india)
Ewaste pune(india)
 
IRJET - Smart Gadget Bin for E-Waste Management
IRJET -  	  Smart Gadget Bin for E-Waste ManagementIRJET -  	  Smart Gadget Bin for E-Waste Management
IRJET - Smart Gadget Bin for E-Waste Management
 
Swacch bharat
Swacch bharatSwacch bharat
Swacch bharat
 

Recently uploaded

"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
goswamiyash170123
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
DhatriParmar
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 

Recently uploaded (20)

"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 

e-waste-management report

  • 1. 1 1. INTRODUCTION The electronic industry is the world’s largest and fastest growing manufacturing industry in the world. The increasing “market penetration” in developing countries, “replacement market” in developed countries and “high obsolescence rate” of electrical and electronic goods make electrical and electronic waste (e-waste) one of the fastest growing waste streams. E-waste is valuable source for secondary raw material but harmful if treated and discarded improperly as it contains many toxic components such as lead, cadmium, mercury, polychlorinated biphenlys etc. (Bandyopadhyay, 2010). The quantity of e-waste generated in developed countries equals 1% of total solid waste on an average and is expected to grow to 2% by 2010 (UNEP Manual, 2007).In United States alone, 1,30,000 computers and 3,00,000 cell phones are trashed each day (Anderson, 2010).The developed countries use most of the world’s electronic products and generate most of the E-waste (Basel Action Network, 2002). Rather than treat e- waste in an environmentally friendly manner, the developed countries are finding an easy way out of the problem by exporting these wastes to developing economies especially, South Asian countries (Basel Action Network, 2002). The import of e-waste to the developing countries is in violation of the ban imposed by Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal, as e-waste come under the definition of hazardous waste (Basel Convention, 1992).Following this, our country, a party to the convention, banned the import of hazardous waste including e-waste into the country. But a major source of e- waste in India is illegal imports (Sathish, 2006). The major portion of the e-waste generated domestically as well as illegally imported are recycled in crude manner leading to pollution of the environment. Lack of legislation in our country at present is aiding this hazardous form of recycling. Therefore there is urgent need to frame and implement rules for regulating this waste and to find
  • 2. 2 environmentally sound, economically viable methods for recycling and disposing of this necessary evil. The necessity of environmentally sound management of e-waste is brought out with the help of a case study of uncontrolled dumping of e-waste. 2. E-WASTE E-waste is the popular name for discarded electrical and electronic equipment with all of their peripherals at the end of their life. E-waste comprises of wastes generated from used electronic devices and household appliances which are not fit for their original intended use and are destined for recovery, recycling or disposal. Such wastes encompasses wide range of electrical and electronic devices such as computers, hand held cellular phones, personal stereos, including large household appliances such as refrigerators, air conditioners etc. 2.1 MAJOR SOURCES Individuals and Small Businesses: The useful span of a computer has come down to about two years due to improved versions being launched about every 18 months. Often, new software is incompatible or insufficient with older hardware so that customers are forced to buy new computers. Large corporations, Institutions and Government: Large users upgrade employee computers regularly. Original Equipment Manufacturers (OEMs):OEMs generate e-waste when units coming off the production line do not meet quality standards, and must be disposed off. Some of the computer manufacturers contract with recycling companies to handle their electronic waste, which often is exported. Besides computers, other major e waste source is the cellular phone.
  • 3. 3 2.2 INDIAN SCENARIO The electronics industry has emerged as the fastest growing segment of Indian industry both in terms of production and exports. The share of software services in electronics and IT sector has gone up from 38.7 per cent in 1998-99 to 61.8percent in 2003-04. A review of the industry statistics show that in 1990-91,hardware accounted for nearly 50% of total IT revenues while software's share was 22%. The scenario changed by 1994-95, with hardware share falling to 38%and software share rising to 41%. This shift in the IT industry began with liberalization and the opening up of Indian markets together with which there was a change in India’s import policies vis-à-vis hardware leading to substitution of domestically produced hardware by imports. By the end of financial year 2005-06, India had an installed base of 4.64 million desktops, about 431thousand notebooks and 89 thousand servers. According to the estimates made by the Manufacturers Association of Information Technology (MAIT), the Indian PC industry is growing at a 25% compounded annual growth rate. The e-waste inventory based on this obsolescence rate and installed base in India for the year 2005 has been estimated to be 146180.00 tonne. This is expected to exceed 8,00,000tonne by 2012. There is a lack of authentic and comprehensive data on e-waste availability for domestic generation of e-waste and the various State Pollution Control Boards have initiated the exercise to collect data on e-waste generation. Sixty-five cities in India generate more than 60% of the total e-waste generated in India. Ten states generate 70% of the total e-waste generated in India. Maharashtra ranks first followed by Tamil Nadu, Andhra Pradesh, Uttar Pradesh, West Bengal, Delhi, Karnataka, Gujarat, Madhya Pradesh and Punjab in the list of e-waste generating states in India. In our country, currently some units have registered with the Ministry of Environment and Forests as possessing environmentally sound management facilities for recycling of e-waste. The list of units registered with Ministry of Environment and Forests/Central Pollution Control Board as recyclers/reprocessors having environmentally sound
  • 4. 4 management facilities is given below in table 2.1(Ministry of Environment and Forests, 2010): Table 2.1List of Recyclers/Reprocessors having registration of the Ministry of Environment and Forests, Govt. of India Sl. No. Name of the Unit Waste permitted and Quantity allowed Registration Valid up to ANDHRA PRADESH 1 Ramky E-waste Recycling Facility (Ramky Engineers Ltd.) Maheswaram (M) R.R.Distt e-Waste as per the Sl.No.18 of Schedule IV of Hazardous Waste (Management, Handling &Transboundary Movement) (HW(M,H&TM))Rule,2008 - 10000 MTA 28/07/2011 2 Earth Sense Recycle Pvt. Ltd. Rangareddy District e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H&TM) Rule,2008- 1800 MTA 30/08/2015 HARYANA 1 Earth Sense Recycle Pvt. Ltd. Gurgaon e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H&TM) Rule,2008 - 1200 MTA 29/08/2015 KARNATAKA 1 Ash Recyclers, Unit-II Bangalore e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 - 120 MTA 01/12/2010 2 New Port Computer Services (India) Private Limited, Bangalore e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 – 500MTA 31/01/2011 3 EWaRDD& Co., Bangalore e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 – 600MTA 04/03/2011 4 E-R3 Solutions Pvt. Ltd., Bangalore e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 – (only printer cartridge) – 1,20,000 units 17/05/2011
  • 5. 5 MAHARASHTRA 1 Eco Recycling Limited, Thane e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 – 7200MTA 25/04/2011 2 Earth Sense Recycle Pvt. Ltd., Thane e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 – 360MTA 27/10/2010 3 Hi Tech Recycling India (P) Ltd., Pune e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 – 500MTA 29/04/2011 RAJASTHAN 1 Green Eco Management Pvt. Ltd., Alwar e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 – 450MTA 04/03/2011 TAMILNADU 1 Trishyiraya Recycling India Pvt. Ltd., Chennai e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 – 740MTA 01/12/2010 2 TESAMM Private Limited, Kancheepuram e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 –30,000MTA 08/12/2010 3 Global E-waste Management and Services, Kancheepuram e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 – 387 MTA 02/05/2011 UTTAR PRADESH 1 TIC Group India Pvt. Ltd., Noida e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 – 1000 MTA 01/12/2010 UTTARKHAND 1 Attero Recycling Private Limited, Haridwar e-Waste as per the Sl.No.18 of Schedule IV of HW(M,H& TM) Rule,2008 – 12,000 MTA 15/07/2011
  • 6. 6 3. CLASSIFICATION OF E-WASTE 3.1COMPONENTSOF E-WASTE E-waste has been categorized into three main categories, viz. large household appliances, IT and Telecom and consumer equipment. Refrigerator and washing machine represent large household appliances, personal computer monitor and laptop represent IT and Telecom, while television represents consumer equipment. Each of these e-waste items has been classified with respect to twenty six common components, which could be found in them. These components form the “building blocks” of each item and therefore they are readily “identifiable” and “removable”. These components are metal, motor/compressor, cooling, plastic, insulation, glass, (Liquid Crystal Display) LCD, rubber, wiring/ electrical, concrete, transformer, magnetron, textile, circuit board, fluorescent lamp, incandescent lamp, heating element, thermostat, BFR-containing plastic, batteries, fluorocarbons (CFC/HCFC/HFC/HC), external electric cables, refractory ceramic fibers, radioactive substances and electrolyte capacitors. The kinds of components, which are found in refrigerator, washing machine, personal computers (PC) and televisions, are described in table 3.1. From table 3.1 it can be seen that the range of different items seen in e-waste is diverse. However, e-waste from these items can be dismantled into relatively smaller number of common components for further treatments.
