This document summarizes research on analyzing electromyography (EMG) signals using wavelet transforms to extract features for classification of muscle activity. A multi-channel EMG acquisition system was developed using surface electrodes to measure forearm muscle signals. Different wavelet families were used to analyze the EMG signals. Features like root mean square, logarithm of root mean square, centroid frequency, and standard deviation were extracted. Root mean square feature extraction performed best. In the future, this method could be used to control prosthetic or robotic arms for real-time processing based on muscle activity.