The document proposes a delayed acceptance method for accelerating Metropolis-Hastings algorithms. It begins with a motivating example of non-informative inference for mixture models where computing the prior density is costly. It then introduces the delayed acceptance approach which splits the acceptance probability into pieces that are evaluated sequentially, avoiding computing the full acceptance ratio each time. It validates that the delayed acceptance chain is reversible and provides bounds on its spectral gap and asymptotic variance compared to the original chain. Finally, it discusses optimizing the delayed acceptance approach by considering the expected square jump distance and cost per iteration to maximize efficiency.