  • 7. 7 Table 3.1 Components of E-waste Metal Motor/compressor Cooling Plastic Insulation Glass CRT LCD Rubber Wiring/electrical Concrete Transformer Magnetron Textile Circuitboard Fluorescentlamp Incandescentlamp Heatingelement Thermostat BFRcontainingplastic Batteries CFC,HCFC,HFC,HC Electriccables Refractoryceramicfibres Radioactivesubstances Electrolytecapacitors Large household appliances Refrigerator √ √ √ √ √ √ - - √ √ - - - - - - √ - √ √ - √ √ - - - Washing Machine √ √ - √ - √ - - √ √ √ - - - √ - - √ √ - - - √ - - º IT & Telecom Personal Computer (base & keyboard) √ √ - √ - - - - - √ - √ - - √ - - - - - √ - √ - - - Personal Computer (monitor) - - - √ - - √ √ - - - - - - √ - - - - - - - √ - - - Laptop - √ - √ - - - √ √ - - √ √ - - - √ √ - √ - √ - - - Consumer equipment Television √ - - √ - - √ - - √ - √ - - √ - - - - √ - - √ - - -
  • 8. 8 3.2 COMPOSITION OF E-WASTE Composition of e-waste is very diverse and differs in products across different categories. It contains more than 1000 different substances, which fall under “hazardous” and “non-hazardous” categories. Broadly, it consists of ferrous and non-ferrous metals, plastics, glass, wood & plywood, printed circuit boards, concrete and ceramics, rubber and other items. Iron and steel constitutes about50% of the e-waste followed by plastics (21%), non ferrous metals (13%) and other constituents. Non-ferrous metals consist of metals like copper, aluminium and precious metals e.g. silver, gold, platinum, palladium etc. The presence of elements like lead, mercury, arsenic, cadmium, selenium and hexavalent chromium and flame retardants beyond threshold quantities in e-waste classifies them as hazardous waste. The possible constituents of concern found in the three main categories described in 3.1 are given in table 3.2. Table 3.2 Possible Hazardous Substances in Components of E-waste Component Possible hazardous content Metal Motor/compressor Cooling Ozone Depleting Substances (ODS) Plastic Phthalate plasticizer, brominated flame retardants (BFR) Insulation Insulation ODS in foam, asbestos, refractory ceramic fiber Glass Cathode Ray Tube Lead, Antimony, Mercury, Phosphor Liquid Crystal Display Mercury Rubber Phthalate plasticizer, BFR Wiring / electrical Phthalate plasticizer, BFR, Lead Concrete Transformer Circuit Board Lead, Beryllium, Antimony, BFR Fluorescent lamp Mercury, Phosphorous, Flame retardants Incandescent lamp Heating element Thermostat Mercury BFR-containing plastic BFRs Batteries Lead, Lithium, Cadmium, Mercury CFC,HCFC,HFC,HC ODS
  • 9. 9 The substances within the above mentioned components, which cause most concern are the heavy metals such as lead, mercury, cadmium and chromium(VI), halogenated substances (e.g. CFCs), polychlorinated biphenyls, plastics and circuit boards that contain brominated flame retardants (BFRs). BFR can give rise to dioxins and furans during incineration. Other materials and substances that can be present are arsenic, asbestos, nickel and copper. These substances may act as catalysts to increase the formation of dioxins during incineration. 3.3 HEALTH EFFECTS OF SOME COMMON CONSTITUENTS IN E-WASTE The health effects of heavy metals and certain compounds found commonly in components of e-waste are described below: 3.3.1. Lead Lead is used in glass panels and gaskets in computer monitors and in solder in printed circuit boards and other components. Lead causes damage to the central and peripheral nervous systems, blood systems, kidney and reproductive system in humans. It also affects the endocrine system, and impedes brain development among children. Lead tends to accumulate in the environment and has high acute and chronic effects on plants, animals and micro organisms (Metcalf & Eddy, 2003). 3.3.2. Cadmium Cadmium occurs in surface mounted device (SMD) chip resistors, infra-red detectors, and semiconductor chips. Some older cathode ray tubes contain cadmium. Toxic cadmium compounds accumulate in the human body, especially the liver, kidneys pancreas, thyroid (Metcalf & Eddy, 2003, Basel Action Network, 2002). External electric cables BFRs, plasticizers Electrolyte capacitors Glycol, other unknown substances
  • 10. 10 3.3.3. Mercury It is estimated that 22 % of the yearly world consumption of mercury is used in electrical and electronic equipment. Mercury is used in thermostats, sensors, relays, switches, medical equipment, lamps, mobile phones and in batteries. Mercury, used in flat panel displays, will likely increase as their use replaces cathode ray tubes. Mercury can cause damage to central nervous system as well as the foetus. The developing foetus is highly vulnerable to mercury exposure (Metcalf & Eddy, 2003). When inorganic mercury spreads out in the water, it is transformed to methylated mercury which bio-accumulates in living organisms and concentrates through the food chain, particularly via fish (Basel Action Network, 2002). 3.3.4. Hexavalent Chromium/Chromium VI Chromium VI is used as corrosion protector of untreated and galvanized steel plates and as a decorative or hardener for steel housings. Chromium VI can cause damage to DNA and is extremely toxic in the environment. Long term effects are skin sensitization and kidney damage(Metcalf & Eddy, 2003). 3.4.5. Plastics (including PVC) The largest volume of plastics (26%) used in electronics has been poly vinyl chloride (PVC). PVC elements are found in cabling and computer housings. Many computer moldings are now made with the somewhat more benign acrylonitrile butadiene (ABS) plastic. Dioxins are released when PVC is burned (Basel Action Network, 2002).. 3.4.6 Brominated Flame Retardants (BFRs) BFRs are used in the plastic housings of electronic equipment and in circuit boards to prevent flammability. BFRs are persistent in the atmosphere and show bioaccumulation. Concerns are raised considering their potential to toxicity (Basel Action Network, 2002).
