The document describes efficient solution methods for two-stage stochastic linear programs (SLPs) using interior point methods. Interior point methods require solving large, dense systems of linear equations at each iteration, which can be computationally difficult for SLPs due to their structure leading to dense matrices. The paper reviews methods for improving computational efficiency, including reformulating the problem, exploiting special structures like transpose products, and explicitly factorizing the matrices to solve smaller independent systems in parallel. Computational results show explicit factorizations generally require the least effort.