  • 11. 11 3.4.7. Barium Barium is a soft silvery-white metal that is usedprotect users from radiation. Studies have shown that short-term exposure to barium causes brain swelling, muscle weakness, damage to the heart, liver, and spleen(Basel Action Network, 2002). 3.4.8. Beryllium Beryllium is commonly found on motherboards and finger clips. Exposure to beryllium can cause lung cancer. Beryllium also causes a skin disease that is characterised by poor wound healing and wartlike bumps. Studies have shown that people can develop beryllium disease many years following the last exposure. It is used as a copper-beryllium alloy to strengthen connectors. Barium is a soft silvery-white metal that is used to protect users from radiation. 3.4.9. Phosphor and additives Phosphor is an inorganic chemical compound that is applied as a coat on the interior of the CRT faceplate. Phosphor affects the display resolution and luminance of the images that is seen in the monitor. The phosphor coating on cathode ray tubes contains heavy metals, such as cadmium, and other rare earth metals, for example, zinc, vanadium as additives. These metals and their compounds are very toxic. This is a serious hazard posed for those who dismantle CRTs by hand.
  • 12. 12 3.4.NEED FOR GUIDELINES FOR ENVIRONMENTALLY SOUND MANAGEMENT The saying waste is misplaced wealth is true in the case of e-waste. The recyclability of e-waste and the precious metals that can be extracted from the waste make recycling a lucrative business. But recycling using environmentally sound means costly business and so majority of the e-waste is recycled via the informal sector. Informal recycling involves minimal use of technology and is carried out in the poorer parts of big cities. The standard recycling drill involves physically breaking down components often without any protective gear, burning poly vinyl chloride (PVC) wires to retrieve copper, melting of lead and mercury laden parts. The extraction of gold and copper requires acid processing. The plastic parts, which contain brominated flame retardants (BFR) are also broken into small pieces prior to recycle. All these processes release toxic fumes into the atmosphere and polluted water into soil and water bodies leading to contamination. Most of those who work in the recycling sector are the urban poor with low literacy lacking awareness of the hazards of the toxic e-wastes. Children and women are routinely involved in the operations. Most of the work is done by bare hands. Waste components which do not have resale value are openly burnt or disposed off in open dumps (Kurian, 2007). Rapid pace of product obsolescence resulting in short life span of computers and other electronic equipments coupled with exponential increase in consumption of such products will result in the doubling of waste over next five to six years. The toxicity of constituents in e-waste, lack of environmentally sound recycling infrastructure and the large scale current practice of informal recycling highlight the urgent need for guidelines for environmentally sound management of e-waste.
  • 13. 13 4. METHODOLOGY FOR ENVIRONMENTALLY SOUND MANAGEMENT OF E-WASTE 4.1. E-WASTE COMPOSITION AND RECYCLE POTENTIAL The composition of e-waste and its recyclable potential is specific for each appliance. In order to handle this complexity, the parts/materials found in e-waste may be divided broadly into six categories as follows: Iron and steel, used for casings and frames Non-ferrous metals, especially copper used in cables, and aluminum Glass used for screens, windows Plastic used as casing, in cables and for circuit boards Electronic components Others (rubber, wood, ceramic etc.) Overview of the composition of the appliances in the three categories mentioned earlier is given in table 4.1. Table 4.1 Average Weight and Composition of Selected Appliances (Typical) Appliances Average weight (kg) Fe % weight Non Fe- metal % weight Glass % weight Plastic % weight Electronic components % weight Others % weight Refrigerators and freezers 48 .0 64.4 6 .0 1.4 13 .0 0.2 15.0 Personal computer 29.6 20.0 24 15 23.0 17.3 0.7 TV sets 36.2 5.3 5.4 62 22.9 0.9 3.5 The recovery potential (typical values) of items of economic value from refrigerator, personal computer and television are given in tables 4.2, 4.3, 4.4 respectively.
  • 14. 14 Table 4.2 Recoverable Quantity of Materials in a Refrigerator Material Type % (by weight) CFCs 0.20 Oil 0.32 Ferrous Metals 46.61 Non-Ferrous Metals 4.97 Plastics 13.84 Compressors 23.80 Cables/Plugs 0.55 Spent Foam 7.60 Glass 0.81 Mixed Waste 1.30 Total 100.00 Table 4.3 Recoverable Quantity of Materials in a Personal Computer Elements Content (% of total weight) Content (Kg) Recycling efficiency (%) Recoverable weight of element (kg) Plastics 23 6.25 20% 1.251 Lead 6 1.71 5% 0.086 Aluminum 14 3.85 80% 3.084 Germanium 0.0016 0.00 0% 0 Gallium 0.0013 0.00 0% 0 Iron 20 5.57 80% 4.455 Tin 1 0.27 70% 0.192 Copper 7 1.88 90% 1.696 Barium 0.0315 0.01 0% 0 Nickel 0.8503 0.23 0% 0 Zinc 2 0.60 60% 0.360 Tanialum 0.0157 0.0046 0% 0 Indium 0.0016 0.00047 60% 0.00026
  • 15. 15 Vanadium 0.0002 0.00 0% 0 Beryllium 0.0157 0.0046 0% 0 Gold 0.0016 0.00047 99% 0.00043 Europium 0.0002 0.00 0% 0 Tritium 0.0157 0.00 0% 0 Ruthenium 0.0016 0.00047 80% 0.00035 Cobalt 0.0157 0.0047 85% 0.00363 Palladium 0.0003 0.00 0077 95% 0.000077 Manganese 0.0315 0.01 0% 0 Silver 0.0189 0.0156 98% 0.00504 Antimony 0.0094 0.00 0% 0 Bismuth 0.0063 0.00 0% 0 Chromium 0.0063 0.00 0% 0 Cadmium 0.0094 0.00 0% 0 Selenium 0.0016 0.00047 70% 0.0003 Niobium 0.0002 0.00045 0% 0 Yttrium 0.0002 0.00 0% 0 Mercury 0.0022 0.00 0% 0 Arsenic 0.0013 0.00 0% 0 Silica 24.8803 6.77 0% 0 Table 4.4 Recoverable Quantity of Materials in a Television Elements % by weight Recoverable Weight of element (Kg) Aluminium 1.2 0.4344 Copper 3.4 1.2308 Lead 0.2 0.0724 Zinc 0.3 0.1086 Nickel 0.038 0.0138 Iron 12 4.344 Plastic 26 9.412 Glass 53 19.186 Silver 0.000724 Gold 0.000362
  • 16. 16 4.2. ASSESSMENT OF HAZARDOUSNESS OF E-WASTE The hazardous nature of e-waste is determined by identifying the e-waste category item (identification includes the waste items and year of manufacture), identifying the e- waste composition or its components, identifying possible hazardous content in the e- waste and identifying whether the e-waste component is hazardous or the entire e-waste item is hazardous. 4.3.RECYCLING, REUSE AND RECOVERY OPTIONS The composition of e-waste consists of diverse items like ferrous and non ferrous metals, glass, plastic, electronic components and other items and it is also revealed that e- waste consists of hazardous elements. Therefore, the major approach to treat e-waste is to reduce the concentration of these hazardous chemicals and elements through recycle and recovery. In the process of recycling or recovery, certain e-waste fractions act as secondary raw material for recovery of valuable items. The recycle and recovery includes the following unit operations. (i) Dismantling Removal of parts containing dangerous substances (CFCs, Hg switches, PCB); removal of easily accessible parts containing valuable substances(cable containing copper, steel, iron, precious metal containing parts, e.g. contacts). (ii) Segregation of ferrous metal, non-ferrous metal and plastic This separation is normally done in a shredder process. (iii) Refurbishment and reuse Refurbishment and reuse of e-waste has potential for those used electrical and electronic equipments which can be easily refurbished to put to its original use.
  • 17. 17 (iv) Recycling/recovery of valuable materials Ferrous metals in electrical are furnaces, non-ferrous metals in smelting plants, precious metals in separating works. (v) Treatment/disposal of dangerous materials and waste Shredder light fraction is disposed of in landfill sites or sometimes incinerated (expensive), CFCs are treated thermally, PCB is incinerated or disposed of in underground storages, Hg is often recycled or disposed of in underground landfill sites. 4.4. TREATMENT &DISPOSAL OF E-WASTE The presence of hazardous elements in e-waste offers the potential of increasing the intensity of their discharge in environment due to landfilling and incineration. The potential treatment &disposal options based on the composition are given below: 1) Incineration 2) Landfilling 4.4.1. Landfilling The literature review reveals that degradation processes in landfills are very complicated and run over a wide time span. At present it is not possible to quantify environmental impacts from E-waste in landfills for the following reasons:  Landfills contain mixtures of various waste streams  Emission of pollutants from landfills can be delayed for many years One of the studies on landfills reports that the environmental risks from landfilling of e- waste cannot be neglected because the conditions in a landfill site are different from a native soil, particularly concerning the leaching behavior of metals. In addition it is known that cadmium and mercury are emitted in diffuse form or via the landfill gas combustion plant. Although the risks cannot be quantified and traced back to e-waste, landfilling does not appear to be an environmentally sound treatment method for substances, which are volatile and not biologically degradable (Cd, Hg, CFC), persistent (PCB) or with unknown behaviour in a landfill site (brominated flame retardants). As a
  • 18. 18 consequence o fthe complex material mixture in e-waste, it is not possible to exclude environmental (long-term) risks even in secured landfilling. 4.4.2. Incineration Advantage of incineration of e-waste is the reduction of waste volume and the utilization of the energy content of combustible materials. Some plants remove iron from the slag for recycling. By incineration some environmentally hazardous organic substances are converted into less hazardous compounds. Disadvantage of incineration are the emission to air of substances escaping fluegas cleaning and the large amount of residues from gas cleaning and combustion. There is no available research study or comparable data, which indicates the impact of e- waste emissions into the overall performance of municipal waste incineration plants. Waste incineration plants contribute significantly to the annual emissions of cadmium and mercury. In addition, heavy metals not emitted into the atmosphere are transferred to slag and exhaust gas residues and can reenter the environment on disposal. Therefore, e- waste incineration will increase these emissions, if no reduction measures like removal of heavy metals from are taken. 5. ENVIRONMENTALLY SOUND E-WASTE TREATMENT TECHNOLOGIES Environmentally sound E-waste treatment technologies (EST) are used at three levels as described below: 1. 1st level treatment 2. 2nd level treatment 3. 3rd level treatment
  • 19. 19 5.1. ANALYSIS All the three levels of e-waste treatment are based on material flow. The material flows from 1st level to 3rd level treatment. Each level treatment consists of unit operations, where e-waste is treated and output of 1st level treatment serves as input to 2nd level treatment. After the third level treatment, the residues are disposed of either in Treatment, Storage, Disposal Facility (TSDF) or incinerated. The efficiency of operations at first and second level determines the quantity of residues going to TSDF or incineration. The simplified version of all the three treatments is shown in figure 5.1.EST at each level of treatment is described in terms of input, unit operations, output and emissions. Figure 5.1: Simplified Version of EST for E-waste 1st LEVEL TREATMENT 2nd LEVEL TREATMENT 3rd LEVEL TREATMENT Input e-waste Disposal Disposal Output i.e. recovered materials
  • 20. 20 5.2. EST FOR 1ST LEVEL TREATMENT 5.2.1 Input: e-waste items like TV, refrigerator and Personal Computers (PC) 5.2.2 Unit Operations: There are three units operations at first level of e-waste treatment. 1.Decontamination - The first treatment step is to decontaminate e-waste and render it nonhazardous. This involves removal of all types of liquids and gases (if any)under negative pressure, their recovery and storage. 2. Dismantling - Manual/mechanized breaking 3.Segregation - Components are segregated into hazardous and nonhazardous components of e-waste fractions to be sent for 3rd level treatment. All the three unit operations are dry processes, which do not require usage of water. 5.2.3. Output: 1. Segregated hazardous wastes like CFC, Hg Switches, batteries and capacitors 2. Decontaminated e-waste consisting of segregated non-hazardous e-waste like plastic, CRT, circuit board and cables 5.2.4.Emissions: The emissions coming out of 1st level treatment is given in table 5.1. Table 5.1 Emissions from 1st level E-waste treatment Emissions Dismantling Segregation Air √ (fugitive) X Water X X Noise √ √ Land/ Soil Contamination due to spillage √ √ Generation of hazardous waste √ √
  • 21. 21 5.3. ESTFOR 2ND LEVEL TREATMENT 5.3.1. Input: Decontaminated E-waste consisting segregated non hazardous e-waste like plastic, CRT, circuit board and cables. 5.3.2.Unit Operations: There are three unit operations at second level of E-waste treatment. 1. Hammering 2. Shredding 3. Special treatment Processes comprising of (i) CRT treatment consisting of separation of funnels and screen glass. (ii) Electromagnetic separation (iii) Eddy current separation (iv) Density separation using water The two major unit operations are hammering and shredding. The major objective of these two unit operations is size reduction. The third unit operation consists of special treatment processes. Electromagnetic and eddy current separation utilizes properties of different elements like electrical conductivity, magnetic properties and density to separate ferrous, non ferrous metal and precious metal fractions. Plastic fractions consisting of sorted plastic after 1st level treatment, plastic mixture and plastic with flame retardants after second level treatment, glass and lead are separated during this treatment. The efficiency of this treatment determines the recovery rate of metal and segregated-waste fractions for third level treatment. The simplified version of this treatment technology showing combination of all three unit operations is given in Figure 5.2. 1. The technology for sorting, treatment, including recycling and disposal of E-waste is fully based on dry process using mechanical operations. 2. The pre-comminuting stage includes separation of Plastic, CRT and remaining non CRT based e-waste. Equipments like hammer mill and shear shredder will be used at
  • 22. 22 comminuting stage to cut and pulverize e-waste and prepare it as a feedstock to magnetic and eddy current separation. E-wastes Figure 5.2 Process Flow Chart of Non CRT Based E-Waste Treatment 3. A heavy-duty hammer mill grinds the material to achieve separation of inert materials and metals. Pre- comminuting for a rough liberation Magnetic & eddy current separation of ferrous and non ferrous metals Ferrous and nonferrous metals Cyclone Liberation of Non Ferrous Metals Classifying for unproved separation Subsequent comminution of unliberated materials Electrostatic separation of metal fraction Comminuting using hammer mill and shredder Dust Extraction Optional gravity or eddy current separation of course metal fraction Separation of Cu, Al, Au,Ag and other precious metals Fractions (Cu, Al, Au Ag and other precious metals) Separation of Fe & non- Fe (Cu, Al, Au, Ag and other precious metals)
  • 23. 23 4. After separation of metals from inert material, metal fraction consisting of ferrous and non-ferrous metals are subjected to magnetic current separation. After separation of Ferrous containing fraction, Non-ferrous fraction is classified into different non-metal fractions, electrostatic separation and pulverization. 5. The ground material is then screened and de dusted subsequently followed by separation of valuable metal fraction using electrostatic, gravimetric separation and eddy current separation technologies fractions of copper (Cu), aluminum (Al), residual fractions containing gold (Au), silver (Ag) and other precious metals. This results in recovery of clean metallic concentrates, which are sold for further refining to smelters. Sometimes water may be used for separation at last stage. 6. Electric conductivity-based separation separates materials of different electric conductivity (or resistivity) mainly different fractions of non-ferrous metals from E- waste. Eddy current separation technique has been used based on electrical conductivity for non ferrous metal separation from e-waste. Its operability is based on the use of rare earth permanent magnets. When a conductive particle is exposed to an alternating magnetic field, eddy currents will be induced in that object, generating a magnetic field to oppose the magnetic field. The interactions between the magnetic field and the induced eddy currents lead to the appearance of electro dynamic actions upon conductive non- ferrous particles and are responsible for the separation process. 7. The efficacy of the recycling system is dependent on the expected yields/output of the recycling system. The expected yields/ output from the recycling system are dependent on the optimization of separation parameters. These parameters are given below:  Particle size  Particle shape  Feeding rate/ RPM  Optimum operations
  • 24. 24 Figure 5.3Non- ferrous Metal Distribution vs. Size Range for PC Scrap Figure 5.3.2 shows the non- ferrous metal distribution (which forms the backbone of financial viability of recycling system) as a function of size range for PC scrap. It can be seen that aluminum is mainly distributed in the coarse fractions (+6.7 mm), but other metals are mainly distributed in the fine fractions (−5 mm). Size properties are essential for choosing an effective separation technique. Therefore, eddy current separator is best for granular nonferrous materials having size greater than 5mm. The eddy current separation will ensure better separation of Al fraction in comparison to fraction containing Cu, Ag and Au. 8. Particle shape is dependent on comminuting and separation. 9. The feeding rate can be optimized based on the speed and width of the conveyor. 5.3.2.1. CRT Treatment Technology The salient features of CRT treatment technology are given below. 1. CRT is manually removed from plastic/ wooden casing.
  • 25. 25 2. Picture tube is split and the funnel section is then lifted off the screen section and the internal metal mask can be lifted to facilitate internal phosphor coating. 3. Internal phosphor coating is removed by using an abrasive wire brush and a strong vacuum system to clean the inside and recover the coating. The extracted air is cleaned through an air filter system to collect the phosphor dust. Different types of splitting technology used are given below.  NiChrome hot wire cutting  Thermal shock  Laser cutting  Diamond wire method  Diamond saw separation  Water-jet separation 5.3.3.Output: The output from the 2nd level treatment technology is given below. 1. Ferrous metal scrap (secondary raw material) 2. Non ferrous metal scrap, mainly copper and aluminum 3. Precious metal scrap mainly silver, gold, & palladium 4. Plastic consisting of sorted plastic, plastic with flame retardants and plastic mixture 5. Glass fraction (secondary raw material) 6. Lead (secondary raw material) 5.3.4. Emissions: The emissions coming out of 2nd level treatment is given in table 5.2.
  • 26. 26 Table 5.2 Emissions from 2ndLevel E-wastes Treatment Unit Operations / Emissions Dismantling Shredding Special Treatment Process CRT Electro- magnetic Eddy Current Density separation Air √(fugitive) √ (fugitive) X √ (fugitive) √ (fugitive) X Water X X √ X X Noise √ √ √ √ √ X Land/ Soil Contamination due to spillage √ √ √ √ √ √ Generation of hazardous waste √ √ √ X X X 5.4. EST FOR 3RD LEVEL TREATMENT The hazardous material separated during the 1st level treatment and the output from the 2nd level is subjected to the 3rd level treatment. This facility need not always exists with the first two treatment locations, but may be located at different places. The treatment includes recycle /recovery of valuable materials using processes like smelting, refining etc.
  • 27. 27 The input, output and unit operations at 3rd level treatment are described in table 5.3. Table 5.3 Input, Output and Unit Operations at 3rdLevel Treatment 6. CASE STUDY OF RECYCLING AND DUMPING OF E-WASTE A case study of environmental contamination from electronic waste recycling at Guiyu, southeast China done by Anna Leung, Zong Wei Cai and Ming Hung Wong in 2005 reported in the Journal of Material Cycles Waste Management is briefly described below: Input/ WEEE Residues Unit Operation/ Disposal/ Recycling Technique Output Sorted Plastic Recycling Plastic Product Plastic Mixture Energy Recovery/ Incineration Energy Recovery Plastic Mixture with BFR Incineration Energy Recovery CRT Breaking/ Recycling Glass Cullet Lead bearing residue Secondary Lead Smelter Lead Ferrous metal scrap Secondary steel/ iron recycling Iron Non Ferrous metal Scrap Secondary copper and aluminum smelting Copper/ Aluminum Precious Metals Au/ Ag separation Gold/ Silver Batteries (Lead, Acid/ Nickel metal Hydride (Ni-MH) and Li – ion Lead recovery and smelting remelting and separation Lead CFC Recovery/ Reuse and Incineration CFC/ Energy recovery Oil Recovery/ Reuse and Incineration Oil recovery/ energy Capacitors Incineration Energy recovery Mercury Separation and Distillation Mercury
  • 28. 28 Guiyu is made up of several villages located in the Chaozhou region of Guangdong Province, 250km northeast of HongKong. Since 1995, the traditionally rice-growing community has become an e-waste recycling center for e-waste arriving from the United States, Hong Kong and from other countries. In Guiyu, recycling operations consist of toner sweeping, dismantling electronic equipment, selling computer monitor yokes to copper recovery operations, plastic chipping and melting, burning wires to recover copper, heating circuit boards over honeycombed coal blocks and using acid chemical strippers to recover gold and other metals. Not all activities are related to recovery; some include open burning of unwanted e-waste and their open dumping. Operations for the recovery of copper wires through the burning of polyvinyl chloride and flame retardant- protected cables(i.e., polybrominated diphenyl ethers, PBDEs) can release toxic polychlorinated dibenzo-p-dioxins and polybrominated dibenzo-p-dioxins (PCDDs/PBDDs) and furans(PCDFs/PBDFs) and the open burning of computer casings and circuit boards stripped of metal parts can produce toxic fumes and ashes containing polycyclic aromatic hydrocarbons(PAHs). Polychlorinated biphenyls (PCBs), which have been widely used as plasticizers, as coolants and lubricants in transformers and capacitors, and as hydraulic and heat exchange fluids, may also be present in the e-waste stream. In the study, the total concentration of polycyclic aromatic hydrocarbons (PAHs) ranged from 98.2 to 514 μg/kg in the sediment samples and from 93.7 to 593 μg/kg in the soil samples. The concentration of polychlorinated bi phenyls (PCBs) varied from 5.3 to 743 μg/kg in the sediment samples and from 22.7 to 102 μg/kg in the soil samples. The highest concentration of poly brominated diphenyl ethers (PBDEs) observed was 32.3 μg/kg in sediment and 1169 μg/kg in the soil. Concentration of heavy metals such as cadmium detected in the sediment ranged from 0.1 to .9 mg/kg, chromium from 3.4 to 43.5 mg/kg, copper from 6.3 to 528 mg/kg, nickel 11.3 to 120 mg/kg, lead 39.4 to 316 mg/kg and zinc 45.2 to 249 mg/kg. Concentration of cadmium detected in the soil ranged from nil to 3.1 mg/kg, chromium from 3.4 to 74.9 mg/kg, copper from 9.2 to 712 mg/kg, nickel 8.4 to 185 mg/kg, lead 55.4 to 104 mg/kg and zinc 78 to 258 mg/kg.
  • 29. 29 6.1. MATERIALS AND METHODS 6.1.1 Sampling Sites A preliminary survey of contaminant levels in Guiyu, located in Guangdong Province, China, was conducted in August 2003. Sediment samples were collected from two duck ponds (A & B) and at three different places along the Lianjiang River (River 1, River 2, River 3). Duck ponds A and B are located near open fields where dumping and open burning of e-waste and acid leaching of printed circuit boards are carried out. River 1 is located alongside a residential area away from the dumpsite but near printed circuit heating workshops. River 2 site is located near the open fields. River 3 site is in Heping town, located about 16km downstream from Guiyu. Soil was collected from a burnt plastic dump site and from a printer roller dump site. A reservoir located in the northern part of Guiyu, approximately 6km from the central e-waste processing region where impacts from e-waste were expected to be smaller, served as a control site. Both soil and sediment were collected from this site. 6.1.2. Sample Collection and Preparation Samples were collected from each study site at a depth of0–10cm using a stainless steel shovel. All samples we restored in clean polyethylene bags (Ziploc) to minimize sample contamination and were kept in ice-filled coolers at approximately 4°C for transport to the laboratory, where they were transferred and wrapped in aluminum foil and stored at −20°C. Soil and sediment samples were freeze dried; sieved (<1mm) to remove stones, roots, and coarse materials; and then stored in a desiccator prior to analysis. 6.2. SAMPLE ANALYSES The soil samples from burnt plastic dump site and printer roller dump site, reservoir and sediment samples from duck ponds A & B, River sites 1,2& 3 were analyzed for PAHs, PCBs, PBDEs, and heavy metals.
  • 30. 30 6.2.1. Polycyclic Aromatic Hydrocarbons 5 g of sample was extracted was extracted with acetone and dichloromethane and concentrated in rotary evaporator. The extract was analysed using gas chromatography/ mass spectrometry analysis. 6.2.2. Poly Chlorinated Biphenyls Sample was extracted was extracted with acetone and dichloromethane and analysed using gas chromatography / mass spectrometry analysis. 6.2.3. Poly Brominated Diphenyl Ethers PBDE analyses were conducted using a gas chromatography/ion trap mass spectrometry method. 6.2.4. Heavy Metals The samples were finely ground and 0.250 g of each sample was used for the determination of heavy metal (Cd, Cr, Cu, Ni, Pb and Zn) concentrations by microwave digestion. 6.3. RESULTS AND DISCUSSION The total concentration and individual concentrations of the 16 USEPA priority PAHs, PCBs, PBDEs and heavy metals in the sediment and soil samples are shown. 6.3.1. Sediment Total PAH concentrations in the sediment ranged from 98.2 to 514μg/kg. The highest concentration was at duck pond A. Both duck ponds A and B are located
  • 31. 31 approximately20m from a road; therefore, the elevated PAHs of these sediment samples may be partly attributed to PAH emissions from vehicular traffic in addition to the open burning of e-waste in the surrounding fields. Interestingly, the concentration of the sediment at the reservoir was higher than at the residential site (river-1). A possible explanation for the higher concentration at the reservoir may be the burning of incense and paper offerings, which is a Chinese custom for paying respect to ancestors. Many graves were seen on the hills surrounding the reservoir and below the water level; the area became a reservoir only a few years ago. The total PAH concentration of sediment collected from river-2, located in Guiyu, was approximately four times that of the sediment collected from within the residential area (river-1) and approximately twice the concentration of the sediment collected from the Lianjiang River in the town of Heping, approximately 16km downstream. The concentrations of the seven USEPA carcinogenic PAHs in the sediments ranged from 13.2 (reservoir) to 122μg/kg (duck pond A) and accounted for 6% (reservoir) to32% (river-2) of the total PAH concentrations. With the exception of the reservoir, the percentage of carcinogenic PAHs were similar (23.7%– 31.5%). Benzo(a)pyrene accounted for 16%, 14%, 12%, and 5% of the total carcinogenic compounds for river-2, duck pond B, duck pond A and river-1, respectively. It was not detected in river-3 or the reservoir. Concentration of PAHs in sediment is shown in table 6.1. Table 6.1 Concentration of PAHs in Sediment (μg/kg dry wt) USEPA PAHs Duck pond A Duck pond B River-1 River-2 River-3 Reservoir Two-ring Naphthalene 27.3 18.5 18.1 25.8 13.7 23.2 Three-ring Acenaphthylene ND ND ND ND ND ND Acenaphthene 75.4 ND 1.9 6.4 9.2 46.9 Fluorene 35.8 13.3 2.2 16.6 ND 12.6 Phenanthrene 110 67.9 25.5 67.3 35.5 55.3 Anthracene 22.0 ND 1.7 5.9 4.6 10.9 Four-ring Fluoranthene 65.4 57.2 12.1 48.4 41.0 45.1 Pyrene 41.0 35.0 8.6 43.0 32.1 32.4
  • 32. 32 Benzo(a)anthracene 15.2 18.7 3.8 23.6 13.3 5.6 Chrysene 34.4 43.5 11.3 46.1 30.6 7.6 Five-ring Benzo(a)pyrene 14.4 12.8 1.5 17.5 ND ND Benzo(b + k)fluoranthene 42.2 ND 11.3 ND ND ND Dibenz(a,h)anthracene ND ND ND ND ND ND Six-ring Indeno(1,2,3- c,d)pyrene 15.7 18.7 ND 24.1 ND ND Benzo(g,h,i)perylene 15.6 22.1 ND 26.7 ND ND ∑ 16 PAHs 514 308 98.2 352 180 240 ∑7 Carcinogenic PAHs 122 93.8 28.0 111 43.8 13.2 % Carcinogenic PAHs 23.7 30.5 28.5 31.7 24.4 5.5 Table 6.2 lists some of the most toxic and environmentally prevalent PCB congeners found in the sediment samples. The samples were analysed for a total of 66 PCB congeners, which included three dioxin-like PCBs (PCB-105, -118, and -157) and all seven indicator PCBs (PCB-28,-52, -101, -118, -138, -153, -180). The indicator PCBs are known to be persistent in the environment and also to bioaccumulate in the food chain. The total PCB concentration of duck pond A was comparable to that of duck pond B, and both were below the Canadian interim sediment quality guideline of 34.1μg/kg, whereas there was a large variation between the sediment collected from the two different locations of the Lianjiang River. River-2, in the vicinity of e-waste dumping and open burning, was highly contaminated by PCBs, with levels 53 times those at river-1, located near a residential area. PCBs were not detected in the sediments from the reservoir and river-3, located approximately 16km downstream of Guiyu in the town of Heping.
  • 33. 33 Table 6.2Concentration of PCBs in Sediment (μg/kg dry wt) PCB congener IUPAC number Sediment Duck Pond A Duck Pond B River 1 River 2 PCB-1 ND ND ND ND PCB-2 ND ND ND ND PCB-3 ND ND ND 2.39 Total mono PCBs ND ND ND 2.39 PCB-4 ND ND ND 33.6 PCB-6 ND ND ND 10.1 PCB-8 ND ND ND 66.6 PCB-9 ND ND ND 4.52 PCB-15 ND ND ND 23.5 Total di PCBs ND ND ND 122 PCB-16 0.22 ND ND 47.7 PCB-18 ND ND ND 40.3 PCB-19 ND ND ND 10.1 PCB-20 ND ND ND 39.2 PCB-22 ND ND ND 18.8 PCB-25 ND ND ND 5.28 PCB-27 ND ND ND 7.09 PCB-28 ND ND ND 115 PCB-29 ND ND ND 0.98 PCB-34 ND ND ND 0.53 Total di PCBs ND ND ND 294 PCB-40 ND 0.24 0.33 31.3 PCB-42 ND ND ND 14.7 PCB-44 0.28 0.24 0.33 31.3 PCB-47 ND 0.23 0.21 27.1 PCB-52 0.29 0.27 0.42 33.5 PCB-56 0.10 0.17 0.46 2.25 PCB-66 0.31 0.22 0.79 8.57 PCB-67 ND ND ND 0.94 PCB-69 ND ND ND ND PCB-71 ND ND ND 13.0 PCB-74 ND 0.11 0.27 6.46 Total tetra PCBs 1.91 2.69 5.11 258 PCB-82 ND 0.06 ND 0.70 PCB-87 0.15 0.11 0.42 2.40 PCB-92 ND ND ND 1.34 PCB-93 ND ND ND 8.16 PCB-99 0.18 0.11 0.30 3.22 PCB-101 0.28 ND 0.90 6.74 PCB-105 ND ND ND 2.41 PCB-110 ND 0.06 ND 0.70 PCB-118 0.33 0.20 1.06 6.29 PCB-119 ND ND ND 0.17 Total penta PCBs 1.66 1.14 4.92 43.9 PCB-128 ND ND 0.37 1.43 PCB-134 ND ND ND 0.32 PCB-136 ND ND 0.13 0.59 PCB-138 0.48 0.21 1.09 5.68 PCB-144 ND ND 0.14 0.81 PCB-146 ND ND ND 0.72 PCB-147 ND ND ND 0.19 PCB-151 ND ND 0.14 0.72 PCB-153 0.32 0.15 0.87 4.56 PCB-157 ND ND ND 0.44 PCB-158 ND ND ND 0.65 Total hexa PCBs 1.34 0.67 4.04 15.9 PCB-173 ND ND ND ND
  • 34. 34 PCB-174 ND ND ND 0.46 PCB-177 ND ND ND 0.27 PCB-179 ND ND ND 0.17 PCB-180 ND 0.14 0.24 1.15 PCB-187 ND ND ND 0.42 PCB-190 ND ND ND 0.73 PCB-191 ND ND ND ND Total hepta PCBs ND 0.14 0.32 5.20 PCB-194 ND ND ND ND PCB-195 ND ND ND ND PCB-199 ND ND ND ND PCB-203 ND ND ND ND Total octa PCBs ND ND ND ND PCB-206 ND ND ND ND PCB-207 ND ND ND ND PCB-208 ND ND ND ND Total nona PCBs ND ND ND ND PCB-209 ND ND ND ND Total deca PCBs ND ND ND ND Total PCBs 5.3 4.7 14.1 743 Total indicator PCBsa 1.7 1.0 4.6 173 PCB WHO –TEQb 3.27 2.04 1.06 1.09 PCB, polychlorinated biphenyls; IUPAC, International Union of Pure and Applied Chemistry; WHO-TEQ,World Health Organization/toxic equivalent a Total indicator PCBs sum of concentrations of PCB-28, -52, -101, -118, -138, -153, -180 b PCB WHO-TEQ sum of WHO-TEQ concentrations of PCB-105, -118, -157 A total of 43 mono- to hepta-brominated substituted poly brominated diphenyl ethers (PBDEs) congeners were detected in the sediment collected from river-2.Although the data were limited, it appears that the river sediment was contaminated by e-waste activities such as dumping, dismantling, and open burning. The heavy metal concentrations measured in sediment are shown in Table 6.3 together with some soil quality standards. Cu, Pb, and Zn were the most abundant metals among the environmental samples. E-waste, such as printed circuit boards dumped along the bank of Lianjiang River, may be responsible for the high Cu concentration atriver-2. The Cd, Cu, Ni, Pb, and Zn concentrations for river-2 exceeded the respective Dutch optimum values. For the reservoir soil, the heavy metal concentrations were below or close to the limits for the natural background as defined by the Chinese Environmental Quality Standards. The concentrations of heavy metals at duck pond A and duck pond B were very similar, however, Cr at duck pond B was twice that of duck pond A. The Pb contents of the duck ponds were slightly higher than the Pb content of the reservoir sediment.
  • 35. 35 6.3.2. Soil The soil PAH concentrations were highest at the printer roller dump site and were dominated by two- and three-ring compounds. The concentration profile for the soil collected from the burnt plastic dump site differed from the printer roller dump site. The total PAH concentration at the reservoir was low compared to the other sites. Of the sediment and soil samples, soil from the burnt plastic dump site was the most toxic Table 6.3 Heavy Metal Concentration in Sediment (mg/kg dry wt) Sampling site Heavy metals Cd Cr Cu Ni Pb Zn Sediment Duck pond-A ND 21.2 32.2 20.6 57.7 79.6 Duck pond-B 0.3 43.5 30.9 20.8 53.1 84.5 River-1 0.1 17.6 113 10.1 316 86.8 River-2 0.9 29.2 528 120 94.3 249 River-3 0.5 27.3 20.1 12.6 118 175 Reservoir ND 3.4 9.2 8.4 55.4 78.0 Reservoir ND 3.4 9.2 8.4 55.4 78.0 Soil quality standards Dutch Optimum value 0.8 100 36 35 85 140 Action value 12 380 190 210 530 720 China Grade I (natural background) 0.2 90 35 40 35 100 Grade II (agricultural and related use) 0.3 200 100 50 300 250 Grade III (industrial activity) 1 300 400 200 500 500
  • 36. 36 because the concentration of carcinogenic compounds contributed to 43%of the total concentration. The target set by the Dutch government for unpolluted soil is20–50μg/kg. Therefore, as all of the soils sampled were above 50μg/kg, the soils were considered to be polluted by PAHs. As there are many open e-waste burning sites in Guiyu, it was postulated that PAHs would be transported atmospherically by wind and subsequently deposited on land. Concentration of PAHs in the soil collected is given in table 6.4. Table 6.4Concentration of PAHs in soil (μg/kg dry wt) USEPA PAHs Burnt plastic Printer roller Reservoir Two-ring Naphthalene 45.4 294 27.3 Three-ring Acenaphthylene ND 14.2 0.7 Acenaphthene 6.6 64.6 7.5 Fluorene 9.7 36.5 4.0 Phenanthrene 58.8 131 23.1 Anthracene 8.0 9.7 9.7 2.1 Four-ring Fluoranthene 39.1 16.4 9.6 Pyrene 41.0 27.3 8.5 Benzo(a)anthracene 23.7 ND 1.6 Chrysene 48.3 ND 4.3 Five-ring Benzo(b +k) fluoranthene 56.5 ND 4.9 Benzo(a)pyrene 22.7 ND ND Dibenz(a,h)anthracene 4.5 ND ND Six ring Indeno(1,2,3- c,d)pyrene 29.1 ND ND Benzo(g,h,i)perylene 34.5 ND ND ∑ 16 PAHs 428 593 93.7 ∑7 Carcinogenic PAHsa 185 ND 10.8 % Carcinogenic PAHs 43.2 ND 11.6
  • 37. 37 The concentration of PCBs in soil collected is given in table 6.5. Table 6.5 Concentration of PCBs in soil (μg/kg dry wt) PCB congener IUPAC number soil Burnt plastic Dump site Printer roller Dump site PCB-1 ND ND PCB-2 ND ND PCB-3 ND ND Total mono PCBs ND ND PCB-4 ND ND PCB-6 ND ND PCB-8 ND ND PCB-9 ND ND PCB-15 ND ND Total di PCBs ND ND PCB-16 ND 7.00 PCB-18 ND 8.27 PCB-19 ND 0.84 PCB-20 ND 14.4 PCB-22 ND 3.25 PCB-25 ND ND PCB-27 ND ND PCB-28 ND 22.5 PCB-29 ND ND PCB-34 ND ND Total di PCBs ND 55.1 PCB-40 0.48 5.33 PCB-42 ND 2.06 PCB-44 0.48 5.33 PCB-47 ND 3.79 PCB-52 0.87 5.79 PCB-56 0.34 ND PCB-66 0.57 2.01 PCB-67 0.94 ND PCB-69 ND ND PCB-71 13.0 ND PCB-74 6.46 1.41 Total tetra PCBs 5.99 38.0 PCB-82 0.29 ND PCB-87 0.60 0.46 PCB-92 0.31 ND PCB-93 0.90 1.08 PCB-99 0.63 0.39 PCB-101 1.31 0.84 PCB-105 0.51 0.76 PCB-110 0.29 0.30 PCB-118 1.01 0.92 PCB-119 ND ND Total penta PCBs 8.14 5.87 PCB-128 0.41 0.23 PCB-134 ND ND PCB-136 0.20 ND PCB-138 1.50 0.82 PCB-144 ND ND PCB-146 0.41 ND PCB-147 ND ND PCB-151 ND ND
  • 38. 38 PCB-153 0.91 0.40 PCB-157 ND ND PCB-158 0.21 ND Total hexa PCBs 6.32 2.96 PCB-173 ND ND PCB-174 0.12 ND PCB-177 ND ND PCB-179 ND ND PCB-180 0.43 0.21 PCB-187 0.25 ND PCB-190 0.51 ND PCB-191 ND ND Total hepta PCBs 2.04 0.21 PCB-194 ND ND PCB-195 ND ND PCB-199 ND ND PCB-203 0.18 ND Total octa PCBs 0.18 ND PCB-206 ND ND PCB-207 ND ND PCB-208 ND ND Total nona PCBs ND ND PCB-209 ND ND Total deca PCBs ND ND Total PCBs 22.7 102 Total indicator PCBsa 6.0 31 PCB, polychlorinated biphenyls; IUPAC, International Union of Pure and Applied Chemistry; WHO-TEQ,World Health Organization/toxic equivalent a Total indicator PCBs sum of concentrations of PCB-28, -52, -101, -118, -138, -153, -180 The soil at the waste printer roller dumpsite also exhibited a notable presence of PCBs (102μg/kg. The concentration was almost twice the allowable level of 60μg/kg for PCBs in ambient soil stipulated by the former USSR Ministry ofHealth in 1991. A total of 43 poly brominated diphenyl ethers (PBDEs) congeners were detected in soil collected from the burnt plastic dump site.The analyses indicated that PBDE mono- to hepta-brominated congeners in soil had concentrations ranging from 0.26 to824μg/kg dry wt. The concentrations of the highly lipophilic BDE-47, -99, -100, and -153 congeners in the soil samples ranged from 2.70 to 615μg/kg andwere generally higher than the levels in the sediment collected from the Lianjiang River. Soil from the burnt plastic site had a BDE-183concentration that was almost 70 times that of soil fromthe printer roller dump site. PBDE concentrations in the soil at the dumping sites of Guiyu were approximately 10–60 times those reported elsewhere. Cu, Pb, and Zn were the most abundant metals among the environmental samples. Cu concentrations at the printer roller dump site (712 mg/kg) exceeded the new Dutch list action value of 190mg/kg. There were no other values that exceeded the Dutch action
  • 39. 39 level with regard to the other heavy metals, however, the Cd, Cu, Ni, Pb, and Zn concentrations for the burnt plastic dump site, and the printer roller dump site exceeded the respective Dutch optimum values. For the reservoir soil, the heavy metal concentrations were below or close to the limits for the natural backgroundas defined by the Chinese Environmental Quality Standards. Heavy metal concentration in the soil samples collected is given table 6.6. Of the study sites, the most seriously polluted were the burnt plastic and printer roller dump sites. From the results study conducted, there was a better awareness of the hazardous implications of e-waste recycling on the environment and human health. Based on the data it was concluded that the analyses of environmental and human samples collected from the area would show significant contamination by various substances resulting directly from crude and inappropriate e-waste recycling practices. Table 6.6 Heavy Metal Concentration in Soil Samples (mg/kg dry wt) Sampling site Heavy metals Cd Cr Cu Ni Pb Zn Soil Burnt plastic dump site 1.7 28.6 496 155 104 258 Printer roller dump site 3.1 74.9 712 87.4 190 – Reservoir ND 3.4 9.2 8.4 55.4 78.0 Soil quality standards Dutch Optimum value 0.8 100 36 35 85 140 Action value 12 380 190 210 530 720 China Grade I (natural background) 0.2 90 35 40 35 100 Grade II (agricultural and related use) 0.3 200 100 50 300 250 Grade III (industrial activity) 1 300 400 200 500 500
  • 40. 40 7. STRATEGIES FOR COMBATING E- WASTE 7.1. LEGISLATION Separate legislation for dealing with waste electrical and electronic equipments to control aspects of production, recycle, reuse and disposal is need of the hour. Many countries have such laws in place. In India, draft e-Waste (Management and Handling) Rules have been published by the Ministry of Environment and Forests, Government of India on 14.5.2010. 7.2. EXTENDED PRODUCER RESPONSIBILITY (EPR) Traditionally, the legislative approach toward environmental problems has been one of ‘command and control’, largely addressing ‘end-of-pipe’ pollution problems. Now, the emphasis is changing towards producer responsibility whereby those who produce good sare then responsible for the environmental impacts throughout the whole of their life cycle, from resource extraction to recycling, reuse and disposal (Nnorom et.al, 2008). Implementation of EPR in the developing countries has become necessary in the light of the present high level of trans-boundary movement of e-waste into the developing countries and the absence of basic or state-of the-art facilities for sound end-of-life material/energy recovery and disposal of e-waste. The Organization for Economic Cooperation and Development(OECD) defined EPR as “an environmental policy approach in which a producers’ responsibility for a product is extended to the post-consumer stage of a products life cycle including its final disposal” The main goals of EPR are: • waste prevention and reduction; • product reuse; • increased use of recycled materials in production; • reduced natural resource consumption; • internalization of environmental costs into product prices • energy recovery when incineration is considered appropriate
  • 41. 41 Under EPR, the producer is expected to take back all electrical and electronic equipment at the end of their life. 7.3.REDUCTION IN USE OF HAZARDOUS SUBSTANCES (ROHS) This aims at reducing the hazardous substances entering the atmosphere while dismantling the e-waste by prescribing threshold limits for use of such substances in e- waste. 8. CONCLUSION Electronic and electrical equipments cannot be avoided in today’s world. So also is the case of waste electronic and electrical equipments. As long as this is a necessary evil, it has to be best managed to minimize its adverse impacts on environment. Through innovative changes in product design under EPR, use of environmentally friendly substitutes for hazardous substances, these impacts can be mitigated. A legal framework has to be there for enforcing EPR, RoHS for attaining this goal. Adoption of environmentally sound technologies for recycling and reuse of e-waste along with EPR and RoHS offers workable solution for environmentally sound management of e-waste.
  • 42. 42 REFERENCES Bandhopadhyay, A. (2010) “Electronic Waste Management: Indian Practices and Guidelines” International Journal of Energy and Environment 1(5) pp. 193-807 Basel Convention on the Control of Transboundary Movement of Hazardous Wastes and Their Disposal – Document accessed in 10/2010 E-Waste Volume II, E-Waste Management Manual – United Nations Environment Program – accessed in 10/2010 Kurian Joseph (2007), “Electronic Waste Management in India-Issues and Strategies” Proc. On Eleventh International Waste Management and Landfill Symposium Mark Anderson (2010) What an E-waste” IEEE-spectrum, September, 2010 Nnorom I.C., Osibanjo O (2008) “Overview of Electronic Waste (e-waste) Management Practices and Legislation in the Developed Countries” Journal of Resource Conservation and Recycling 52(2008) 843-858 Sathish Sinha (2006) E-waste Time to Act Now –Toxic Alert, accessed in 10/2010 The Basel Action Network “Exporting Harm – The High Tech Trashing of Asia” accessed in 10/2010 Waste Water Engineering (2003), Metcalf and Eddy fourth edition www.moef.nic.in- website of Ministry of Environment and Forests, Government of India.